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Statistical inference ⇔ statistical physics

How can we find patterns in noisy data?
Phase transitions

Optimal algorithms
Information vs. computation



the most common way to fit a line to noisy data


data points


model:


find a,b that minimize


but why?

Why least squares?
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a model with noise: 


where w is Gaussian, 


total probability of the data is


Bayes: posterior (with flat prior) 


least squares = maximum likelihood estimate

A model of noise

y

i

= a x

i

+b +w

P(w )/ exp

✓
� 1

2�
w 2

◆

P(Y | a ,b ) =
Y

i

P(y
i

| a ,b )

/ exp

 
� 1

2�

X

i

(y
i

� (a x

i

+b ))2
!

P(a ,b |Y )/ P(Y |a ,b )



define the energy of (a,b) as


springs between the model and data


maximizing P = minimizing E 

maximum likelihood estimate = ground state


but what if the energy were different?

From probability to energy
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outliers skew our estimates


use a noise model with heavier tails


“gooey springs” that exert less force 
at large distances

Changing the model

P(w ) E (w )



[Bayes] don’t just give an estimate!         
what’s the posterior distribution?


[Boltzmann] at thermal equilibrium,


low T: concentrated on ground states


high T: uniform


thermal noise: T=σ (or looser springs)


E(a,b) defined by model and data


posterior distribution = equilibrium

Uncertainty, equilibrium, and the energy landscape

P(s )/ e�E (s )/T

a b



The Ising model of magnetism

the atoms of a block of iron interact with their neighbors


when these interactions are strong enough, or the temperature is low enough, 
they line up and form a magnetic field



at a critical temperature, the iron suddenly loses its magnetic field: atoms 
become uncorrelated, no long-range information
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FIGURE 12.2: Typical states of a 1024×512 Ising model sampled at three different temperatures. Below Tc

(bottom) there are small islands of the minority spin. Above Tc (top) there are small clumps with the same
spin, but at large scales the up and down spins cancel out. At Tc (middle) there are islands and clumps at
all scales, and the statistics of the model are scale-free.
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FIGURE 12.1: The typical magnetization of the two-dimensional Ising model in the limit n →∞. It drops
to zero at Tc = 2.269...

Let’s lump states with the same energy together into macrostates. Then the total probability of being
in a macrostate with energy E is proportional to

W e−βE = eS−βE = e−β (E−T S) ,

where W is the number of states in that macrostate. Its logarithm S = ln W is called the entropy. The
likeliest macrostate is then the one that minimizes E −TS, a quantity that physicists call the free energy.

12.3This creates a tug-of-war between energy and entropy, whose outcome depends on the temperature.
When T is small, E −TS is minimized when E is minimized, and the system is magnetized. But when T is
large enough, E −TS is minimized by maximizing S. Then entropy triumphs over energy, and the system
becomes unmagnetized.

Of course, the previous paragraph is just a cartoon, in which we assumed that magnetization is an all-
or-nothing affair. What actually happens is shown in Figure 12.1. If we define the magnetization as the
average spin, m = (1/n )

∑
i s i , the expectation of its absolute value decreases continuously as T increases,

and hits zero at the critical temperature Tc = 2.269.... For the interested reader, Problem 12.4 shows how
to derive this result qualitatively, using a simplified mean field assumption that ignores the neighborhood
relationships of the spins. We will see how to compute Tc exactly in Section 13.7.3.

To get a better sense of how the Ising model behaves, consider Figure 12.2, where we show typical
states above, below, and at the phase transition. When T < Tc the world is covered by a sea of spins all
pointing up, say, with isolated islands of spins pointing down. The fraction of islands with size s obeys a

temperature



when data is too noisy or too sparse, the posterior distribution of a model 
becomes uncorrelated with the ground truth

Fitting models to data
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and hits zero at the critical temperature Tc = 2.269.... For the interested reader, Problem 12.4 shows how
to derive this result qualitatively, using a simplified mean field assumption that ignores the neighborhood
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Bumpy landscapes

least squares has a landscape with one optimum, and the Ising model has two


but a “spin glass” with energy                            can have exponentially many


suppose the interactions       depend on the data and the model


which local optimum is the true one?  


can we find it efficiently? can we find it at all, given the posterior distribution?


let’s look at a classic problem in social networks…

E =�
X

(i ,j )

