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A Collocation-Galerkin Finite Element Model 
of Cardiac Action Potential Propagation 

Jack M. Rogers and Andrew D. McCulloch 

Abstract- A new computational method was developed for 
modeling the effects of the geometric complexity, nonuniform 
muscle fiber orientation, and material inhomogeneity of the 
ventricular wall on cardiac impulse propagation. The method 
was used to solve a modification to the FitzHugh-Nagumo sytem 
of equations. The geometry, local muscle fiber orientation, and 
material parameters of the domain were defined using linear 
Lagrange or cubic Hermite finite element interpolation. Spa- 
tial variations of time-dependent excitation and recovery vari- 
ables were approximated using cubic Hermite finite element 
interpolation, and the governing finite element equations were 
assembled using the collocation method. To overcome the deficien- 
cies of conventional collocation methods on irregular domains, 
Galerkin equations for the no-flux boundary conditions were 
used instead of collocation equations for the boundary degrees- 
of-freedom. The resulting system was evolved using an adaptive 
Runge-Kutta method. Converged two-dimensional simulations of 
normal propagation showed that this method requires less CPU 
time than a traditional finite difference discretization. The model 
also reproduced several other physiologic phenomena known 
to be important in arrhythmogenesis including: Wenckebach 
periodicity, slowed propagation and unidirectional block due 
to wavefront curvature, reentry around a fixed obstacle, and 
spiral wave reentry. In a new result, we observed wavespeed 
variations and block due to nonuniform muscle fiber orientation. 
The findings suggest that the finite element method is suitable 
for studying normal and pathological cardiac activation and has 
significant advantages over existing techniques. 

I. INTRODUCTION 
DETAILED understanding of the global activation and A recovery patterns underlying cardiac arrhythmias has 

been elusive-largely because of the geometric and structural 
complexity of the heart and the fine spatial scale of the acti- 
vation patterns relative to the size of the whole organ. Recent 
progress has come through large-scale computerized electrode 
mapping experiments that have clearly demonstrated the role 
of reentry in ventricular tachycardia (VT) and fibrillation 
(VF) [ 11-[4]. However, the resolution of these experiments 
is fundamentally limited by the number of available recording 
electrodes and the tissue damage they cause. 

Computer models can help in the interpretation of sparse 
mapping data, suggest new experiments, and provide insights 
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into the physics of cardiac action potential propagation. Nu- 
merous models have been developed [5], [6]. Many use the 
cellular automata approach in which propagation is governed 
by a set of arbitrary rules [7]-[ll]. Several have shown that 
reentry can be initiated by a premature wave propagating 
across a region with spatially nonuniform refractoriness. These 
models are appealing because of their simplicity and com- 
putational speed; however, the rule-based approach is not 
an accurate model of the biophysics of cardiac activation. 
Another approach uses numerical and analytic models of 
generic excitable media to study the large-scale geometry of 
excitation waves. By adopting simple but qualitatively realistic 
representations of spatial communication and membrane kinet- 
ics, such models have aided our understanding of the initiation 
and subsequent dynamics of reentrant spiral waves in excitable 
media [ 121-[ 141. 

Recently, there has been a trend toward models that more 
closely reflect the biophysics of cardiac action potential prop- 
agation. They address three main properties: the biochemical 
events in the cell membrane that generate the action potential, 
the microstructural basis of cell-cell coupling, and the large- 
scale geometric complexity, fibrous architecture, and spatial 
inhomogeneity of the whole organ. Sophisticated models of the 
membrane dynamics of the cardiac cell have been developed 
[15], [16], as have models which explore the effects of the tis- 
sue microstructure on action potential propagation [ 171-[21]. 
However, the effects of the large-scale geometric complexity 
of the heart have remained largely unexplored, probably be- 
cause of the lack of feasible computational methods to cope 
with such simulations. 

The objective of this work was to develop a model to 
study the effects of the heart’s geometric complexity, nonuni- 
form anisotropy, and material inhomogeneity. Because finite 
difference methods are not well suited to this problem, we 
describe a new collocation-Galerkin finite element method 
capable of solving continuous reaction-diffusion equations on 
such complex domains. This model is designed to form the 
basis for increasingly sophisticated quantitative simulations 
of the electrical activity of the heart. Our first objective is 
to explore the effects of these geometric factors on generic 
action potential propagation and to generate experimentally 
testable predictions of the behavior of myocardium. We show 
that our model produces converged traveling-wave solutions to 
a modification of the well-known FitzHugh-Nagumo system 
of equations for excitable media [22]. Two-dimensional sim- 
ulations demonstrate that the model can efficiently reproduce 
normal propagation as well as several phenomena thought to 
be important in arrhythmogenesis. 
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11. THE GOVERNING EQUATIONS O R  

The model is based on the FitzHugh-Nagumo equations for 
0 6  - excitable media [22] 

au 
- = V . DVU + C ~ U ( U  - a ) ( l  - U )  - C ~ V  
at 
dV 
- = b ( ~  - dv) at 

04 I 
with b o u n d q  condition 

a U  

an 
= 0. - 

In this reaction-diffusion system, U is the excitation variable, 
which can be identified with transmembrane potential, v is the 
recovery variable, n is a vector normal to the boundary, D 
is the diffusion tensor, and a,  b ,  c1, C Z ,  and d are "membrane" 
parameters that define the shape of the action potential pulse. 
The diffusion tensor and the parameters are constant in time, 
but not necessarily in space. These equations often appear in 
the literature in various equivalent forms [23]. 

The passive spread of current is governed by the diffusive 
term in the first equation, and the ionic currents are described 
by the second equation and the last two terms of the first 
equation. The cubic term governs activation. It has three fixed 
points at U = 0, U = a, and U = 1. The points U = 0 and U = 1 
are stable and represent the resting and excited state, respec- 
tively. The excitation threshold is represented by the unstable 
point U = a. A point in the domain will tend toward U = 0 
unless potential fluctuations exceed a. In this case, the point 
becomes excited and tends toward 1. The recovery variable 'U 

brings the system back to the rest state and prevents reexcita- 

second equation makes recovery dependent On the potential Of 

the time of recovery first order. with a suitable choice 
of parameters, the local state oscillates among rest, excita- 
tion, and refractoriness. Thus, this parabolic system of partial 
differential equations can support a traveling-wave solution. 

