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Statistical inference < statistical physics

How can we find patterns in noisy data’
Phase transitions
Optimal algorithms
Information vs. computation




Why least squares?

the most common way to fit a line to noisy data

data points Y = {(x1,y1),(x2,¥2), ..., (X0, Y1)}

model: yi=ax;+b

find a,b that minimize
D (vi—(axi+b)y
i

but why?



A model of noise

a model with noise: yj=ax; +b+ w

1
where w is Gaussian, P(w) x exp (—2— w*
o

total probability of the data is

P(Y |a,b)=] | Pvila,b)

X exp (— % Z(.Vi —(ax;+ b))z)

Bayes: posterior (with flat prior) P(a,b|Y)x P(Y|a,b)

least squares = maximum likelihood estimate



From probability to energy

define the energy of (a,b) as E =—logP

springs between the model and data

1.,
EFE=—-kx
2

maximizing P = minimizing E
maximum likelihood estimate = ground state

but what if the energy were different?



Changing the model

outliers skew our estimates
use a noise model with heavier tails

“gooey springs” that exert less force
at large distances

P(w)

E(w)




Uncertainty, equilibrium, and the energy landscape

[Bayes] don’t just give an estimate!
what’s the posterior distribution?

[Boltzmann] at thermal equilibrium,

P(s)ox e BT

low T: concentrated on ground states
high T: uniform

thermal noise: T=0 (or looser springs)
E(a,b) defined by model and data

posterior distribution = equilibrium




The Ising model of magnetism

the atoms of a block of iron interact with their neighbors T T T l l T T l T T T T

when these interactions are strong enough, or the temperature is low enough,
they line up and form a magnetic field




The Ising model of magnetism

at a critical temperature, the iron suddenly loses its magnetic field: atoms
become uncorrelated, no long-range information
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Fitting models to data

when data is too noisy or too sparse, the posterior distribution of a model
becomes uncorrelated with the ground truth
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BuMmpy landscapes

least squares has a landscape with one optimum, and the Ising model has two
but a “spin glass” with energy E = —Z]ijs,-sj can have exponentially many
suppose the interactions J;; depend(gj% the data and the model

which local optimum is the true one?

can we find it efficiently? can we find it at all, given the posterior distribution?

let’s look at a classic problem in social networks...
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Divided we blog
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The stochastic block model

nodes have discrete labels: k “groups” or types of nodes

kxk matrix p of connection probabilities

iIf ti=r and tj=s, there is a link /—/ with probability prs
sparse: p=0(1/n)

popular special case:

( Cin Tt Cout\

kcout Cin }

S~ =

ferromagnetic (assortative, homophilic) if Cin > Cout



Likelihood and energy

the probability of G given the types t is a product over edges and non-edges:

P(G|t)= I_I Pt l_l (I_Pti,tj)

(i,/)€E (i,])EE

using P ~ et where B=1/T, the corresponding energy is

E(t)=—-1ogP(G|t)=— Y logps..,— »_ logl—py.)
(i,j)EE (i,j)¢E

like Ising model, but with weak antiferromagnetic interactions on non-edges

what can we learn from the “physics” of the block model?



Ground states vs. the landscape

the most likely labeling (MLE, MAP) is the ground state

even random 3-regular graphs have labelings with only 11% edges crossing
[Zdeborova & Boettcher] — many of them, which don’t agree!

we need to understand the entire landscape, not just the optimum




Overfitting

we, and our algorithms, are prone to false positives

fitting the data with fancy models is tempting...

but often we’re really fitting the noise, not the underlying process

we want to understand the coin, not the coin flips



Statistical significance and the energy landscape

explore the landscape of models, not just the best one

if there is real structure in the data, there is a robust optimum

but the landscape can be “glassy”: many local optima with nothing in common
even if you could find the optimum, why would you care?

instead, sample from the entire landscape, and look for consensus



Information in the block model: the effect of a link

1 ( Cin Tt Cout\
k equal groups, p=—1 - . average degree ¢ =

n
\Cout Cin j

Cin +(k — 1)Cout
k

If there is a link /—/, the probability distribution of t; is related to that of
by a transition matrix

. {Cin Cout\ (l/k l/k\
kc ' '
\Cout Cin } \I/k l/kj
Cin — Cout
h A=
wnere e

with probability A, copy from i to j; with probability 1 — A, set j’s type randomly

if Ais fixed, community detection gets easier as ¢ increases...