Ji j si s j

Ji j



Divided we blog

7

ing corrected and uncorrected blockmodels with K = 2,
we find the results shown in Fig. 1. As pointed out also
by other authors [11, 30], the non-degree-corrected block-
model fails to split the network into the known factions
(indicated by the dashed line in the figure), instead split-
ting it into a group composed of high-degree vertices and
another of low. The degree-corrected model, on the other
hand, splits the vertices according to the known commu-
nities, except for the misidentification of one vertex on
the boundary of the two groups. (The same vertex is also
misplaced by a number of other commonly used commu-
nity detection algorithms.)
The failure of the uncorrected model in this context

is precisely because it does not take the degree sequence
into account. The a priori probability of an edge be-
tween two vertices varies as the product of their degrees,
a variation that can be fit by the uncorrected blockmodel
if we divide the network into high- and low-degree groups.
Given that we have only one set of groups to assign, how-
ever, we are obliged to choose between this fit and the
true community structure. In the present case it turns
out that the division into high and low degrees gives the
higher likelihood and so it is this division that the algo-
rithm returns. In the degree-corrected blockmodel, by
contrast, the variation of edge probability with degree is
already included in the functional form of the likelihood,
which frees up the block structure for fitting to the true
communities.
Moreover it is apparent that this behavior is not lim-

ited to the case K = 2. For K = 3, the ordinary
stochastic blockmodel will, for sufficiently heterogeneous
degrees, be biased towards splitting into three groups by
degree—high, medium, and low—and similarly for higher
values of K. It is of course possible that the true com-
munity structure itself corresponds entirely or mainly to
groups of high and low degree, but we only want our
model to find this structure if it is still statistically sur-
prising once we know about the degree sequence, and this
is precisely what the corrected model does.
As a second real-world example we show in Fig. 2 an

application to a network of political blogs assembled by
Adamic and Glance [31]. This network is composed of
blogs (i.e., personal or group web diaries) about US pol-
itics and the web links between them, as captured on
a single day in 2005. The blogs have known political
leanings and were labeled by Adamic and Glance as ei-
ther liberal or conservative in the data set. We consider
the network in undirected form and examine only the
largest connected component, which has 1222 vertices.
Figure 2 shows that, as with the karate club, the uncor-
rected stochastic blockmodel splits the vertices into high-
and low-degree groups, while the degree-corrected model
finds a split more aligned with the political division of
the network. While not matching the known labeling ex-
actly, the split generated by the degree-corrected model
has a normalized mutual information of 0.72 with the la-
beling of Adamic and Glance, compared with 0.0001 for
the uncorrected model.

(a) Without degree-correction

(b) With degree-correction

FIG. 2: Divisions of the political blog network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The division in (b) corresponds
roughly to the division between liberal and conservative blogs
given in [31].

(To make sure that these results were not due to a fail-
ure of the heuristic optimization scheme, we also checked
that the group assignments found by the heuristic have a
higher objective score than the known group assignments,
and that using the known assignments as the initial con-
dition for the optimization recovers the same group as-
signments as found with random initial conditions.)

B. Generation of synthetic networks

We turn now to synthetic networks. The networks we
use are themselves generated from the degree-corrected

[Adamic & Glance]



Who eats whom



I record that I was born on a Friday



The stochastic block model

nodes have discrete labels: k “groups” or types of nodes


k×k matrix p of connection probabilities


if ti=r and tj=s, there is a link i→j with probability prs 

sparse: p=O(1/n)


popular special case: 


ferromagnetic (assortative, homophilic) if c
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Likelihood and energy

the probability of G given the types t is a product over edges and non-edges:


using P ~ e–βE where β=1/T, the corresponding energy is


like Ising model, but with weak antiferromagnetic interactions on non-edges


what can we learn from the “physics” of the block model?
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Ground states vs. the landscape

the most likely labeling (MLE, MAP) is the ground state


even random 3-regular graphs have labelings with only 11% edges crossing 
[Zdeborová & Boettcher] — many of them, which don’t agree!


we need to understand the entire landscape, not just the optimum



Overfitting

we, and our algorithms, are prone to false positives


fitting the data with fancy models is tempting…


but often we’re really fitting the noise, not the underlying process


we want to understand the coin, not the coin flips



Statistical significance and the energy landscape

explore the landscape of models, not just the best one


if there is real structure in the data, there is a robust optimum


but the landscape can be “glassy”: many local optima with nothing in common


even if you could find the optimum, why would you care?


instead, sample from the entire landscape, and look for consensus



Information in the block model: the effect of a link

k equal groups,                                          : average degree


if there is a link i→j, the probability distribution of tj is related to that of ti            
by a transition matrix


where


with probability   , copy from i to j; with probability         , set j’s type randomly


if    is fixed, community detection gets easier as c increases…
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Detectability thresholds