The solution waveform of the FHN system shows a neg- 
ative excursion of U during the refractory part of the wave, 
where U is close to 0, but v is elevated (Fig. l(a)). This 
hyperpolarization is not characteristic of the cardiac action 
potential, and may adversely affect the recovery properties 
of the model, particularly in the complex reentrant activation 
patterns that are of most interest. The hyperpolarization is 
eliminated (Fig. I(b)) by modifying the last term in the first 
equation of (1) 

I 
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Fig. 1. Action potential waveforms for (a) the standard FHN system (1) 
and (b) the modified FHN system (2). Note the hYPeV"Ja"zation of in 
the recovery phase of (a). Solid line: the excitation variable U. Dashed line: 
the recovery variable 7:. Membrane parameters for the standard FHN system: 
a = 0.12.b x 0.011,cl = 0.175,cz = 0.03.d 1 0.55. The membrane 
parameters for the modified FHN system are listed in Table I. 

tion for a certain refractory period. fie appearance of in the 

neighboring regions, and the linear dependence on makes 

dU 
- = V .  DVU + C ~ U ( U  - a ) ( l -  U )  - C ~ U W  at 

For both systems, the trajectory through the excita- 
tion/recovery cycle begins at a point in the phase plane where 
duldt and dvldt are both positive (Fig. 2). Excitation U 

increases rapidly until it crosses its nullcline. At this point, 
liuldt is negative, recovery begins, and U decreases until the 
trajectory again crosses a nullcline of U and begins the final 
path to the origin. In the unmodified FHN system (Fig. 2(a)), 

I 
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the trajectory encounters the second branch of the nullcline 
in the left half of the phase plane. The placement of this 
nullcline is responsible for the undershoot of U .  However, in 
the modified FHN system (Fig. 2(b)), there is a nullcline of 
U at U = 0 that prevents the undershoot. 

111. SOLUTION METHODS 
A hybrid collocation-Galerkin finite element method was 

developed to solve the modified or unmodified FHN sys- 
tems on a general domain with fibrous anisotropy. Although 
the implementation supports both two-dimensional (2-D) and 
three-dimensional (3-D) problems, for simplicity, only 2-D 
solutions are discussed in this paper. 

A .  Notation and Coordinate Systems 

The following development makes use of general tensor 
notation [24]. Bold symbols denote vector or tensor quantities. 
Individual components of vectors and tensors are denoted with 
subscripted or superscripted indexes. Indexes repeated within 
a product imply summation over their range; however, indexes 
in parentheses are not summed. Thus, the term ai bi expresses 
the inner product of the two vectors a and b, while a ( ; ~ b ( ~ )  is 
the product of individual components. 
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0 1  

I 

base vectors (ap = up). In this paper, the indexes z , ~ ,  and k 
are used to index the world coordinates; 1, m, and n are used 
for finite element coordinates; and p ,  q, and T refer to the fiber 
coordinate system. These indexes all range from 1 to 2 in 2-D 
and from 1 to 3 in 3-D. 

B .  Finite Element Interpolation 
- 

2%8 - 
Ir.lJrclon . 

The variables U and U ,  the local fiber orientation, the 
0 5 ,, / /  . components of the diffusion tensor, the membrane parameters 

U 

(b) 

Fig. 2. Phase space trajectories of a single, spatially uncoupled point fol- 
lowing (a) standard FHN kinetics (1) and (b) modified FHN kinetics (2). The 
nullclines of both U and v are plotted. The trajectories begin in the region of 
the phase plane where du /d t  and d v / d t  are both greater than 0 and proceed 
counterclockwise. Note that in (b), U has two nullclines. 
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Lagrange or cubic Hermite finite element interpolation [25], 
[26]. In this scheme, the 2-D domain is subdivided into 
four-sided finite elements with nodes located at the vertices 
(Figs. 3, 4). The value of a variable within an element is 
interpolated from parameters defined at the nodes. These 
parameters are global in that they are shared by all adjacent 
elements. For linear Lagrange interpolation, the parameters 
are simply the values of the variable at the nodes. Thus, 
the bilinear approximation of some variable z within any 
element is obtained by mapping the appropriate global nodes 
to the nodes of the current element and using the interpolation 
function 

Fig. 3 .  
I v )  coordinate systems. 

The relationship among the global (z), finite element ( I ) ,  and fiber 

We use three coordinate systems (Fig. 3). z = xiii is 
the world coordinate system, which in this paper is always 
Cartesian. The zz are coordinates and the i; are the base 
vectors of the coordinate system. ,$ = [ ‘gl  is the finite 
element coordinate system that is local to each element. The 
E’ coordinates range from 0 to 1 along each element edge, 
and the covariant base vectors gl point in the direction of the 
coordinate axes and may be curvilinear and/or nonorthogonal. 
v = vpap is the orthonormal “fiber” coordinate system defined 

Ll(11) Ll(52) 4 0 , O )  

+L1(11) L2(12) 4 0 , 1 )  
+L2(J1) L 2 ( J 2 )  4 L 1 >  
+L2(tl) Ll(E2) 4 1 , O )  (3) 411, E2) = 

where the 1-D linear Lagrange interpolating functions are 
h(1) = 1 - 1 and L2(5) = E .  

Since the nodal parameters are the nodal values of the 
interpolated variable, linear Lagrange interpolation ensures 
interelement continuity of the variable (CO continuity). Conti- 
nuity of the gradient of the variable as well as the variable itself 
(C’ continuity) is achieved with cubic Hermite interpolation, 
which additionally uses the spatial derivatives of the variable 
as nodal parameters. In 2-D, there are four parameters per 
node, and the bicubic Hermite interpolation function for a 
variable z is 

z(E1, E2) = @(11) H10(12) 4 0 , O )  
+ fml) m E 2 )  4 L O )  
+ m 1 1 )  H20(12) 4 0 , 1 )  
+ H20(tl) HZo(12) 41,1) 
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(4) 

Both interpolation formulas (3) and (4) are tensor products 
of the 1-D basis functions [26] and can be extended directly 
to 3-D. In 3-D, the linear Lagrange interpolation function has 
eight terms and the cubic Hermite formula has 64. 

Because the nodal derivatives in (4) are taken with respect 
to the finite element coordinate system, interelement gradient 
continuity will only be maintained if the element sides all have 
the same length. This restriction can be lifted if derivatives 
with respect to the globally continuous arc lengths of the 
element sides ( s l )  rather than the finite element coordinates 
are used as the global parameters [25]. However, these new 
parameters cannot be used in (4). The required nodal deriva- 
tives are recovered in the process of mapping global to element 
parameters by multiplying the global parameters by constant 
scaling factors d s l / d t l  that are defined for each element side 

Since the element sides are always of unit length in the finite 
element coordinate system, the scaling factors are simply the 
arc length of the element sides in the global coordinate system. 

