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Pretentious Quote

What is Complexity?

If you can’t measure something, you can’t
understand it.

H. James Harrington
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You know my Achilles tendon is my one Achilles heel

Humpology: A Rope of Sand
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Definitions

Universal Turing Machines

A universal turing machine is an
finite-state controller with four tapes:

a one-way, read-only program tape
a one-way, read-only data tape
a read-write working tape
a one-way, write-only output tape

If d is empty, we simply write U(p) = x.

Let time(p) denote the number of steps
the Turing machine runs before halting.

We write U(p, d) = x to mean that when
p is placed on the program tape and d is
placed on the data tape, x is written to
the output tape after the machine has
halted.

A universal Turing machine U1 is
universal in the sense that:

∀ U2

∃ w s.t.

U1(wp, d) = U2(p, d)
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Definition

Kolmogorov Complexity [1, 2, 3, 4, 5]

The Kolmogorov complexity of a string x, K(x) , is the length of the shortest
program running on universal turing machine U which outputs x:

x∗ = arg min
p
{|p| : U(p) = x}

KU(x) = |x∗|

And conditionally:

KU(x | d) = min
p
{|p| : U(p, d) = x}

When choice of U is clear from context, we will simply write K(x)
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Properties

Choice of U Doesn’t Really Matter

∀ U1(x) ,U2(x)
∃ c ∈ Z+ s.t.

∀ x
|KU1(x)−KU2(x)| ≤ c

Proof:

Let c = |w| from definition of universal.
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Properties

K(x) is Bound From Above

K(x) ≤ |x|+ c

x = ...

def f():

print(x)

so for Python, c = 25.
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Properties

Most x are incompressible

Let S be the number of strings of length n compressible by c:

S =
{
x : |x| = n

K(x) ≤ n− c− 1

}

The size of this set is bound by:

|S| ≤ 2n−c − 1

And therefore the percentage of strings of length n compressible by c is:

|S|
2n
≤ 2n−c − 1

2n
≤ 1

2c
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Properties

Kolmogorov Complexity is Uncomputable

Assume we have a Python function K(x).
Consider the following code:

def paradox():

from sys import getsizeof

N = getsizeof(K) + \

getsizeof(paradox) + \

getsizeof(all_strings)

for x in all_strings():

if K(x) > N:

return x
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Applied Kolmogorov Complexity

Code Golf!
Program (575 B)

x="WM n=straQRsF=loB7Erules3s=d=IXA full

commitSnt'sKhatVFhink;of7KTldn'tUetFhis fromLny9guy.-AC if?Lsk S1Don'tFP

S?<bliCF=see//X82)8002)-.//"

i=45
for r in"XXW'BHn each9for s=loQ7r hear6ach;but7<shyF=s@InsideKe

bothHKha6go;onXWEgaS3weM:pl@|XI justKannaFP?1Gotta >uCRstaC/|X4g24let?

down4runLrTC3desRt?4>cry4sayUoodbye4tPL lie3hurt?|2)J)4giB, n5giBX(G|

howV feeliQX|iB? up|LC |XN5|eBr:|t's been |XYT|J,U| othR |Uonna |iQ

|MFo=|o |make? | yT|ay itX|A|ve|nd|D|HFhe | t|G| know|I|X(Ooh| w|

a|'re|N|O|ell|ng|er|me|ou| g|

I'm|We|\n".split("|"):x=x.replace(chr(i),r);i+=1

print(x)
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Applied Kolmogorov Complexity

Code Golf! [6]
Output (1872 B)

We’re no strangers to love
You know the rules and so do I
A full commitment’s what I’m thinking of
You wouldn’t get this from any other guy
I just wanna tell you how I’m feeling
Gotta make you understand

Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you

We’ve known each other for so long
Your heart’s been aching but
You’re too shy to say it
Inside we both know what’s been going on
We know the game and we’re gonna play it
And if you ask me how I’m feeling
Don’t tell me you’re too blind to see

Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you

Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you

(Ooh, give you up)
(Ooh, give you up)
(Ooh)
Never gonna give, never gonna give
(Give you up)
(Ooh)
Never gonna give, never gonna give
(Give you up)

We’ve known each other for so long
Your heart’s been aching but
You’re too shy to say it
Inside we both know what’s been going on
We know the game and we’re gonna play it

I just wanna tell you how I’m feeling
Gotta make you understand

Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you

Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you

Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you
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Motivation

What Does Kolmogorov Complexity Quantify?

