
Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Measures of Complexity:
Computation Based

Ryan G. James

Complexity Sciences Center

June 19, 2018

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Pretentious Quote

What is Complexity?

If you can’t measure something, you can’t
understand it.

H. James Harrington

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

You know my Achilles tendon is my one Achilles heel

Humpology: A Rope of Sand

regular random

sim
pl

e
co

m
pl

ex

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Definitions

Universal Turing Machines

A universal turing machine is an
finite-state controller with four tapes:

a one-way, read-only program tape
a one-way, read-only data tape
a read-write working tape
a one-way, write-only output tape

If d is empty, we simply write U(p) = x.

Let time(p) denote the number of steps
the Turing machine runs before halting.

We write U(p, d) = x to mean that when
p is placed on the program tape and d is
placed on the data tape, x is written to
the output tape after the machine has
halted.

A universal Turing machine U1 is
universal in the sense that:

∀ U2

∃ w s.t.

U1(wp, d) = U2(p, d)

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Definitions

Universal Turing Machines

A universal turing machine is an
finite-state controller with four tapes:

a one-way, read-only program tape
a one-way, read-only data tape
a read-write working tape
a one-way, write-only output tape

If d is empty, we simply write U(p) = x.

Let time(p) denote the number of steps
the Turing machine runs before halting.

We write U(p, d) = x to mean that when
p is placed on the program tape and d is
placed on the data tape, x is written to
the output tape after the machine has
halted.

A universal Turing machine U1 is
universal in the sense that:

∀ U2

∃ w s.t.

U1(wp, d) = U2(p, d)

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Definitions

Universal Turing Machines

A universal turing machine is an
finite-state controller with four tapes:

a one-way, read-only program tape
a one-way, read-only data tape
a read-write working tape
a one-way, write-only output tape

If d is empty, we simply write U(p) = x.

Let time(p) denote the number of steps
the Turing machine runs before halting.

We write U(p, d) = x to mean that when
p is placed on the program tape and d is
placed on the data tape, x is written to
the output tape after the machine has
halted.

A universal Turing machine U1 is
universal in the sense that:

∀ U2

∃ w s.t.

U1(wp, d) = U2(p, d)

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Definitions

Universal Turing Machines

A universal turing machine is an
finite-state controller with four tapes:

a one-way, read-only program tape
a one-way, read-only data tape
a read-write working tape
a one-way, write-only output tape

If d is empty, we simply write U(p) = x.

Let time(p) denote the number of steps
the Turing machine runs before halting.

We write U(p, d) = x to mean that when
p is placed on the program tape and d is
placed on the data tape, x is written to
the output tape after the machine has
halted.

A universal Turing machine U1 is
universal in the sense that:

∀ U2

∃ w s.t.

U1(wp, d) = U2(p, d)

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Definitions

Universal Turing Machines

A universal turing machine is an
finite-state controller with four tapes:

a one-way, read-only program tape
a one-way, read-only data tape
a read-write working tape
a one-way, write-only output tape

If d is empty, we simply write U(p) = x.

Let time(p) denote the number of steps
the Turing machine runs before halting.

We write U(p, d) = x to mean that when
p is placed on the program tape and d is
placed on the data tape, x is written to
the output tape after the machine has
halted.

A universal Turing machine U1 is
universal in the sense that:

∀ U2

∃ w s.t.

U1(wp, d) = U2(p, d)

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Definition

Kolmogorov Complexity [1, 2, 3, 4, 5]

The Kolmogorov complexity of a string x, K(x) , is the length of the shortest
program running on universal turing machine U which outputs x:

x∗ = arg min
p
{|p| : U(p) = x}

KU(x) = |x∗|

And conditionally:

KU(x | d) = min
p
{|p| : U(p, d) = x}

When choice of U is clear from context, we will simply write K(x)

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Definition

Kolmogorov Complexity [1, 2, 3, 4, 5]

The Kolmogorov complexity of a string x, K(x) , is the length of the shortest
program running on universal turing machine U which outputs x:

x∗ = arg min
p
{|p| : U(p) = x}

KU(x) = |x∗|

And conditionally:

KU(x | d) = min
p
{|p| : U(p, d) = x}

When choice of U is clear from context, we will simply write K(x)

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Definition

Kolmogorov Complexity [1, 2, 3, 4, 5]

The Kolmogorov complexity of a string x, K(x) , is the length of the shortest
program running on universal turing machine U which outputs x:

x∗ = arg min
p
{|p| : U(p) = x}

KU(x) = |x∗|

And conditionally:

KU(x | d) = min
p
{|p| : U(p, d) = x}

When choice of U is clear from context, we will simply write K(x)

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Properties

Choice of U Doesn’t Really Matter

∀ U1(x) ,U2(x)
∃ c ∈ Z+ s.t.