Both interpolation formulas (3) and (4) can be written 
more compactly by defining multidimensional element basis 
functions !Pp as the 1-D basis function products that multiply 
the nodal parameters. For example, for bilinear Lagrange 
interpolation, % ( E l , J z )  = - b ( E ~ ) - h ( E z ) ,  ~ % ( E I , E Z )  = 
LL(<I)  L 1 ( 5 2 ) ,  etc. The mapping from global to element 
parameters can be written as P(') = I$')Zb. In this 
expression, the index E identifies a particular finite element. 

never summed. The index p ranges over the individual 2-D 
basis functions (1, . . . , 4  for bilinear Lagrange interpolation 
and 1, . . . , 16 for bicubic Hermite interpolation), and b ranges 
over all global degrees-of-freedom (i.e., global parameters) 
in the finite element approximation. For a given element 
t, ,2p(F) is the vector of element parameters (i.e., z and its 
derivatives in (3) and (4)), and T$') is a matrix that maps 
each element parameter p to a single global parameter b. For 
linear Lagrange interpolation, each nonzero matrix entry is 
1.0, so that the matrix simply specifies the connectivity of the 
elements. For Hermite interpolation, the nonzero entries are 
the derivative scaling factors in (5). Zb is the vector of all 
global parameters. Using this notation, the value of z at point 
t in element t is given by 

z ( 6 )  = $ p ( t ) Y ( c )  = $p(t)T$G)zb. (6) 

If the approximated variable is time-dependent, the global 
parameters become functions of time. Thus, the approxima- 
tions for the excitation and recovery variables (U and ' U ,  

respectively) are 

U(<, t )  = P p ( t ) q y U b ( t )  

U ( [ ,  t )  = !Pp( t ) I y )Vb( t ) .  (7) 

Cubic Hermite interpolation is always used for U and U .  This 
choice is mandated by our use of the collocation method (see 
below). Since these fields are time-dependent, the initial values 
of the global nodal parameter vectors U b  and V b  are defined 
at the start of each simulation and are then evolved in time. 
The global parameters defining the geometry, structure, and 
material properties of the mesh are fixed in time. In this paper, 
linear Lagrange interpolation is used for these variables, but 
the use of Hermite interpolation is available for more complex 
fields [27]. 

C. Transformation of the Governing Equations 
In component form, (2) becomes 

+ c,u(u - a) ( l  - U )  - CZUW 

d V  

at - = b(U - dv) .  

These equations are transformed to simplify the diffusion 
tensor D'j and to express the spatial derivatives of U in terms 
of the finite element coordinate system. 

Several identities from tensor calculus [24] are required. 
If cpa and pa are the components of two general coordinate 
systems, z is a scalar field, t ,  is a vector field, and dab is the 
Kronecker delta, then 

dz - d z  avo 
dva aPa d ~ a  

alfaacpa - d i p  dp" - - dp" 

- - -- 

-- - __- --  
aq, dpb apb dp,  dpb - 

This index differs from the others in this paper in that it is ta6ab = t b .  (9) 
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These identities can be used to show that D. The Finite Element Equations 
8% a 

&adpb = (E) 
- - 

8 2 2  d ipd ip f l  d z  @(pa +-- ' (10) 

In (8), the components of the diffusion tensor ( D z J )  are 
implicitly referred to the base vectors of the global Cartesian 
coordinate system. Because the muscle fiber orientation may 
be nonuniform, these components are functions of the global 
coordinates z'. If the diffusive term in (8) is transformed 
to the fiber coordinate system, the component matrix of the 
diffusion tensor (now denoted DQ') becomes diagonal, and 
the components are simply the diffusion constants in the fiber 
and transverse directions. This transformation is achieved by 
making the substitution 

___-- - - 
aipmdip~ 3% a(p, dvaapb 

and using identities (9) and the chain rule. Thus, 

Since the finite element basis functions are defined in terms 
of the element coordinates E ' ,  the spatial derivatives of U must 
be transformed once again to this system. Using identities (9) 
and (10) on (11) and substituting back into (8), we obtain 

a u  d u  a2 U 
at at1 at1 at,, 
av 

- A'-  + g l m p  

+ c,u(u - a ) ( l  - U )  - c2w71 

= b ( u  - dv) (12) - 
at 

where 
a222 a<" 

aErlal7n ax, 
A' = g l m p -  

@<m dv' d<l ~ d2<1 
+ ljPq--- + D P Q T  avpav, atm av, av&, 

and 

The first and second derivatives of several coordinate trans- 
formations appear in (12). Because the geometry of the mesh 
is defined using finite element interpolation, the global coor- 
dinates x2 of any point in the mesh are known functions of 
the finite element coordinates <', and the derivatives dx'/ /d& 
and a2xa/d&d<, are easily computed. d<'/dz, is obtained by 
inverting the matrix dzi/a&. The derivatives involving the U P  

coordinates, although more complex, are also computed from 
the finite element description of the mesh's geometry and fiber 
field (Appendix). 

Recall that the solution to the modified FHN system is 
expressed in terms of vectors of 1 -D time-dependent functions 
U b ( t )  and V b ( t )  with known initial values (7). Since the 
primary task of our method is to evolve these functions in time, 
we must derive one ordinary differential equation (ODE) for 
each function. The collocation method [28] is an efficient way 
to accomplish this. In collocation, the approximate solution 
is made to satisfy the governing partial differential equations 
exactly at a discrete set of points. The form of the collocation 
equations is obtained by substituting (7) into (12) 

One of each of these equations is formed at each colloca- 
tion point. The index t specifies the element containing the 
collocation point. At any instant, the lib and lib vectors, the 
parameter maps T:''), and the values and derivatives of the 
basis functions $iW, which are evaluated at the coordinates 
of the collocation point, are known, but the vectors d U b / d t  
and d V b / d t  are unknown. Thus, the right-hand side of each of 
the above equations sums to a known scalar, and the products 
!PpT f ( " (dUb/d t )  and PPaT$"(dVb/dt)  are inner products 
of known and unknown vectors. If we assume for the moment 
that there are as many collocation points as there are degrees- 
of-freedom in the approximations of U and v ,  then- the set of 
co!location equations forms two linear systems AU = b and 
AV = b, where the finite element matrix A is the union of 
the vectors !PpT[(') and the vectors b and c are the unions 
of the right-hand sides of the collocation equations. These 
systems can be solved for dub/& and d V b / d t  which can then 
be integrated in time providing a solution to the governing 
equations. 

