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In the language of graph theory, the brain is a small-world network, as are many other 
complex systems such as social networks and the Internet. In rough terms, this means that 
its web of connections lies midway between randomness and the regular pattern seen, for 
example, in layered backprop networks. Here we demonstrate one advantage of small-
world connectivity for systems like the brain:  it makes learning and memory more robust 
to damage. We show with simulations that small-world neural networks are more 
functionally robust to random removal of synapses than regular networks (and as robust 
as random networks), in the sense that they remember more of the patterns that they were 
trained on prior to damage. This advantage of small-world structure increases with the 
number of layers and synapses of the network. 
 
 
INTRODUCTION 
 
Small-world networks have become the focus of intense examination over the past 
decade since the formal description of these networks by Watts and Strogatz (1998).  
"Small-world" networks can be visualized as regular networks (such as standard 
feedforward neural networks, where each interior vertex connects to all vertices in 
directly adjacent layers, see Fig. 1) that have been randomly rewired by moving edges to 
create a small number of long-range shortcuts. More specifically, small-world networks 
are typically characterized through two network properties: short average path length L 
and large clustering coefficient C.   The average path length L describes the average, over 
all pairs of nodes in the graph, of the minimum number of edges that need to be traversed 
to travel between those two nodes.  The clustering coefficient C, (dense local 
connectivity) reflecting network transitivity, is the probability that nodes B and C are 
connected to each other if both are connected to A, for any triplet of nodes (A,B,C) in the 
network.  In regular networks, path lengths are long and the clustering coefficient is high 
- local interactions dominate and very few long range interactions are seen.   Watts and 



Strogatz reported that small-world transformations caused by rewiring shortcuts leads to 
a drop in path length but a slower drop in clustering. While such rearrangements 
ultimately result in a random network (which exhibit short path lengths and low 
clustering coefficients),  at some point in the rearrangement clustering remains relatively 
high but path lengths are substantially reduced as compared to a regular network.  Watts 
and Strogatz termed these small-world networks; they have turned out to be ubiquitous in 
biological and other complex systems.  
       In particular, networks in the brain exhibit small-world topology (Sporns et al. 2004, 
Bassett and Bullmore 2006).  Anatomically, local clustering is maintained within the 
cortical gray matter, where neurons in the same vertical column, 1 mm in diameter, are 
10,000 times more likely to have a connection than distant cortical neurons, yet short path 
lengths are maintained through the sparse long-range connectivity of the white matter 
which is wrapped around the prominent folds of the cortex (Laughlin and Sejnowski 
2003).  Functionally, these same small-world properties have shown up in temporal 
correlations in fMRI data (Sporns et al. 2004) and signal synchronization in high-
resolution EEG, even though these data don’t always depend in any simple way on 
anatomical connectivity. According to this work, functional networks exhibit high intra-
system connectivity (high clustering) yet the number of steps needed to go from one 
functional area to another is relatively short (short path length) (Eguiluz et al. 2005, 
Sporns et al. 2004).   

Though the brain shows small-world structure in several ways, the advantage to 
the organism remains unclear.  A recent paper suggests that learning speed may provide 
at least part of the explanation: Simard et al. (2005) found that small-world neural 
networks can learn substantially faster than similar-sized regular or random 
networks. Here we demonstrate another advantage of small-world topology: it makes 
learning and memory more robust to damage, and so may help to preserve brain function 
in the face of aging, injury or disease.   

 
 
 

METHODS 
 
I.  Defining ‘small-world’ for a (possibly) disconnected graph 
 
 As originally defined by Watts and Strogatz (1998), small-world networks are 
graphs that combine the dense local connectivity of regular networks with the short 
average path length of random networks, measured respectively by the quantities C and 
L. Recently the definition was extended by Latora and Marchiori (2003) to apply to also 
to disconnected graphs. Their new measures are more appropriate for our study because 
our procedure for creating small-world and random networks can produce disconnected 
graphs. For a graph G, Latora and Marchiori define the efficiency E(G) and the local 
efficiency Eloc(G) as follows:  
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where N is the number of nodes in the network and dij is the length of the shortest path 
between nodes i and j. 
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where Gi is the subgraph of G consisting of the neighbors of i. 
 Efficiency E is the inverse of the harmonic mean of {dij} and local efficiency Eloc 
is the average efficiency of these subgraphs. Because Eloc is proportional to C and E is 
proportional to 1/L, small worlds have high values of both E and Eloc, i.e. they are both 
globally and locally efficient. The anatomical and functional networks of the brain are 
also small-world in the sense of Latora and Marchiori (Latora and Marchiori 2004, 
Achard 2007). 
 