For two groups of equal size [DKMZ, MNS, M, KMMNSSZ, BLM]:

easy:

efficient algorithms

(belief propagation, 


spectral)
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Detectability thresholds

For k≥4 groups [DKMZ, KMMNSSZ, BLM, BMNN, AS]:

information-theoretically

impossible
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Markov Chain Monte Carlo

want to sample from the Gibbs/Boltzmann/posterior distribution P(t|G)


computing P(t|G) is hard, but it’s proportional to P(G|t), a product of local terms


can compute ratios between P(t|G) and P(t´ | G) if t and t´ differ at one node 


heat-bath dynamics: choose a random node v, fix labels of all other nodes, 
update v’s label according to its marginal distribution


can also use population annealing, parallel tempering, etc.


but to compute marginals we need many independent samples...


...and if we want free energies, we need many temperatures



  
Belief propagation (a.k.a. the cavity method)

each node i sends a “message” to each of its neighbors j, giving i’s marginal 
distribution based on its other neighbors k 

avoids an “echo chamber” between pairs of nodes 

update until we reach a fixed point (how many iterations? does it converge?)  

fixed point returns estimated marginals and the Bethe free energy

j

i

k



sparse case: can simplify by assuming that                   for all non-neighbors i 

each update takes O(n+m) time, for constant k
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when cout /cin is small enough,                                                                             
BP can find the communities  


there is a regime where it can’t,                                                                         
and no algorithm can!


for 2 groups, the threshold is at


there is a fixed point where all 
nodes have uniform marginals... 


at the transition, it becomes stable

A phase transition:  
detectable to undetectable communities

conjectured by [Decelle, Krzakala, Moore, Zdeborová, ‘11]

proved by [Mossel, Neeman, Sly, `13; Massoulié ‘13]
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obeying detailed balance with respect to the Hamiltonian (8), starting with a random initial group assignment {qi}.
We see that Q = 0 for cout/cin > ϵc. In other words, in this region both BP and MCMC converge to the factorized
state, where the marginals contain no information about the original assignment. For cout/cin < ϵc, however, the
overlap is positive and the factorized fixed point is not the one to which BP or MCMC converge.

In particular the right-hand side of Fig. 1 shows the case of q = 4 groups with average degree c = 16, corresponding
to the benchmark of Newman and Girvan [9]. We show the large N results and also the overlap computed with
MCMC for size N = 128 which is the commonly used size for this benchmark. Again, up to symmetry breaking,
marginalization achieves the best possible overlap that can be inferred from the graph by any algorithm. Therefore,
when algorithms are tested for performance, their results should be compared to Fig. 1 instead of to the common but
wrong expectation that the four groups are detectable for any ϵ < 1.
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FIG. 1: (color online): The overlap (5) between the original assignment and its best estimate given the structure of the graph,
computed by the marginalization (13). Graphs were generated using N nodes, q groups of the same size, average degree c, and
different ratios ϵ = cout/cin. Thus ϵ = 1 gives an Erdős-Rényi random graph, and ϵ = 0 gives completely separated groups.
Results from belief propagation (26) for large graphs (red line) are compared to Gibbs sampling, i.e., Monte Carlo Markov
chain (MCMC) simulations (data points). The agreement is good, with differences in the low-overlap regime that we attribute
to finite size fluctuations. On the right we also compare to results from the full BP (22) and MCMC for smaller graphs with
N = 128, averaged over 400 samples. The finite size effects are not very strong in this case, and BP is reasonably close to the
exact (MCMC) result even on small graphs that contain many short loops. For N → ∞ and ϵ > ϵc = (c−

√
c)/[c+

√
c(q−1)] it

is impossible to find an assignment correlated with the original one based purely on the structure of the graph. For two groups
and average degree c = 3 this means that the density of connections must be ϵ−1

c (q = 2, c = 3) = 3.73 greater within groups
than between groups to obtain a positive overlap. For Newman and Girvan’s benchmark networks with four groups (right),
this ratio must exceed 2.33.