This scheme is appealing because there are no basis function 
products in the finite element matrix. As a result, collocation 
yields much sparser matrices than the more common Galerkin 
method [28]. In two dimensions, cubic Hermite interpolation 
uses four parameters per global node. Therefore, in the interior 
of a mesh, the number of collocation points matches the 
number of degrees-of-freedom if there are four collocation 
points per element (i.e., if one nodal parameter is assigned to 
each of the four elements surrounding a node). Cubic inter- 
polation is the lowest degree that supports such a distribution 
scheme. The optimal locations of the collobation points have 
been shown to be at the roots of the Legendre polynomials 
[29]. Global convergence for collocation has been shown to 
be O( h2)-which is comparable with the Galerkin method, 
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Fig. 4. The distribution of global parameters between the collocation and 
Galerkin methods. Each node is surrounded by its four parameters. Collocation 
equations are generated for the parameters located inside the mesh. These 
parameters are written on the approximate locations of the collocation points. 
The basis functions associated with the parameters ourside the mesh support 
the approximation of U on the boundary, and Galerkin equations are formed 
for these parameters. 

although at the collocation points, convergence is O(h4) [30], 

This scheme fails, however, at the boundaries, where there 
arc fewer collocation points than nodal parameters. Also, this 
scheme does not enforce the boundary conditions. We resolve 
both of these problems by identifying the basis subset that 
supports the solution at the boundary and using the boundary 
conditions to form Galerkin finite element equations [31] for 
the associated global parameters. In the Galerkin method, the 
error in the solution is weighted with each basis function and 
integrated over the domain. Thus, when all of the Galerkin 
equations are satisfied, the error in the solution is orthogonal 
to the basis set from which the solution is constructed. In this 
application, the error is the flux of U ,  which is integrated only 
over the boundary of the domain. On most practical meshes, 
the number of equations generated in this way is exactly equal 
to the shortfall from collocation, thus ensuring a well-posed 
problem. However, on some meshes, this method results in 
too many equations, in which case we use all of the Galerkin 
equations, and remove enough collocation points to restore the 
balance between equations and unknowns. The distribution of 
parameters between the two types of equations is illustrated 
in Fig. 4. In a simpler scheme [28], the boundary degrees-of- 
freedom can be eliminated from the system without the use of 
the Galerkin method if the element comers are right-angled. 
However, we have not adopted this technique as this condition 
is too restrictive to accurately model the complex geometry of 
the heart. 

The Galerkin equations for the excitation variable are de- 
rived by differentiating the no-flux boundary condition with 
respect to time 

~ 9 1 .  

-(-) d au = -(---) a at ( ' )  atm d u  = O .  (14) at an at ax, ax, atm 

Here, d t ( ' ) / dz ;  is the single contravariant base vector of 
the finite element coordinate system that is normal to the 
boundary. The set of basis functions that supports the solution 
on the boundary of each element is identified. Next, 
the first equation of (7) is substituted into (14), and the result is 
weighted with each function and integrated over the boundary 

Note that since the index c is free, but does not run over all 
degrees-of-freedom in the approximation, and all quantities are 
known except d U b / d t ,  (15) is an underdetermined, homoge- 
neous system of linear equations. This system, together with 
the underdetermined system formed by the first of collocation 
equations (1 3) forms a completely determined linear system 
in the unknown vector d l J b / d t .  

Boundary Galerkin equations must also be derived for the 
recovery variable U .  Since there are no boundary conditions 
on w, one way to obtain the Galerkin equations is to derive 
them directly from the second part of (8) 

Altemately, a no-flux boundary condition can be imposed on 
w, yielding Galerkin equations similar to (15) 

The latter scheme is advantageous in that it produces a 
coefficient matrix for d V b / d t  that is identical to the one for 
d U b / d t ,  and as a result, only one finite element matrix must 
be stored and factorized. The latter scheme was used in all 
simulations in this paper. 

The integrals in (15) and (16) or (17) are evaluated with 
a Gaussian quadrature scheme. The linear system (which is 
sparse) is solved using the Y12m package [32]. The resulting 
system of ODE'S that governs U b  and V b  is evolved using a 
Runge-Kutta method (NAG routine D02BBF) that automat- 
ically and adaptively selects the size of the time step. It is 
important to note that the coefficient matrix of d U b / d t  and 
d V b / d t  does not contain any terms that are functions of time. 
Therefore, the linear system only needs to be factorized once, 
before the beginning of the time integration, and not at every 
timestep, for a considerable gain in computational efficiency. 
The sparseness of the finite element matrix due to the use of 
the collocation method adds to the efficiency of the method. 
Because the Galerkin equations are formulated in a space one 
dimension lower than the interior collocation equations (i.e., 
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TABLE I 
MEMBRANE PARAMETERS 

0.13 

0.013 

0.26 

0.1 

1 .o 
DIongirudinoI 

isotropic 1 .o 
anisotropic 4.0 

Drransverse 1 .o 

the boundary), our use of the Galerkin method does not upset 
the sparsity of the finite element matrix. 

E. Implementation 

This computational method was implemented on a DEC- 
station 5000/200 workstation (Digital Equipment Corp., May- 
nard, MA) within the framework of a general-purpose finite 
element program used previously for other cardiac modeling 
applications [ 331. To improve computational performance on 
complex meshes, a distributed implementation was developed. 
Problem setup and finite element matrix assembly were per- 
formed on the local workstation. The assembled matrices were 
then sent over the network to a remote Cray Y-MP 8/864 (Cray 
Research Inc., Eagan, MN) which factorized the matrices and 
integrated the system of ODE’S. Only a single processor of the 
Cray was used. The solution was periodically sent back to the 
workstation for processing and/or output. The UNIX socket 
abstraction was used for communication between the two 
machines. Once the communication link had been established 
between the two systems, it was transparent to the user. 

F .  Choice of Membrane Parameters, 
Convergence, and Numerical Stability 

To find appropriate membrane parameters and element sizes, 
solutions to (2)  were obtained on a series of square, isotropic 
finite element meshes. For these tests, straight, uniform waves 
were initiated by setting U to 1.0 on the row of nodes along 
one edge of the mesh. All other nodal parameters for U and 
‘U were initially set to 0.0. The diffusion constants were set to 
unity, and the membrane parameters a, b, c l ,  cp, and d were 
manipulated by trial and error to produce a traveling-wave 
solution (Fig. l(b)). Care was taken to make the decay in 
the recovery variable follow the recovery of the excitation 
variable as closely as possible. The membrane parameters, 
which were used in all subsequent simulations reported in this 
paper, are listed in Table I. Since the goveming equations are 
dimensionless, the results of these simulations, and the others 
in this paper, are reported in terms of arbitrary “time units” 
and “space units.” The correspondence between these units 
and physical units is discussed at the end of this section. 