Detectabllity thresholds

For two groups of equal size [DKMZ, MNS, M, KMMNSSZ, BLM]|:
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Detectabllity thresholds

For k=4 groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:
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Markov Chain Monte Carlo

want to sample from the Gibbs/Boltzmmann/posterior distribution P(t|G)
computing P(t|G) is hard, but it’s proportional to P(G|t), a product of local terms
can compute ratios between P(t|G) and P(t"| G) if t and t” differ at one node

heat-bath dynamics: choose a random node v, fix labels of all other nodes,
update v’s label according to its marginal distribution

can also use population annealing, parallel tempering, etc.
but to compute marginals we need many independent samples...

...and if we want free energies, we need many temperatures



Belief propagation (a.k.a. the cavity method)

each node / sends a “message” to each of its neighbors j, giving /’s marginal
distribution based on its other neighbors k

avoids an “echo chamber” between pairs of nodes
update until we reach a fixed point (how many iterations? does it converge?)

fixed point returns estimated marginals and the Bethe free energy



Updating the beliefs

conditional independence

N\

i_)j:Zl'l_,j ds l_[ ZUI:_)iPrs X l_[ Z.ul:_)i(l_prs)

k#j T k#j T
(i,k)eE (i,k)¢E

sparse case: can simplify by assuming that ,u’:_’i = ,u’rc for all non-neighbors i

each update takes O(n+m) time, for constant k



A phase transition:
detectable 1o undetectable communities

when cout /Cin is small enough, 1 i R ! " N=100K BP
. _ J N=70k, MC +
BP can find the communities e N=128 MG -
0.8 r X N=128, full BP  *
there is a regime where it can't, “‘" - 6
and no algorithm can! ~ \ =4, C=
% 0.6 il
for 2 groups, the threshold isat 5
O
O 04 ¢}
© J
|Cin — Cout| = 24/ ¢
_ _ . 0.2 >§< undetectable
there is a fixed point where all 4
nodes have uniform marginals... ) | R I
0.2 0.4 0.6 0.8

at the transition, it becomes stable £=Cout /Cir

conjectured by [Decelle, Krzakala, Moore, Zdeborova, ‘11]
proved by [Mossel, Neeman, Sly, 13; Massoulié ‘13]



Another regime: detectable but hard
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BP has two fixed points, but the accurate one has a small basin of attraction
a free energy barrier between “paramagnetic” and “ferromagnetic” phases

detection is information-theoretically possible [Banks, Moore, Neeman, Netrapalli,
COLT 16; Abbe and Sandon] but we believe it’s computationally hard



Zachary’s Karate Club:
Two factions




Zachary’s Karate Club:
Core-periphery




Two local optima Iin free energy

- free energy
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iInterpolation parameter t



Phase transitions with metadata:
what if we know some labels?

suppose we are given the correct labels
for an nodes for free

can we extend this information to the
rest of the graph?

when « is large enough, knowledge

percolates from the known nodes to the
rest of the network

012

a line of discontinuities in the (c,a)
plane, ending at a critical point

[Zhang, Moore, Zdeborova '14]



Dynamic networks

what if nodes change their label, moving from group to group over time?

tradeoff between persistence of labels and the strength of the communities
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What if we don’t know how strong the structure is”

lower temperature = greedier algorithm = assume stronger structure

If we get too greedy, we enter a “spin glass” where BP fails to converge
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Model selection and free energy

let & denote the parameters of the model, e.g. factions vs. core-periphery

best model: maximize total probability of G, summed over all possible labelings:

P(G|6) = Z P(G,t|6)

this is the partition function Z and F = -log P(G|6) is a free energy

thermodynamically, F=E-TS
minimizing F = low energy (high probability) + high entropy (many good solutions)
a good model fits the data robustly, with many values of the hidden variables

Bayes+physics: use free energy to decide if structure is statistically significant



Hierarchical clustering

divide a network into subnetworks,
until the remaining pieces have no
statistically significant communities

reveals substructure in network of
political blogs

the consensus of many
high-modularity structures is

don’t maximize modularity! |
better than the "best” one 2 :