∀ x
|KU1(x)−KU2(x)| ≤ c

Proof:

Let c = |w| from definition of universal.

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Properties

Choice of U Doesn’t Really Matter

∀ U1(x) ,U2(x)
∃ c ∈ Z+ s.t.

∀ x
|KU1(x)−KU2(x)| ≤ c

Proof:

Let c = |w| from definition of universal.

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Properties

K(x) is Bound From Above

K(x) ≤ |x|+ c

x = ...

def f():

print(x)

so for Python, c = 25.

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Properties

K(x) is Bound From Above

K(x) ≤ |x|+ c

x = ...

def f():

print(x)

so for Python, c = 25.

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Properties

Most x are incompressible

Let S be the number of strings of length n compressible by c:

S =
{
x : |x| = n

K(x) ≤ n− c− 1

}

The size of this set is bound by:

|S| ≤ 2n−c − 1

And therefore the percentage of strings of length n compressible by c is:

|S|
2n
≤ 2n−c − 1

2n
≤ 1

2c

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Properties

Kolmogorov Complexity is Uncomputable

Assume we have a Python function K(x).
Consider the following code:

def paradox():

from sys import getsizeof

N = getsizeof(K) + \

getsizeof(paradox) + \

getsizeof(all_strings)

for x in all_strings():

if K(x) > N:

return x

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Applied Kolmogorov Complexity

Code Golf!
Program (575 B)

x="WM n=straQRsF=loB7Erules3s=d=IXA full

commitSnt'sKhatVFhink;of7KTldn'tUetFhis fromLny9guy.-AC if?Lsk S1Don'tFP

S?<bliCF=see//X82)8002)-.//"

i=45
for r in"XXW'BHn each9for s=loQ7r hear6ach;but7<shyF=s@InsideKe

bothHKha6go;onXWEgaS3weM:pl@|XI justKannaFP?1Gotta >uCRstaC/|X4g24let?

down4runLrTC3desRt?4>cry4sayUoodbye4tPL lie3hurt?|2)J)4giB, n5giBX(G|

howV feeliQX|iB? up|LC |XN5|eBr:|t's been |XYT|J,U| othR |Uonna |iQ

|MFo=|o |make? | yT|ay itX|A|ve|nd|D|HFhe | t|G| know|I|X(Ooh| w|

a|'re|N|O|ell|ng|er|me|ou| g|

I'm|We|\n".split("|"):x=x.replace(chr(i),r);i+=1

print(x)

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Applied Kolmogorov Complexity

Code Golf! [6]
Output (1872 B)

We’re no strangers to love
You know the rules and so do I
A full commitment’s what I’m thinking of
You wouldn’t get this from any other guy
I just wanna tell you how I’m feeling
Gotta make you understand

Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you

We’ve known each other for so long
Your heart’s been aching but
You’re too shy to say it
Inside we both know what’s been going on
We know the game and we’re gonna play it
And if you ask me how I’m feeling
Don’t tell me you’re too blind to see

Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you

Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you

(Ooh, give you up)
(Ooh, give you up)
(Ooh)
Never gonna give, never gonna give
(Give you up)
(Ooh)
Never gonna give, never gonna give
(Give you up)

We’ve known each other for so long
Your heart’s been aching but
You’re too shy to say it
Inside we both know what’s been going on
We know the game and we’re gonna play it

I just wanna tell you how I’m feeling
Gotta make you understand

Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you

Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you

Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Motivation

What Does Kolmogorov Complexity Quantify?

What strings have large K ?

Those with no structure/regularities/patterns.

Kolmogorov Complexity more accurately quantifies randomness than complexity.

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Motivation

What Does Kolmogorov Complexity Quantify?

What strings have large K ?

Those with no structure/regularities/patterns.

Kolmogorov Complexity more accurately quantifies randomness than complexity.

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Motivation

What Does Kolmogorov Complexity Quantify?

What strings have large K ?

Those with no structure/regularities/patterns.

Kolmogorov Complexity more accurately quantifies randomness than complexity.

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Motivation

Program Length is the Wrong Metric

Just as the plausibility a scientific theory depends on the economy of
its assumptions, not on the length of the deductive path connecting
them with observed phenomena, so a slow execution time is not
evidence against the plausibility of a program; rather, if there are no
comparably concise programs to compute the same output quickly, it
is evidence of the nontriviality of that output.