5 10 I S  20 25 

element size 

Fig. 5. Wavespeed convergence with increasing mesh refinement. As the size 
of the elements decreased, the speed of straight, uniform waves converged to 
0.213 space units/time unit. All elements used in this paper were 10 x 10 
space units or smaller. 

The membrane parameters define the shape of the action 
potential pulse, e.g., the slope of the upstroke and the width of 
the pulse. The finite element mesh must be sufficiently refined 
so that at any instant in time, there are enough elements across 
the width of the pulse to faithfully represent it. The required 
number of elements is determined by the steepest part of the 
pulse, which is generally the upstroke. In a continuum model 
such as this, the wavespeed is a function of the upstroke 
velocity [34]. Therefore, to find the optimal element size for 
given parameter set, the element size should be decreased until 
wavespeed converges. When this has occurred, the mesh is 
sufficiently refined to accurately represent the upstroke, and 
hence, the entire action potential waveform. 

This procedure was carried out for the parameter set in Table 
I. Wavespeed converged to 0.213 space units/time unit (Fig. 5) 
at an element size of between 12 and 14 space units. In the 
simulations reported in this paper, all elements were 10 x 10 
space units, or smaller, which is well below the convergence 
threshold. Increasing the diffusion constants is equivalent to 
shrinking the elements. Therefore, anisotropic domains were 
created by increasing the longitudinal diffusion constant rather 
than by decreasing the transverse constant, thereby maintaining 
convergence in both directions. 

The nature of the error due to the collocation method is 
illustrated in Fig. 6. Because the approximate solution is made 
to satisfy the governing equations exactly at discrete points, the 
error in the solution is not uniformly distributed. As the wave- 
front propagates, its location relative to the collocation points 
changes, and the solution oscillates (Fig. 6(a)). However, when 
the element size is within the convergence threshold used for 
all subsequent simulations (10 x 10 space units), the oscillation 
is essentially eliminated (Fig. 6(b)). 

To further verify the implementation, the action potential 
waveforms were compared with waveforms generated by a 
simple finite difference program run with the same membrane 
parameters. In addition, the membrane parameters c1 cp, and b 
were set to zero, reducing (2 )  to the time-dependent diffusion 
equation. The same initial condition as above was given, and 
the asymptotic decay of U to a uniform level was compared 
with the analytic solution. 
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Fig 6. Reduction of action potential oscillation by spatial mesh refinement. 
Rei tangular, isotropic, 160 x 160 space unit meshes were stimulated along one 
edge to produce uniform, straight wavefronts. Snapshots of the U waveform 
were taken every ten time units for 500 time units and overlaid on the same 
axi\. In (a), the elements were each 20 x 20 space units, and in (b) they were 
each 10  x 10  space units. 

The attributes of the converged waves used in these tests 
can be used to establish a correspondence between the di- 
mensionless time and space units used in this paper and 
physical dimensions. Assigning an experimental action poten- 
tial duration of 205.0 ms [35] to the model’s action potential 
duration (at 90% repolarization) of 325.0 time units maps 
on2 time unit to 0.63 ms. Similarly, assigning a longitudinal 
propagation velocity of 0.34 mm/ms [35] to the model’s 
converged wavespeed of 0.213 space units/time unit maps one 
space unit to 0.99 mm. Assuming an action potential amplitude 
of 110 mV [35], with this time scale, the action potential 
upstroke of the model maps to 2.2 V/s. This is considerably 
snialler than typical experimental values of 100-200 V/s [34]. 

G Computational Performance 

To characterize the computational performance of our 
method, straight waves were propagated for 150 time units 
(95 ms using the above mapping) on 16 x 16 element meshes 
composed of 10 x 10 space unit elements. This area is roughly 
comparable to the epicardial surface of both ventricles of a 
canine heart. On the DECstation, 4.5 s of CPU time were 
required to assemble the finite element equations, and 10.9 s 

a simulation of any duration. Integrating the solution for the 
specified time required 55.3 s. When the Cray was used, the 
factorization time dropped to 2.0 s, and the solution time to 
3.5 s. For comparison, the same solution was calculated on the 
DECstation using a finite difference program. This program 
used the same time-integrating scheme as the finite element 
code, but standard center differences were used for the spatial 
discretization. The mesh was refined to approximately the 
same place on its convergence curve (120 x 120 nodes) as 
the finite element mesh. The integration time for this program 
was 169 s, which is considerably longer than the total time 
used by the finite element method. 

The solution time for the finite element method-xclusive 
of the cost of assembly and matrix factorization-is dominated 
by the repeated backsubstitution of the factorized matrix. 
To first order, the timing of this process is proportional to 
the number of nonzero elements in the matrix. In 2-D, the 
number of rows in the matrix is four times the number of 
nodes in the mesh. Each collocation equation has 16 terms 
(the number of basis functions that support the solution at a 
particular point within an element). The Galerkin equations 
have a variable bandwidth, but are somewhat less dense since 
they are formulated over the 1-D boundary. Therefore, the 
finite element matrix has approximately 16 x 4 x n nonzeros, 
where n is the number of nodes. In 3-D, each node has eight 
associated parameters, and each collocation equation has 64 
terms. The 3-D finite element matrices are correspondingly 
larger and denser, and solution times scale accordingly. 

IV. MODEL RESULTS 

The following 2-D simulations illustrate the use of our 
numerical method and demonstrate that it, together with our 
modification of the FHN system, can simulate cardiac ac- 
tion potential propagation in both normal and pathological 
situations. 

A .  The Wenckehach Phenomenon 

A wave propagating in an unrecovered excitable medium is 
slower than a wave propagating in a fully recovered medium 
[36]. When applied to periodic wavetrains, this property is 
known as dispersion and is a consequence of the increased 
current required to bring refractory tissue to threshold. To test 
for the presence of dispersion in our model, a medium was 
stimulated at one end at short, constant intervals (Fig. 7). At 
the time of the second stimulus, the stimulation site (panel 
(a), left edge) was not fully recovered, and the second pulse 
was slowed by the refractory wake of the first pulse. As 
a result, by the end of the second interval (panel (b)), the 
stimulation site was even less recovered than it had been at 
the end of the first interval (panel (a)). The refractoriness of 
the stimulation site caused the third pulse to block completely 
(panel (c)), and the resulting “hole” in the wavetrain made 
it possible for the fourth pulse to propagate at nearly the 
same speed as the first (panel (d)). This cycle, in which 
every third pulse is unable to propagate, is characteristic of 
3 : 2 Wenckebach periodicity (two responses for every three 



ROGERS AND MCCULLOCH: A COLLOCATIONCiALERKIN FINITE ELEMENT MODEL 75 1 

L 1 

I =  1050 1 

I ,  

I =  1400 

Fig. 7. 
dispersive slowing of the second pulse (a), (b) and the failure of the third (c). The fourth pulse propagates successfully (d). 