Let us now investigate the stability of the factorized fixed point under random perturbations to the messages when
we iterate the BP equations. In the sparse case where cab = O(1), graphs generated by the block model are locally
treelike in the sense that almost all nodes have a neighborhood which is a tree up to distance O(log N), where the
constant hidden in the O depends on the matrix cab. Equivalently, for almost all nodes i, the shortest loop that i
belongs to has length O(log N). Consider such a tree with d levels, in the limit d → ∞. Assume that on the leaves
the factorized fixed point is perturbed as

ψk
t = nt + ϵk

t , (39)

and let us investigate the influence of this perturbation on the message on the root of the tree, which we denote k0.
There are, on average, cd leaves in the tree where c is the average degree. The influence of each leaf is independent,
so let us first investigate the influence of the perturbation of a single leaf kd, which is connected to k0 by a path
kd, kd−1, . . . , k1, k0. We define a kind of transfer matrix
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where this expression was derived from (26) to leading order in N . The perturbation ϵk0

t0 on the root due to the

k=4, c=16

ε=cout /cin
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BP has two fixed points, but the accurate one has a small basin of attraction


a free energy barrier between “paramagnetic” and “ferromagnetic” phases


detection is information-theoretically possible [Banks, Moore, Neeman, Netrapalli, 
COLT `16; Abbe and Sandon] but we believe it’s computationally hard

Another regime: detectable but hard 16
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FIG. 3: (color online): Left: graphs generated with q = 5, cin = 0, and N = 105. We compute the overlap (5) and the free
energy with BP for different values of the average degree c. The green crosses show the overlap of the BP fixed point resulting
from using the original group assignment as the initial condition, and the blue crosses show the overlap resulting from random
initial messages. The red stars show the difference between the factorized free energy (38) and the free energy resulting from
the planted initialization. We observe three important points where the behavior changes qualitatively: cd = 12.84, cc = 13.23,
and cℓ = 16. We discuss the corresponding phase transitions in the text. Right: the case q = 10 and c = 10. We plot the
overlap as a function of ϵ; it drops down abruptly from about Q = 0.35. The inset zooms in on the critical region. We mark
the stability transition ϵℓ, and data points for N = 5 · 105 for both the random and planted initialization of BP. In this case
the data are not so clear. The overlap from random initialization becomes positive a little before the asymptotic transition.
We think this is due to strong finite size effects. From our data for the free energy it also seems that the transitions ϵc and ϵd
are very close to each other (or maybe even equal, even though this would be surprising). These subtle effects are, however,
relevant only in a very narrow region of ϵ and are, in our opinion, not likely to appear for real-world networks.

value cℓ = (q − 1)2. We plot again the overlap obtained with BP, using two different initializations: the random one,
and the planted one corresponding to the original assignment. In the latter case, the initial messages are

ψi→j
qi = δqiti , (47)

where ti is the original assignment. We also plot the corresponding BP free energies. As the average degree c increases,
we see four different phases in Fig. 3:

I. For c < cd, both initializations converge to the factorized fixed point, so the graph does not contain any significant
information about the original group assignment. The ensemble of assignments that have the proper number
of edges between each pair of groups is thermodynamically indistinguishable from the uniform ensemble. The
original assignment is one of these configurations, and there is no possible way to tell which one it is without
additional knowledge.

II. For cd < c < cc, the planted initialization converges to a fixed point with positive overlap, and its free energy
is larger than the annealed free energy. In this phase there are exponentially many basins of attraction (states)
in the space of assignments that have the proper number of edges between each pair of groups. These basins
of attraction have zero overlap with each other, so none of them yield any information about any of the others,
and there is no way to tell which one of them contains the original assignment. The annealed free energy is still
the correct total free energy, the graphs generated by the block model are thermodynamically indistinguishable
from Erdős-Rényi random graphs, and there is no way to find a group assignment correlated with the original
one.

III. For cc < c < cℓ, the planted initialization converges to a fixed point with positive overlap, and its free energy is
smaller than the annealed free energy. There might still be exponentially many basins of attraction in the state
space with the proper number of edges between groups, but the one corresponding to the original assignment
is the one with the largest entropy and the lowest free energy. Therefore, if we can perform an exhaustive
search of the state space, we can infer the original group assignment. However, this would take exponential
time, and initializing BP randomly almost always leads to the factorized fixed point. In this phase, inference is
possible, but exponentially hard; the state containing the original assignment is, in a sense, hidden below a glass
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Zachary’s Karate Club: 
Two factions



Zachary’s Karate Club: 
Core-periphery



Two local optima in free energy

21

Depending on the initial parameters {na}, {cab}, it converges to one of two attractive fixed points in parameter space:

n(i) =

(

0.525
0.475

)

, c(i) =

(

8.96 1.29
1.29 7.87

)

,

n(ii) =

(

0.854
0.146

)

, c(ii) =

(

16.97 12.7
12.7 1.615

)

. (50)