What strings have large K ?

Those with no structure/regularities/patterns.

Kolmogorov Complexity more accurately quantifies randomness than complexity.
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Motivation

Program Length is the Wrong Metric

Just as the plausibility a scientific theory depends on the economy of
its assumptions, not on the length of the deductive path connecting
them with observed phenomena, so a slow execution time is not
evidence against the plausibility of a program; rather, if there are no
comparably concise programs to compute the same output quickly, it
is evidence of the nontriviality of that output.

Charles H. Bennett
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Definition

Logical Depth [7]

Logical Depth is the fastest running time among all “reasonably” optimal programs:

depthc(x) = min
p

{
time(p) : U(p) = x

|p| ≤ K(x) + c

}
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Properties

Physical Complexity
The depth of a crystal is small:

def crystal():

print('01' * 500_000)

The depth of a gas is small:
x = ...

def f():

print(x)

The depth of π is large:
from math import sqrt

def pi():
return sqrt(6*sum(1/n**2 for n in range(1,

1_000_000)))
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Motivation
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Definition

Sophistication [8]

Among all general model and data pairs which are optimal for x, sophistication is
the smallest model:

sophc(x) = min
p,d

|p| :
U(p, d) = x
|p|+ |d| ≤ K(x) + c
U(p, d) is defined for all d


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Properties

Static vs. Dynamic

Logical Depth and Sophistication are somewhat equivalent, at least for infinite
strings:

∃ c
∀ x :{

depthc(x) = sophc(x) =∞ or
|depthc(x)− sophc(x)| < c
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Thank You!

Summary

Kolmogorov Complexity is the length of
the shortest program producing x
Kolmogorov Complexity quantifies how
random x is
Logical Depth quantifies how long it
takes to produce x given a good (short)
program for it
Sophistication quantifies the “essential”
regularities of x
Both Logical Depth and Sophistication
are closer to intuitive notions of
complexity
All these quantities are uncomputable,
but of philosophical interest

Preview

How are Algorithmic
Information Theory and
(Shannon) Information
Theory related?
What is the complexity of a
distribution of strings/time
series?
What is the complexity of
an unstructured
distribution?
How do we quantify shared
information?
Are there different kinds of
shared information?
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Thank You!
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Thank You!

References II

[6] Programming Puzzles & Code Golf. We’re no strangers to code golf, you know
the rules, and so do I. url:
https://codegolf.stackexchange.com/questions/6043/were-no-strangers-to-code-

golf-you-know-the-rules-and-so-do-i (visited on 06/13/2018).
[7] Charles H Bennett. “Logical depth and physical complexity”. In: The Universal

Turing Machine A Half-Century Survey (1995), pp. 207–235.
[8] Moshe Koppel. “Complexity, depth, and sophistication”. In: Complex Systems

1.6 (1987), pp. 1087–1091.

https://codegolf.stackexchange.com/questions/6043/were-no-strangers-to-code-golf-you-know-the-rules-and-so-do-i
https://codegolf.stackexchange.com/questions/6043/were-no-strangers-to-code-golf-you-know-the-rules-and-so-do-i


Other Measures Supporting Code

Levin Complexity

Levin Complexity considers both program size and running time:

L(x) = min
p
{|p|+ log2 (time(p)) : U(p) = x}

What does Levin bring to the table?

computable!
a component of Universal Search, which is optimal for any problem (up to
monstrously huge multiplicative constant)
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Other Measures Supporting Code

Gennerating All Strings/Programs

from itertools import count,

product

def all_strings():

for length in count():
for word in product('01',

repeat=length):

yield ''.join(word)
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