Wenckebach periodicity in a wavetrain propagating down a long, thin mesh (640 x 10 space unit). The short coupling interval (350 time units) causes 

stimuli) [37]. Differing dynamics can be produced by varying 
the interval between stimuli. 

B. The Effect of Wavefront Curvature 

The effect of the curvature of a traveling wavefront on the 
velocity of propagation and the stability of the wave was stud- 
ied by stimulating across the neck of a funnel-shaped domain 
(Fig. 8). Because of the no-flux boundary condition, the waves 
must intersect the boundaries at a right angle. Therefore, the 
wave propagating in the straight-sided region was straight, 
while the wave in the expanding region was curved. Since 
the curved wavefront was constantly expanding, each segment 
along it must excite a slightly longer segment ahead of it. 
Thus, the curved wavefront had a higher current load than 
the straight one, and consequently had a lower propagation 
velocity. In this example, the wavefront curvature was convex. 
In the case of concave curvature, this mechanism operates 
in reverse, making curved waves faster than straight ones. 
This result is consistent with singular perturbation analysis of 
excitable media [36] which predicts that wavespeed is linearly 
related to wavefront curvature. 

A further consequence of wavefront curvature was studied 
by incorporating a funnel-like expansion into a loop (Fig. 9). 
The wave propagating into the expansion was slowed (panel 
(a), top left) as in the previous simulation (Fig. 8). However, in 

Fig. 8. The effect of wavefront curvature on propagation velocity. The 
convex curvature of the lower wave reduces its speed relative to the straight 
wave. Each contour stripe includes a small range of activation times, so the 
width of the stripe is roughly proportional to the local wavespeed. The mesh 
is 160 space units high and 160 space units across the base. 

this case, the current load imposed by the wavefront curvature 
was great enough to cause the wave to progressively fade away 
(decremental conduction). This is an example of unidirectional 
block caused by geometric constraints on the shape of the 
wave. The surviving wave continued propagating around the 
loop in the clockwise direction, and finally reentered the 
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that the no-flux boundaries are sufficiently far from the region 
of interest, activation pattems on an isotropic domain should 
map directly to stretched pattems on an anisotropic domain 
with a spatially uniform fiber orientation. For example, fea- 
tures which are circular on a 2-D isotropic domain should 
become elliptical on the corresponding anisotropic domain. 

This was indeed the case for radial wavefronts propagating 
outward from a simulus at the center of a 320 x 320 space 
unit, 32 x 32 element mesh. Initially, the mesh was isotropic, 

600 and the activation contours were circular. With a uniform 
0" (horizontal) fiber field, and the diffusion constant in the 
longitudinal direction set to 4.0, early activation contours 
were not truly elliptical because the initial stimulus was 
circular. However, the steady-state activation contours were 
2 :  1 ellipses, with the long axis aligned with the fibers. To 
show that this result was repeatable even if the fibers were not 
aligned with the principal axes of the elements, the simulation 
was repeated with a uniform 30" fiber angle. The steady- 
state activation contours were again 2 :  1 ellipses, and were 

800 

lo00 

(4 
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(b) 

Fig 9. Reentrant propagation around a fixed geometric obstacle. Block of 
the counterclockwise wave is caused by the sudden expansion of the domain 
at the stimulation site. The clockwise wave survives (a) and reenters the 
stimulation site from the retrograde direction (b). The mesh is 166 space units 
high and 140 space units wide. 

constriction to begin a second circuit (panel (b)). Note that 
although the wave could not successfully propagate from the 
narrow to the wide side of the constriction, it was able to 
propagate through the constriction in the opposite direction. 
This simulation can be viewed as a model of large-scale reentry 
around a fixed geometric obstacle such as an apical aneurysm. 
The geometric constriction which causes the unidirectional 
block initiating the reentrant circuit might be associated with 
a pattern of tissue scarring. 

C. Anisotropy 

The high velocity of longitudinal relative to transverse 
propagation is thought to be directional differences in effective 
resistivity [38]. Therefore, our method models anisotropy by 
using a larger diffusion constant in the fiber direction than the 
cross-fiber direction. It is trivial to show that scaling a diffusion 
constant is equivalent to stretching space by the square root of 
the scaling factor. This fact is consistent with Luther's classical 
equation [39], [40] which states that in excitable media, 
wavespeed = c m  where c is a constant, k is a first-order rate 
constant, and D is the diffusion constant. Therefore, provided 

superimposable with the contours of the previous simulation. 

D. Spiral Wave Reentry 
Reentrant spiral waves that circulate around functional, 

rather than anatomical, obstacles are thought to underlie ven- 
tricular fibrillation [41], [l].  To verify that our model is able 
to reproduce such waves, an isotropic 320 x 320 space unit 
mesh was stimulated with a "broken wave" extending upward 
from the bottom edge of the mesh (Fig. 10(a)). As the spiral 
wave evolved, its tip traced out a stationary circle that neither 
moved nor changed shape with succeeding cycles [23]. Next, 
a uniform 30" fiber angle was defined, and the simulation was 
repeated. The spiral wavetip path was stationary as before, 
but was transformed into a 2 :  1 ellipse aligned with the 
fibers (Fig. 10(b)), further verifying our method for modeling 
anisotropy. In both simulations, the spiral wave period was 
approximately 1400 time units, or 882 ms. This is considerably 
longer than periods of 97-250 ms measured in isolated 2-D 
slices of ventricular tissue [42]. 