For comparison, we also performed learning using MCMC for the expectation step; this network is small enough,
with such a small equilibration time, that MCMC is essentially exact. We again found two attractive fixed points in
parameter space, very close to those in (50):

n(i)
MC =

(

0.52
0.48

)

, c(i)
MC =

(

8.85 1.26
1.26 7.97

)

,

n(ii)
MC =

(

0.85
0.15

)

, c(ii)
MC =

(

16.58 12.52
12.52 1.584

)

. (51)

A first observation is that even though Zachary’s karate club is both small and “loopy,” rather than being locally
treelike, the BP algorithm converges to fixed points that are nearly the same as the (in this case exact) MCMC. This
is despite the fact that our analysis of the BP algorithm assumes that there are no small loops in the graph, and
focuses on the thermodynamic limit N → ∞. This suggests that our BP learning algorithm is a useful and robust
heuristic even for real-world networks that have many loops.
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FIG. 7. (color online): (a) The partitioning of Zachary’s karate club found by our inference algorithm using the first fixed point,
(i) in (50). The colors indicate the two groups found by starting with an assortative initial condition, i.e., where c11, c22 > c12.
The shades represent the marginal probabilities: a white node belongs to both groups with equal probability, whereas a node
that is solid red or solid blue belongs to the corresponding group with probability 1. Most of the nodes are strongly biased.
The ×s show the five nodes that are grouped together by the second fixed point, (ii) in (50), which divides the nodes into
high-degree and low-degree groups rather than into the two factions. (b) The negative free energy for parameters interpolating
between the two fixed points, with (i) at t = 0 and (ii) at t = 1. The two fixed points are local maxima, and each one has a
basin of attraction in the learning algorithm. As noted in [8], the high-degree/low-degree fixed point actually has lower free
energy, and hence a higher likelihood, in the space of block models with q = 2. The horizontal lines show the largest values of
the likelihood that we obtained from using more than two groups. Unlike in Fig. 6, the likelihood continues to increase when
more groups are allowed. This is due both to finite-size effects and to the fact that the network is not, in fact, generated by
the block model: in particular, the nodes in each faction have a highly inhomogeneous degree distribution.

Fig. 7 shows the marginalized group assignments for the division into two groups corresponding to these two fixed

points. Fixed point (i) corresponds to the actual division into two factions, and c(i)
ab has assortative structure, with

larger affinities on the diagonal. In contrast, fixed point (ii) divides the nodes according to their degree, placing
high-degree nodes in one group, including both the president and the instructor, and the low-degree nodes in the
other group. Of course, this second division is not wrong; rather, it focuses on a different kind of classification, into
“leaders” on the one hand and “students/followers” on the other. In Fig. 7(b) we plot the negative free energy (32)

achieved by interpolating between the two fixed points according to a parameter t, with cab(t) = (1− t)c(i)
ab + tc(ii)

ab and
similarly for na. We see that the two fixed points correspond to two local maxima, the second (ii) being the global

core/peripheryfactions



[Zhang, Moore, Zdeborová ’14]

Phase transitions with metadata: 
what if we know some labels?

α

  c   

suppose we are given the correct labels 
for αn nodes for free


can we extend this information to the 
rest of the graph?


when α is large enough, knowledge 
percolates from the known nodes to the 
rest of the network


a line of discontinuities in the (c,α) 
plane, ending at a critical point



Dynamic networks

what if nodes change their label, moving from group to group over time?


tradeoff between persistence of labels and the strength of the communities
5

stochastic block matrix
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to generate the net-

works at each snapshot. The second coordinate ⌘ can be
used to generate the type of the temporal neighbor nodes
regarding their current according to Eq. (1). Then we
use belief propagation (Sec. IIA) to infer the group as-
signments at each time step. Each sequence is T = 40
time steps long and each network within the sequence has
512 nodes with an average degree c = 16, which are orga-
nized into k = 2 groups. We parameterize the networks
according to the ratio of in and out degrees, ✏ = c

out

c

in

, so
that when ✏ = 0 there exists only links within commu-
nities and none between communities, and when ✏ = 1
we have an Erdős-Rényi random graph. Within each se-
quence the parameters {⌘, ✏, c} are kept constant and we
assume that these are known.

We measure the performance of recovering group labels
according to the overlap:
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, (18)

where ĝ
i

is the inferred label for node i. Figure 4 shows
the overlap for network sequences as we vary ⌘ and ✏. We
see that when ⌘ = 0 we recover the static detectability
limit. As we increase ⌘ the phase transition occurs at
increasing values of ✏, with the largest increase occurring
when ⌘ = 1.