Charles H. Bennett

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Definition

Logical Depth [7]

Logical Depth is the fastest running time among all “reasonably” optimal programs:

depthc(x) = min
p

{
time(p) : U(p) = x

|p| ≤ K(x) + c

}

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Properties

Physical Complexity
The depth of a crystal is small:

def crystal():

print('01' * 500_000)

The depth of a gas is small:
x = ...

def f():

print(x)

The depth of π is large:
from math import sqrt

def pi():
return sqrt(6*sum(1/n**2 for n in range(1,

1_000_000)))

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Properties

Physical Complexity
The depth of a crystal is small:

def crystal():

print('01' * 500_000)

The depth of a gas is small:
x = ...

def f():

print(x)

The depth of π is large:
from math import sqrt

def pi():
return sqrt(6*sum(1/n**2 for n in range(1,

1_000_000)))

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Properties

Physical Complexity
The depth of a crystal is small:

def crystal():

print('01' * 500_000)

The depth of a gas is small:
x = ...

def f():

print(x)

The depth of π is large:
from math import sqrt

def pi():
return sqrt(6*sum(1/n**2 for n in range(1,

1_000_000)))

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Motivation

40 50 60 70 80 90 100
150

160

170

180

190

200

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Definition

Sophistication [8]

Among all general model and data pairs which are optimal for x, sophistication is
the smallest model:

sophc(x) = min
p,d

|p| :
U(p, d) = x
|p|+ |d| ≤ K(x) + c
U(p, d) is defined for all d



Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Properties

Static vs. Dynamic

Logical Depth and Sophistication are somewhat equivalent, at least for infinite
strings:

∃ c
∀ x :{

depthc(x) = sophc(x) =∞ or
|depthc(x)− sophc(x)| < c

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Thank You!

Summary

Kolmogorov Complexity is the length of
the shortest program producing x
Kolmogorov Complexity quantifies how
random x is
Logical Depth quantifies how long it
takes to produce x given a good (short)
program for it
Sophistication quantifies the “essential”
regularities of x
Both Logical Depth and Sophistication
are closer to intuitive notions of
complexity
All these quantities are uncomputable,
but of philosophical interest

Preview

How are Algorithmic
Information Theory and
(Shannon) Information
Theory related?
What is the complexity of a
distribution of strings/time
series?
What is the complexity of
an unstructured
distribution?
How do we quantify shared
information?
Are there different kinds of
shared information?

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Thank You!

References I

[1] Andrei Nikolaevich Kolmogorov. “Three approaches to the quantitative
definition of information”. In: International journal of computer mathematics
2.1-4 (1968), pp. 157–168.

[2] Gregory J Chaitin. “On the simplicity and speed of programs for computing
infinite sets of natural numbers”. In: Journal of the ACM (JACM) 16.3 (1969),
pp. 407–422.

[3] Ray J Solomonoff. “A formal theory of inductive inference. Part I”. In:
Information and control 7.1 (1964), pp. 1–22.

[4] Ray J Solomonoff. “A formal theory of inductive inference. Part II”. In:
Information and control 7.2 (1964), pp. 224–254.

[5] Li Ming and Paul Vitányi. An introduction to Kolmogorov complexity and its
applications. Springer Heidelberg, 1997.

Introduction Kolmogorov Complexity Logical Depth Sophistication Conclusion

Thank You!

References II

[6] Programming Puzzles & Code Golf. We’re no strangers to code golf, you know
the rules, and so do I. url:
https://codegolf.stackexchange.com/questions/6043/were-no-strangers-to-code-

golf-you-know-the-rules-and-so-do-i (visited on 06/13/2018).
[7] Charles H Bennett. “Logical depth and physical complexity”. In: The Universal

Turing Machine A Half-Century Survey (1995), pp. 207–235.
[8] Moshe Koppel. “Complexity, depth, and sophistication”. In: Complex Systems

1.6 (1987), pp. 1087–1091.

https://codegolf.stackexchange.com/questions/6043/were-no-strangers-to-code-golf-you-know-the-rules-and-so-do-i
https://codegolf.stackexchange.com/questions/6043/were-no-strangers-to-code-golf-you-know-the-rules-and-so-do-i

Other Measures Supporting Code

Levin Complexity

Levin Complexity considers both program size and running time:

L(x) = min
p
{|p|+ log2 (time(p)) : U(p) = x}

What does Levin bring to the table?

computable!
a component of Universal Search, which is optimal for any problem (up to
monstrously huge multiplicative constant)

Other Measures Supporting Code

Levin Complexity

Levin Complexity considers both program size and running time:

L(x) = min
p
{|p|+ log2 (time(p)) : U(p) = x}

What does Levin bring to the table?

computable!
a component of Universal Search, which is optimal for any problem (up to
monstrously huge multiplicative constant)

Other Measures Supporting Code

Gennerating All Strings/Programs

from itertools import count,

product

def all_strings():

for length in count():
for word in product('01',

repeat=length):

yield ''.join(word)

	Introduction
	Pretentious Quote
	You know my Achilles tendon is my one Achilles heel
	Definitions

	Kolmogorov Complexity
	Definition
	Properties
	Applied Kolmogorov Complexity

	Logical Depth
	Motivation
	Definition
	Properties

	Sophistication
	Motivation
	Definition
	Properties

	Conclusion
	Thank You!

	Appendix
	Other Measures
	Supporting Code