E. Nonungorm Fiber Orientation 

To assess the effect of a spatially nonuniform fiber orienta- 
tion, we propagated an initially straight transverse wave across 
a uniform fiber field (Fig. 1 l(a)), and nonuniform fiber fields 
in which the fibers curved away from (Fig. 1 l(b)) and toward 
(Fig. l l (c)  and (d)) the advancing wavefront. Normally, our 
no-flux boundary conditions force wavefronts to intersect the 
boundaries at right angles. To eliminate this constraint, in all 
four simulations, the parameter c1 was set to zero on the 
nodes along the left and right sides of the mesh, and varied 
linearly from zero to the nominal value on the immediately 
adjacent nodes. This tumed the outer columns of elements 
into a current sink that decoupled the wave ends from the 
boundaries. When the fibers curved away from the wavefront 
(Fig. ll(b)), propagation was slower than when the fibers 
curved toward the wavefront (Fig. ll(c)). The uniform fiber 
case (Fig. 1 l(a)) was intermediate. In addition, increasing the 
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Fig. 10. Spiral wave reentry on isotropic (a) and anisotropic (b) meshes. 
Spiral waves were initiated from a broken wave stimulus, i.e., a wavefront 
that does not extend from one boundary to another, but instead has a free end 
within the mesh. In this type of reentry, the wave circulates around its own 
broken end rather than an anatomical obstacle as in Fig. 9. In both cases, the 
Ypiral wave period was approximately 1400 time units. In the isotropic case, 
ihe wave tip followed a repeating circular path. In the anisotropic case, the 
muscle fibers were aligned at a constant 30’ angle from the horizontal (short 
tiash marks), and the wave tip followed a repeating 2 : 1 elliptical path aligned 
with the fibers. The mesh was 320 X 320 space units. 

fiber curvature further (Fig. 1 l(d)) caused the wave to conduct 
decrementally and eventually block. 

V. DISCUSSION 
The primary purpose of this paper is to present a compu- 

tational framework that will enable the effects of the heart’s 
geometric complexity, fibrous architecture, and material het- 
erogeneity on cardiac action potential propagation to be ex- 
plored. We developed a novel hybrid collocation-Galerkin 
finite element method capable of taking these factors into 
account and used it to solve a new modification of the 
FitzHugh-Nagumo system (2). The solutions were shown 
to reproduce the essential qualities of impulse propagation. 
In a completely new result, nonuniformity of muscle fiber 
orientation was found to affect the propagation velocity and 
stability of wavefronts. 

MODEL 753 

A .  Numerical Procedures 

The finite element method (FEM) [31] is a powerful tool 
for physiological modeling-in part because it allows the 
irregularities and inhomogeneities of biological systems to be 
modeled in a relatively straightforward way. Although FEM 
has been widely used since the 1960’s in disciplines such 
as structural mechanics, it has only recently been applied to 
bioelectric phenomena [43]. Colli Franzone and colleagues 
have used standard FE techniques to model action potential 
propagation in an anisotropic block of myocardium [U];  
however, in general, much simpler finite difference methods 
have been used [12], [14], [45]. Our timing benchmarks 
on a high-performance workstation indicate that our FEM 
implementation is more than two times faster than a program 
using a finite difference discretization. This comparison was 
somewhat unfair in that more attention was given to optimizing 
the FEM program; nevertheless, it points out the efficiency of 
the method. 

In the finite element method, a known or unknown field is 
approximated over some spatial domain as a combination of 
interpolating basis functions. Known fields, such as the global 
coordinates of material points or local material properties, are 
defined by specifying the parameters of the basis functions. 
The parameters defining unknown fields, such as the excitation 
and recovery variables of the FHN system, must be calculated 
according to some criterion which determines how well the 
approximated solution satisfies the problem’s goveming equa- 
tions. Generally, this optimizing criterion leads to a system 
of finite element equations. In our particular implementation, 
the finite element equations constitute a linear system with a 
time-dependent right-hand side. The solution of this system at 
any given point in time defines the first time derivatives of the 
unknown parameters of the excitation and recovery variables. 
These derivatives are used to integrate the action potential 
wave forward in time. 

In our method, collocation, rather than the more commonly 
used Galerkin or variational methods, is used to formulate 
the finite element equations. Collocation has two primary 
advantages: 1) the assembled finite element equations are 
much sparser, and 2) collocation equations can be assembled 
faster [31]. The first point is the most significant because 
run time is dominated by the repeated triangular solution of 
the factorized finite element equations, and the time required 
for each solution is directly related to the sparsity of the 
linear system. The accuracy of the collocation and Galerkin 
methods have been shown to be comparable provided that the 
collocation points are located at the roots of the Legendre 
polynomials [29]. 

Pure collocation, however, also has several drawbacks rela- 
tive to the other integral methods: it requires high-order basis 
functions, the error in the computed solution is not evenly 
distributed, and most importantly, the number of finite element 
equations it generates and the number of degrees-of-freedom in 
the finite element approximation do not automatically balance 
unless the mesh is infinite (has no boundaries). Other workers 
have resolved this problem by placing additional collocation 
points along the boundary or by restricting element cor- 



154 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 41, NO. 8, AUGUST 1994 

600 

500 

400 

300 

200 

100 

0 

200 

100 

0 

(C) (d) 

Fig. 11. The effect of nonuniform fiber orientation on wavespeed and stability. Nonuniformity of the fiber orientation slows (b) or speeds (c) propagation. 
The fiber curvature can also cause decremental conduction and block (d). Each mesh is 320 x 320 space units. In (a), the fiber orientation is a uniform 
0'. The fiber angle along the vertical edges of the mesh is f30° in (b) and (c) and f G O "  in (d). In each nonuniform case, the angle varies linearly across 
the mesh. The edges of each mesh are inexcitable, which decouples the wave ends from the boundary. 

ners to 90" and eliminating the boundary degrees-of-freedom 
[28]. We found that these approaches were cumbersome or 
excessively restrictive, and instead chose to form Galerkin 
equations (based on boundary conditions, where possible) to 
satisfy the boundary degrees-of-freedom. Hence, in our hybrid 
method, interior degrees-of-freedom are satisfied with collo- 
cation equations, while boundary degrees-of-freedom are han- 
dled with Galerkin equations. This hybrid method should not 
be confused, however, with the collocation-Galerkin method 
proposed by Diaz [46] in which Galerkin equations were 
introduced to reduce the required polynomial order of the basis 
functions. 

B The Mathematical Model 

The computational model presented in this paper was de- 
veloped as a framework for studying cardiac action potential 
propagation on geometrically and structurally complex do- 
mains such as the heart. In principle, the method can be 
used to solve any model of impulse propagation in which the 
heart is regarded as a continuum. However, for simplicity, 
in this initial development, we have implemented a newly 
developed modification of the FitzHugh-Nagumo system of 
equations (2). Models of this type have been widely used 
[ 141, [47]-[49]; however, there is some doubt regarding their 
ability to quantitatively model the electrical activity of the 
heart [23]. Nevertheless, in our tests of the method, we 
show that it exhibits the essential properties of excitation, 
recovery, and refractoriness, and furthermore, can qualitatively 
rzproduce many phenomena found in experimental, analytical, 

and computational studies. For example, the dependence of 
wavespeed on the refractoriness of the media (Fig. 7) and 
wavefront curvature (Figs. 8 and 9), large-scale reentry around 
a fixed obstacle (Fig. 9), and spiral wave (functional) reentry 
(Fig. 10). 