[Zhang and Moore, PNAS 2014]
image by Tiago de Paula Peixoto



—xtensions to richer data, e.g. text+links

can add metadata to nodes and edges: signed or weighted edges, nodes with
social status, location, content...

for networks of documents, a model that combines overlapping communities
with standard models of word frequencies

a network of 1,000 microprocessor patents (joint work with Sergi Valverde):

testing power
. : debuggin reset rotection ,
arithmetic g91ng : P branching
. emulator frequencies transparent , ,
multiplexer . prediction
error pulses securlity
buses . : concurrence
. : : traces voltages multi-tasking ,
microinstructions : . . speculation
. embedding sensing encryption ,
mlcroprograms . . . . reordering
Jjumps driving restricting
halting osclllators

using both text and links does better than either one alone

[Zhu, Yan, Getoor, Moore, KDD 201 3]



Spectral clustering

linear operators associated a graph: adjacency matrix, Laplacian, etc.

If there are 2 groups, label nodes according to the sign of the 2nd eigenvector

If there are k groups, look at the first k eigenvectors, and use your favorite
clustering algorithm in R¥



When does this work”

using random matrix theory, can compute the typical spectrum of a graph
generated by the stochastic block model

“pbulk” follows the Wigner semicircle law

e 0 2Ne
communities are detectable as long as A2 lies outside this bulk...

crosses at the detectability transition... if the graph is dense enough

[Nadakuditi and Newman, 12]



Sut In the sparse case...

if v has degree d, applying A2 has d ways to return to v
thus A has an eigenvector with an eigenvalue at least \/d

these localized eigenvalues deviate from the semicircle law:
communities get hidden by “hubs”
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The non-backtracking operator

B is a walk on directed edges, with backtracking prohibited:
prevents paths from returning to a high-degree vertex, or getting stuck in trees

bulk of B’s spectrum is confined to a disk of radius ,/c, even in the sparse case
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Comparing with standard spectral methods

n=10°, c=3

O Non-backtracking
Modularity
* Random Walk
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You may ask yourself,
Well, how did we get here?

expand the BP equations around the trivial fixed point to first order:

the matrix of derivatives is a tensor product of B with a kxk matrix

no echo chamber = non-backtracking

bulk confined = works all the way down to the detectability transition

[Krzakala, Moore, Mossel, Neeman, Sly, Zdeborova, Zhang, PNAS 2013]
[Bordenave, Lelarge, Massoulié, FOCS 2016]



Clustering high-dimensional data

m points in n-dimensional space, where m=0(n)
k clusters with Gaussian noise
when can we...

find the cluster centers?

label the points better than chance?

tell that there are clusters, i.e., distinguish
from a null model with one big cluster?

phase transitions as a function of noise vs.
cluster distances, and m/n



PCA (Principal Component Analysis)

find the direction along which the points have the largest variance

first eigenvector of the matrix

53
— X;i ®X;
m =1

this i1s a Wishart random matrix

53
— U; QU;
m i=1

plus a rank-1 perturbation

(v+u)Q(v+ i)

when does PCA work? and how accurately?



A phase transition

when does this perturbation rise above the “bulk” of random eigenvectors?
when it does, how accurately does the leading eigenvector point to v?
a phase transition at m/n = 1/|v|*

when k is large, a gap between information and computation:
PCA is not optimal [Lesieur, De Bacco, Banks, Krzakala, Moore, Zdeborova3]
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Morals: physics meets machine learning

many problems involving sparse, noisy data have phase transitions beyond
which no algorithm can find underlying structure

ideas from physics can help us find optimal algorithms that succeed all the way
up to these transitions

much of this work can be made mathematically rigorous

mathematical elegance pays off, even with real data: simple algorithms are faster,
and we can understand their strengths and weaknesses

“as simple as possible, but no simpler”



Everything is arnetapasgegine



Shameless plug
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THE NATURE of
COMPUTATION

& -rt'srcpber Moeore & Stepban Mertens

www.nature-of-computation.org

To put it bluntly: this book rocks! It somehow

manages to combine the fun of a popular

book with the intellectual heft of a textbook.
Scott Aaronson, MIT

This is, simply put, the best-written book on
the theory of computation | have ever read,;
one of the best-written mathematical books |
have ever read, period.

Cosma Shalizi, Carnegie Mellon
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