 
II.  Neural network generation 
 
Following Simard et al. (2005) we generated three classes of feedforward neural 
networks:  regular, small-world, and random (Fig. 1). Neural networks with regular 
topology were constructed in the standard way: neurons in layer i were connected to 
every neuron in layer i -1 and every neuron in layer i +1. From the regular network we 
created random & small-world networks by this rewiring procedure:  
 

1. Choose a random connection in the network and delete it. 
2. Randomly choose two unconnected nodes (not in the same layer) and add a 

forward connection.  
 

Repeating these steps over and over eventually results in a random network, but if instead 
we stop after some appropriate, smaller number of rewirings then E and Eloc will both be 
high, and the network will have a small-world structure (Fig. 1).  
 
                 Regular               Small-world          Random  
  

                           
 
 Fig. 1.  Randomly rewiring a regular network produces a small-world network, and  
 eventually a random network. 

 
 
For our experiments we used the same five network architectures as Simard et al. (2005). 
The table below, summarizing these networks, is based on their paper. 
 



Layer 
L 

Neurons per 
layer N/L 

Synaptic 
Connections 

Random rewirings needed 
to generate a small world 

5 5 25 19 +/- 5 
5 8 40 28 +/- 5 
10 10 100 400 +/- 100 
15 8 120 830 +/- 50 
15 15 225 2300 +/- 300 
 
Table 1. We performed experiments on five different neural network architectures. 
 
 
III. Experiments 
 
For each of the five architectures in Table 1, we trained networks using standard learning 
algorithms — backprop or resilient backprop (RPROP) — to recognize a set of random 
binary input-output patterns. We used two learning algorithms because backprop 
frequently became stuck in local minima and never achieved the accuracy we wanted, 
particularly on networks of more than 10 layers. With RPROP, we were able to include 
deeper networks.  
 We varied the pattern-set size — number of patterns the networks had to learn — 
to see whether the difficulty of the task affected the results. For the bigger networks —  
architectures 3–5 — we used pattern-set sizes of 8, 16, 32, 64, or 128, and for each of 
these sizes we tested10 regular, 10 random, and 10 small-world nets. For the smaller 
networks — architectures 1 and 2 — we used pattern-set sizes of 8, 16, or 32, and for 
each we again tested 10 regular, 10 random, and 10 small-world nets (since these two 
architectures have only 5 input neurons, they can receive only 25 = 32 distinct binary 
input vectors). The networks were trained until they achieved the same low rate of error 
(MSE = 1.0 for architectures 1-3, whether trained by backprop or RPROP; MSE = 1.2 for 
architectures 4 or 5, which were always trained by RPROP).  
 We then simulated brain damage by randomly eliminating some percentage of the 
network’s edges (“synapses”) — either 5%, 10%, 25%, or 50%. After damage, we tested 
the networks on the pattern set they had previously been trained on, and recorded their 
MSE. The damaged networks were not given a chance to relearn before testing. So in 
total we performed 20 different tests on architectures 3, 4, and 5 (4 damage levels × 5 
pattern set sizes), and 12 tests on architectures 1 and 2 (4 damage levels × 3 pattern set 
sizes).  All tests were carried out using SNNS, the Stuttgart Neural Network Simulator, 
developed in Stuttgart, and JavaNNS, a Java based neural network simulator, developed 
at the University of Tuebingen. 
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Fig. 2. The beneficial effect of a small-world topology is much more pronounced for deep 
network architectures (bottom) than for shallow ones (top).  
 

   
RESULTS 
 
For each network architecture, for each pattern set size (8, 16, 32, 64, or 128), and for 
each level of damage (5%, 10%, 25%, 50%), we performed two statistical tests, 
comparing our 10 small-world networks to 10 regular networks, and the same small-
world networks to 10 random networks. For each of these two comparisons we used a 
two-tailed Student t-test (allowing for the possibility of different variances). Then, for 
each network architecture, we performed a Bonferroni correction. In all our tests, the 
criterion for significance was a P value < 0.05 after this Bonferroni correction. 
 