The ability of this model to produce new information was 
illustrated when a spatially nonuniform fiber field was intro- 
duced. As shown in Fig. 11, a transverse wave propagating 
across a nonuniform fiber field in which the fibers curve 
away from the wavefront (panel (b)) was slower than a 
wave traversing a uniform fiber field (panel (a)). Similarly, 
fibers curving toward the wavefront increased propagation 
velocity (panel (c)). It was also possible, by further increasing 
the fiber curvature, to cause propagation to fail completely 
(panel (d)). This behavior arises because, when the fiber 
orientation is nonuniform, the diffusive term in (1) (V . DVu) 
expands into the first two terms on the right-hand side of 
(12). The first term takes into account the spatial variation 
of the principal axes of the diffusion tensor D. The second 
term involves the spatial variation of the gradient of U .  The 
wavespeed variations in Fig. 11 are dominated by the first 
term, which is nonzero only in the presence of fiber curvature. 
The diffusion tensor operates on the gradient vector of u 
to "tip" it into the direction of the fibers. Hence, when the 
fibers curve toward the wavefront, the nonuniformity of the 
diffusion tensor concentrates depolarizing current, increasing 
propagation velocity. When the fibers curve away from the 
wavefront, the opposite occurs. This phenomenon may have 
important implications to the dynamics of activation waves 
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in situ, and is experimentally testable, for example, in a thin 
epicardial tissue slice taken from the RV outflow tract where 
pronounced curvature is observed. 

The model can be enhanced to yield more quantitative 
results in several ways. Much can be achieved simply by 
tuning the parameters of the present model. For example, the 
action potential upstroke produced by the current parameter 
set is too slow (Fig. l(b)). By decreasing the element size, the 
parameters can be retuned to produce action potentials with 
physiological upstroke velocities, propagation velocities, and 
durations. In addition, tuning the parameters to increase the 
upstroke velocity implicitly increases the excitability of the 
medium. Since spiral wave period decreases as excitability is 
increased [ 121, correcting the upstroke velocity is also likely 
to decrease the spiral wave period produced by the model 
(Fig. 11) to a more physiological value. Nonlinear parameter 
optimization techniques [50] may be used to help automate 
this process. Improved fits to experimental data may also be 
achieved by modifying the functional form of the goveming 
equations. In fact, the transformation of (1) to (2) is an example 
of such a modification. This simple altemation, which does not 
increase computational cost, vastly improves the shape of the 
waveform. 

An alternative to the above phenomenological approach is 
to incorporate physiologically based models into the finite 
element framework. For example, electrotonic currents in the 
heart are not governed by the simple diffusion of a single 
"excitation variable" through a single domain; rather, the tissue 
is composed of two interpenetrating domains: the intracellular 
and extracellular spaces. Bidomain theory [51], [52] has been 
developed to account for the differing potentials in these two 
domains, and since its equations are continuous, it can be 
incorporated into the finite element framework. Second, the 
action potential is driven by complex biochemical events in 
1 he cell membrane involving the passive and active transport 
of several chemical species. FNH type models emulate this 
complexity with a simple two-state-variable oscillator. Higher 
level ionic models of the action potential exist [ 151, [ 161, and 
inay be used to replace our simple kinetic. 

A drawback of the finite element method is that it treats 
myocardium as a continuum, and therefore cannot take the 
discrete nature of the tissue into account. It has been shown 
that intracellular discontinuities can account for some direc- 
tional differences in action potential parameters such as the 
maximum upstroke velocity, the time constant of the foot of 
the action potential, and the safety factor of propagation [34]. 
Although the discreteness of myocardium cannot be modeled 
directly by the finite element method, it is possible to model 
the effects of discreteness phenomenologically. For example, 
the membrane parameters might be made functions of the inner 
product between the local fiber angle and the wavefront normal 
vector. Such a scheme could introduce directional differences 
in action potential parameters without explicit consideration 
of the discreteness of the medium. 

The manner in which the current model is extended will 
depend largely on the type of problem being solved. Two- 
dimensional solution times are currently quite modest-better, 
in fact, than competing finite difference methods-and it will 

be practical to incorporate a high degree of biophysical com- 
plexity in these models without exceeding current computing 
capacity. On the other hand, in 3-D problems, both the size 
and density of the finite element matrix grow dramatically, 
increasing both the memory and the solution time needed by 
the method. Phenomenological models will remain useful for 
practical simulations of global activation patterns on meshes 
with realistic geometries. 

APPENDIX 
TRANSFORMATIONS BETWEEN THE 

and v COORDINATE SYSTEMS 

In our geometric model of the heart, the muscle fibers are 
constrained to lie in planes perpendicular to the transmural 
coordinate axis. Thus, in both 2-D and 3-D problems, the 
fiber field is defined by a single angle taken with respect to 
a local finite element coordinate axis E ' .  We define a locally 
orthonormal coordinate system v that at every point has one 
axis aligned with the fibers. At a point P,  the covariant base 
vectors of the fiber and finite element coordinate systems (ap 
and g', respectively) are related by the transformation law [24] 

a4 = P:gl 

where the transformation matrix @, is defined at P by 

where the g' are the contravariant base vectors of the [ system. 
The components of the transformation matrix are derived using 
the following conditions. First, the v1 and axes lie in the 
same plane as the E' and E 2  axes and v 3  is normal to this plane 

where uqr is the covariant metric tensor of the Y system and 
g17n is the contravariant metric tensor of the [ system. Next, 
we choose orthonormal scaling for the Y coordinate system 

Finally, a1 subtends angles 71 and 72 with g1 and -92 
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[24] Y.-C. Fung, Foundations of Solid Mechanics. Englewood Cliffs, NJ: 
Prentice-Hall, 1965. 

[25] P. J. Hunter PI al., “An anatomical heart model with applications to 
myocardial activation and ventricular mechanics,” Crit. Rev. Biomed. 
Eng., vol. 20, pp. 403-426, 1992. 

[26] J. T. Oden, Finite Elements of Nonlinear Continua. New York: 
McGraw-Hill, 1972. 

structure of the heart,” Amer. J .  Physiol.. vol. 260, pp. H1365-HI375, 

d 
= Pf, + v’-((P:). (AS) 

al” 
8% 8% 

Differentiating (AS) and keeping only leading order terms 

to the uq coordinates 
gives the second derivatives Of the E‘ coordinates with respect 

[27] p, M, Nielsen et a[ , ,  “A mathematical model of the geometry and fibrous 
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