Figure 3 represents the heat map of the detectability-
undetectability phase transition resulted from BP algo-
rithm and spectral method. Overlap versus epsilon for
di↵erent values of ⌘ is shown in figure 4.

Figure 5 shows the heat map of convergence time for
final phase of the BP algorithm.

IV. INITIALIZATION PHASE

An optimum with reasonable computational cost ap-
proach to infer the labels in a temporal network is based
on the BP algorithm which is also used in [7] for static
networks. One can treat temporal networks as static net-
works. In this approach according to our proposed model
we connect each node to itself in subsequent time slots
using the temporal edges. By applying message-passing
equations over this network we can infer the labels at
each snapshot but these labels are not consistent along
the time. Also when ⌘ is not zero then the search space
along the time is correlated. Therefore utilizing this fact,
we can improve the running time complexity by limiting
the search space to the vicinity of the discovered space
at the first snapshot by applying message-passing algo-
rithm on just first snapshot. In this section we introduce
an initialization phase for BP algorithm to improve the
convergence time besides to break the symmetry along
the snapshots in temporal networks. The physical justi-
fication of our proposed initialization is regarding to the
correlation parameter ⌘ in our model. We propose in-
stead of having random initialization at each time slot,
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FIG. 3. Heat map of detectability-undetectability phase tran-
sition. BP approach (top). Spectral method (bottom). Theo-
retical phase transition(solid line)
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[Ghasemian, Zhang, 

Clauset, Moore, Peel]



What if we don’t know how strong the structure is?

lower temperature = greedier algorithm = assume stronger structure


if we get too greedy, we enter a “spin glass” where BP fails to converge

[Zhang+Moore]
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Model selection and free energy

let θ denote the parameters of the model, e.g. factions vs. core-periphery 

best model: maximize total probability of G, summed over all possible labelings:


this is the partition function Z and F = –log P(G|θ) is a free energy


thermodynamically, F = E – TS


minimizing F = low energy (high probability) + high entropy (many good solutions)


a good model fits the data robustly, with many values of the hidden variables 

Bayes+physics: use free energy to decide if structure is statistically significant

P(G |✓ ) =
X

t2{1,...,k }n
P(G , t |✓ )



Hierarchical clustering

divide a network into subnetworks, 
until the remaining pieces have no 
statistically significant communities


reveals substructure in network of 
political blogs


don’t maximize modularity!        
the consensus of many              
high-modularity structures is    
better than the “best” one


[Zhang and Moore, PNAS 2014]          
image by Tiago de Paula Peixoto



Extensions to richer data, e.g. text+links

can add metadata to nodes and edges: signed or weighted edges, nodes with 
social status, location, content...


for networks of documents, a model that combines overlapping communities 
with standard models of word frequencies


a network of 1,000 microprocessor patents (joint work with Sergi Valverde):


using both text and links does better than either one alone

arithmetic
multiplexer
buses
microinstructions
microprograms

testing
debugging
emulator
error
traces
embedding
jumps
halting

power
reset
frequencies
pulses
voltages
sensing
driving
oscillators

protection
transparent
security
multi-tasking
encryption
restricting

branching
prediction
concurrence
speculation
reordering

 [Zhu, Yan, Getoor, Moore, KDD 2013]



Spectral clustering

linear operators associated a graph: adjacency matrix, Laplacian, etc.


if there are 2 groups, label nodes according to the sign of the 2nd eigenvector


if there are k groups, look at the first k eigenvectors, and use your favorite 
clustering algorithm in Rk



When does this work?

using random matrix theory, can compute the typical spectrum of a graph 
generated by the stochastic block model


“bulk” follows the Wigner semicircle law


communities are detectable as long as λ2 lies outside this bulk...


crosses at the detectability transition... if the graph is dense enough


[Nadakuditi and Newman, `12]
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But in the sparse case...

if v has degree d, applying A2 has d ways to return to v                                    
thus A has an eigenvector with an eigenvalue at least √d


these localized eigenvalues deviate from the semicircle law:                
communities get hidden by “hubs”



The non-backtracking operator

B is a walk on directed edges, with backtracking prohibited:                   
prevents paths from returning to a high-degree vertex, or getting stuck in trees

bulk of B’s spectrum is confined to a disk of radius √c, even in the sparse case              
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Comparing with standard spectral methods
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Fig. 5. The accuracy of spectral algorithms based on different linear operators, and of belief propagation, for two groups of equal size. On the left, we vary c
in

� c
out

while fixing the average degree c = 3; the detectability transition given by [ 1 ] occurs at c
in

� c
out

= 2
p
3 ⇡ 3.46. On the right, we set c

out

/c
in

= 0.3 and vary
c; the detectability transition is at c ⇡ 3.45. Each point is averaged over 20 instances with n = 105. Our spectral algorithm based on the non-backtracking matrix
B achieves an accuracy close to that of BP, and both remain large all the way down to the transition. Standard spectral algorithms based on the adjacency matrix,
modularity matrix, the Laplacian, and the random walk matrix fail well above the transition, doing no better than chance.