 
 



I.  RPROP results 
 
Small-world nets vs. Regular nets 
 
Our simulations showed that small-world networks were significantly more robust to 
damage than regular networks. 
 
• In all 20 tests (i.e. for every size pattern set and for every damage level) performed on 

the deep networks — architectures 3–5 — small-world networks were significantly 
more robust to damage than regular networks. 

• In 5 of the 12 tests on second-shallowest networks — architecture 2 — small-world 
networks were significantly more robust to damage than regular ones.  

• For the shallowest networks — architecture 1 — none of the 12 tests showed a 
significant difference between the regular and small-world. 

 
For any given architecture and level of damage, the difference between the small-world 
and regular nets grew as difficulty of the learning task increased (Fig. 3). 
 These results indicate that small-world networks are more robust to damage than 
regular networks. The difference becomes more pronounced for networks with more 
layers or more neurons per layer. 
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Fig. 3. In a deep network, the difference between the small-world and regular networks 
grows as the difficulty of the learning task (i.e. number of patterns to be learned) 
increases. 
 
 
Small-world nets vs. Random nets 
 
We found no consistent difference between the small-world and random networks: 
 



• In all 12 tests performed on the shallow architectures, 1 and 2, and all 20 tests on 
architecture 4, there was no significant difference between small-world and random 
networks. 

• On 1 of the 20 tests for each of architectures 3 and 5, there was a significant 
difference, with the random networks outperforming the small-world networks.  

 
These results suggest that there is usually no difference between the functional robustness 
of small-world versus and random networks, except perhaps for deep nets with many 
synapses, where random networks may occasionally surpass small worlds. 
 

 
II. Backprop results 
 
Results of our backpropagation experiments closely matched those with RPROP, though 
with backprop we have no satisfactory data for architectures 4 and 5, or architecture 3 
with the largest pattern set, because the regular networks never learned to the desired 
level of accuracy (MSE = 1). 
 Again, we found no difference between small-world and regular networks, or 
small-world and random networks, for the shallowest networks (architecture 1). In the 
(8L, 5N/L) architecture, the small-world nets outperformed the regular nets on 2 of the 20 
tests, and the random nets outperformed the small-world ones on 1 test. Finally, in the 
(8L, 15N/L) architecture,  the small worlds outperformed the regular nets on 15 of the 16 
tests, and there was no difference between the small-world nets and the random ones. 
These results again support the conclusion that small-world networks are more robust to 
damage than regular ones, and that there is little difference in this regard between random 
nets and small worlds. 
 
 
DISCUSSION  
 
Our simulations demonstrate that small-world neural networks are more functionally 
robust to random removal of synapses than regular networks (and as robust as random 
networks). This difference in performance seems to be more pronounced for larger and 
deeper network architectures; presumably, as the number of layers increases, the 
shortcuts created by the rewiring procedure are able to have a more drastic effect on 
communication in the network. Another factor that affects performance is the difficulty 
of the learning task: Fig 3 shows that, as the number of patterns to be learned increases, 
so does the difference between the small-world and regular networks.  

Our results suggest an explanation for why the brain is wired up as a small-world 
network: it makes our learning less vulnerable to the effects of aging, injury, or disease. 
Our study is relevant to the process of normal aging and the field of dementia research 
(Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, multi-infarct 
dementia). By age 90, 35-40% of the neurons in some areas of the brain are lost (Dani et 
al. 1997). Interestingly, Alzheimer’s disease seems to involve a loss of small-world 
properties (Stam et al. 2007). Our results suggest that small-world properties are 



beneficial for healthy aging, and may provide a new perspective from which to approach 
treatments for dementia. 
 Having established that small-world neural networks are more robust to damage 
than regular ones, we would like to follow up with a more detailed ANOVA analysis to 
determine which factors contribute most to this effect. We plan to test a greater variety of 
neural network architectures to isolate the different effects of: network depth, total 
number of neurons, total number of synapses, difficulty of the learning task, and degree 
of damage. We will also investigate the effect of randomly deleting neurons in our 
networks, instead of synapses, and model the specific pattern of damage seen in brain 
diseases like Alzheimer’s. 
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