More generally, in a block model with q communities, an affinity
matrix c

ab

, and an expected fraction n
a

of vertices in each commu-
nity a, linearizing around the trivial point ⌘a

u!v

= n
a

gives a tensor
product operator

� := (T ⌦B)� , [14]

where T is the q ⇥ q matrix defined in [10].
This shows that the spectral properties of the non-backtracking

matrix are closely related to belief propagation. Specifically, the triv-
ial fixed point is unstable, leading to a fixed point that is correlated
with the community structure, exactly when T ⌦B has an eigenvalue
greater than 1. However, by avoiding the fixed point where all the ver-
tices belong to the same group, we suppress B’s leading eigenvalue;
thus the criterion for instability is ⌫µ

2

> 1 where ⌫ is T ’s lead-
ing eigenvalue and µ

2

is B’s second eigenvalue. This is equivalent
to [11] in the case where the groups are of equal size.

In general, the BP algorithm provides a slightly better agreement
with the actual group assignment, since it approximates the Bayes-
optimal inference of the block model. On the other hand, the BP up-
date rule depends on the parameters of the block model, and if these
parameters are unknown they need to be learned, which presents ad-
ditional difficulties (12). In contrast, our spectral algorithm does not
depend on the parameters of the block model, giving an advantage
over BP in addition to its computational efficiency.

Experimental Results and Discussion
In Fig. 5, we compare the spectral algorithm based on the non-

backtracking matrix B with those based on various classical opera-
tors: the adjacency matrix A, the modularity matrix M , the Lapla-
cian L, and the random walk matrix Q. We see that there is a regime
where standard spectral algorithms do no better than chance, while
the one based on B achieves a strong correlation with the true group
assignment all the way down to the detectability threshold. We also
show the performance of belief propagation, which is believed to be
asymptotically optimal (9, 10).

We measure the performance as the overlap, defined as
 
X

u

�
gu,g̃u � 1

q

!�✓
1� 1

q

◆
. [15]

Here g
u

is the group to which vertex u truly belongs, and g̃
u

is the
group label given to u by the algorithm. We break the obvious sym-
metry by maximizing over all q! permutations of the groups. The

overlap is normalized so that it is 1 for the correct labeling, and 0 for
a uniformly random labeling.

In Fig. 4 we illustrate clustering in the case q = 3. As described
above, in the detectable regime we expect to see q � 1 eigenvectors
with real eigenvalues that are correlated with the true group assign-
ment. Indeed B’s second and third eigenvector are strongly corre-
lated with the true clustering, and applying k-means in R2 gives a
large overlap. In contrast, the second and third eigenvectors of the
adjacency matrix are essentially uncorrelated with the true cluster-
ing, and similarly for the other traditional operators.

Finally we turn towards real networks to illustrate the advantages
of spectral clustering based on the non-backtracking matrix in prac-
tical applications. In Fig. 6 we show B’s spectrum for several net-
works commonly used as benchmarks for community detection. In
each case we plot a circle whose radius is the square root of the largest
eigenvalue. Even though these networks were not generated by the
stochastic block model, these spectra look qualitatively similar to the
picture discussed above (Fig. 2). This leads to several very conve-
nient properties. For each of these networks we observed that only
the eigenvectors with real eigenvalues are correlated to the group as-
signment given by the ground truth. Moreover, the real eigenvalues
that lie outside of the circle are clearly identifiable. This is very un-
like the situation for the operators used in standard spectral clustering
algorithms, where one must decide which eigenvalues are in the bulk
and which are outside.

In particular, the number of real eigenvalues outside of circle
seems to be a natural indicator for the true number q of clusters
present in the network, just as for networks generated by the stochas-
tic block model. This suggests that in the network of political books
there might in fact be 4 groups rather than 3, in the blog network
there might be more than two groups, and in the NCAA football net-
work there might be 10 groups rather than 12. However, we also note
that large real eigenvalues may correspond in some networks to small
cliques in the graph; it is a philosophical question whether or not to
count these as communities.

An important point is that clustering based on the non-
backtracking matrix B works not only in the assortative case, but
also in the disassortative one—such as the network of common ad-
jectives and nouns in the novel David Copperfield (27), for which the
corresponding real eigenvalue is negative.

Footline Author PNAS Issue Date Volume Issue Number 5



You may ask yourself,  
Well, how did we get here?

expand the BP equations around the trivial fixed point to first order: 

the matrix of derivatives is a tensor product of B with a k×k matrix


no echo chamber = non-backtracking

bulk confined = works all the way down to the detectability transition


[Krzakala, Moore, Mossel, Neeman, Sly, Zdeborová, Zhang, PNAS 2013] 
[Bordenave, Lelarge, Massoulié, FOCS 2016]
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m points in n-dimensional space, where m=O(n)


k clusters with Gaussian noise


when can we...


find the cluster centers?


label the points better than chance?


tell that there are clusters, i.e., distinguish             
from a null model with one big cluster?


phase transitions as a function of noise vs.             
cluster distances, and m/n                         

Clustering high-dimensional data



find the direction along which the points have the largest variance


first eigenvector of the matrix


this is a Wishart random matrix


plus a rank-1 perturbation


when does PCA work? and how accurately?

PCA (Principal Component Analysis)

1
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(v + ū )⌦ (v + ū )



A phase transition

when does this perturbation rise above the “bulk” of random eigenvectors?


when it does, how accurately does the leading eigenvector point to v?


a phase transition at m/n = 1/|v|4


when k is large, a gap between information and computation:                            
PCA is not optimal [Lesieur, De Bacco, Banks, Krzakala, Moore, Zdeborová]

Figure 2: The first two eigenvalues of the empirical correlation matrix C as a function of ⇢. The solid lines
are the results of a numerical experiment with a single realization of the noise matrix W , with n = 1000,
m = 2000, and ↵ = m/n = 2. The dashed lines show the top of the bulk �

+

and the predicted value (2) of
�
1

resulting from the rank-one perturbation. The threshold is at ⇢ = 1/
p

↵ = 0.707... where �
1

= �
+

.
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Figure 3: The overlap (v
1

· v̂)2 as a function of ⇢, using the same realization of the noise matrix as in Figs. 1
and 2. The curve shows the expression (4).
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Figure 1: The spectrum of the empirical correlation matrix C from a numerical experiment with n = 1000,
m = 2000, ↵ = 2, and ⇢ = 2. The curve shows the Marchenko-Pastur distrubution, which describes the
bulk; the arrow shows the leading eigenvalue �

1

.

The rank-one perturbation (v + ū)⌦ (v + ū) has eigenvalue |v + ū|2. This is tightly concentrated around its
expectation, which (since v and ū are uncorrelated) is

E|v + ū|2 = E|v|2 + E|ū|2 = ⇢+
1

↵
.

Following e.g. [Rao13], the corresponding eigenvalue of C is then �
1

where
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which gives (assuming �
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PCA succeeds above the point where �
1

= �
+

, which gives

⇢ =
1
p

↵
. (3)

In Fig. 2 we show the results of a numerical experiment which fits closely with (2) and (3).
We can also compute how well PCA does at recovering v above the threshold. Let v

1

be the leading
eigenvector of C, and let v̂ and [v + ū be the unit vectors corresponding to v and the rank-one perturbation
respectively, assuming their norms take their typical values:

v̂ =
v

|v|
=

v
p

⇢
and [v + ū =

v + ū

|v + ū|
=

v + ūp
⇢+ 1/↵

.

We define the overlap achieved by PCA as

Q = (v
1

· v̂)2 .

We compute Q as follows. Again following standard techniques (e.g. [Rao13]) we have

(v
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.

Assuming that the component of v
1

which is perpendicular to v̂ is also asymptotically perpendicular to v,
we have

(v
1

· v̂)2 = (v
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·

[v + ū)2
⇢

⇢+ 1/↵
=

↵⇢2 � 1

↵⇢2 + ⇢
= 1�
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Morals: physics meets machine learning

many problems involving sparse, noisy data have phase transitions beyond 
which no algorithm can find underlying structure


ideas from physics can help us find optimal algorithms that succeed all the way 
up to these transitions


much of this work can be made mathematically rigorous


mathematical elegance pays off, even with real data: simple algorithms are faster, 
and we can understand their strengths and weaknesses


“as simple as possible, but no simpler”



Everything is a steam enginea computeran economyan ecologya network
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