

Challenges of Modeling Directed Networks

Tamara G. Kolda, Ali Pinar, C. "Sesh" Seshadhri

U.S. Department of Defense Defense Advanced Research Projects Agency

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

UNDIRECTED GRAPHS

A Good Graph Model...

- In an ideal world, encapsulates underlying driving principals
 - "Physics"
- Captures some measurable characteristics of real-world data
 - Degree distributions
 - Clustering coefficients
 - Community structure
 - Largest connected component size
 - Connectedness, Diameter
 - Eigenvalues
- Calibrates to specific data sets
 - Quantitative vs. qualitative
 - Surrogate for real data
 - Easy to share, reproduce results
- Ultimately, yields understanding
 - Serve as null model
 - Predictive capabilities

Today's assumptions: unweighted, no loops, no multi-edges

Chung-Lu (aka Configuration) Model

$$\bar{d}_i = \text{desired degree of node } i$$

$$\bar{m} = \frac{1}{2} \sum_i \bar{d}_i$$

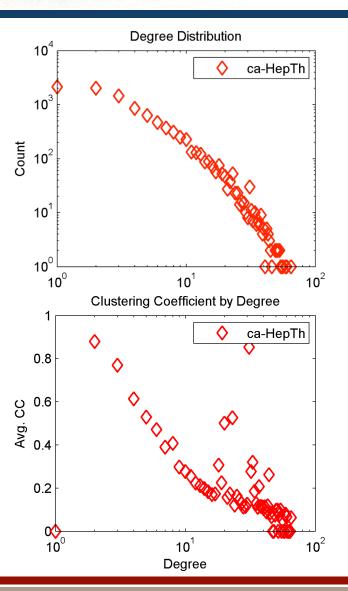
$$\text{Prob} ((i, j) \in E) = \bar{d}_i \cdot \bar{d}_j / 4\bar{m}$$

"Fast" Chung-Lu Model

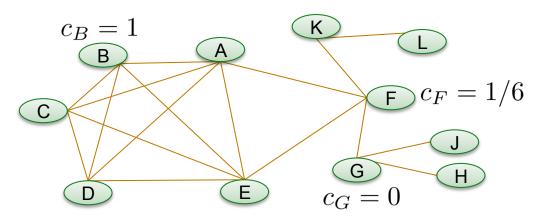
Prob
$$(i_k = i \mid e_k = (i_k, j_k)) = \bar{d}_i/2\bar{m}$$

Prob $(j_k = j \mid e_k = (i_k, j_k)) = \bar{d}_j/2\bar{m}$

Goal for Undirected Graph: Match Degree Dist. & Clustering Coeffs. by Degree



Recall: Clustering coefficient measures rate of wedge closure



$$c_i = \frac{\text{\# closed wedges centered at node } i}{\text{\# wedges centered at node } i}$$

$$c_d = \frac{1}{n_d} \sum_{i \in V_d} c_i = \text{average for nodes of degree } d$$

$$c = \frac{3 \times \# \text{ triangles in graph}}{\# \text{ wedges in graph}}$$

The Physics of Graphs

Random graph:

- (1) Formed according to CL Model
- (2) "High" clustering coefficient

Thm: This graph must contain a "substantive" subgraph that is a dense Erdös-Rényi graph

A heavy-tailed network with a high clustering coefficient contains many Erdös-Rényi **affinity blocks**

(The distribution of the block sizes is also heavy tailed)

Chung-Lu (aka Configuration) Model

$$\bar{d}_i = \text{desired degree of node } i$$

$$\bar{m} = \frac{1}{2} \sum_{i} \bar{d}_{i}$$

Prob
$$((i,j) \in E) = \bar{d}_i \cdot \bar{d}_j / 4\bar{m}$$

Global Clustering Coefficient

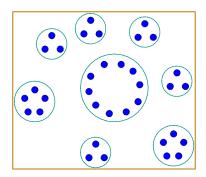
$$c = \frac{3 \times \# \text{ triangles in graph}}{\# \text{ wedges in graph}}$$

Dense Erdös-Rényi Subgraph

$$\bar{V} \subset V, \bar{E} \subset E$$
 Prob $\left((i,j) \in \bar{E} \mid i,j \in \bar{V}\right) \propto \text{constant}$

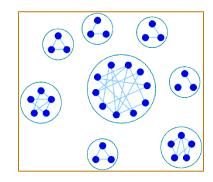
Seshadhri, Kolda, Pinar, Phys. Rev. E, 2012

BTER: Block Two-Level Erdös-Rényi



Preprocessing

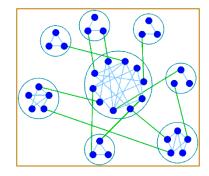
- Create affinity blocks of nodes with (nearly) same degree, determined by degree distribution
- Connectivity per block based on clustering coefficient
- For each node, compute desired
 - within-block degree
 - excess degree



Phase 1

- Erdös-Rényi graphs in each block
- Need to insert extra links to insure enough unique links per block

$$w_b = \binom{n_b}{2} \ln \left(\frac{1}{1 - \rho_b} \right)$$



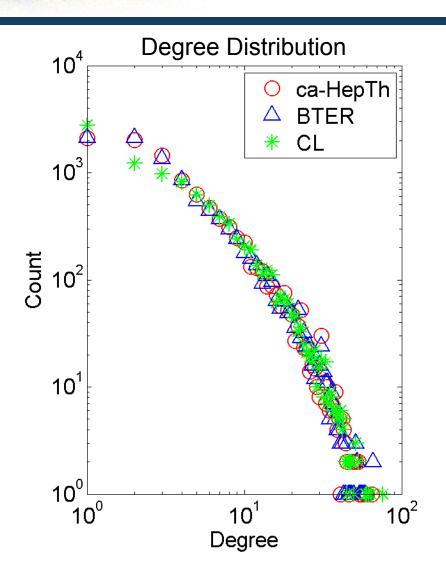
Phase 2

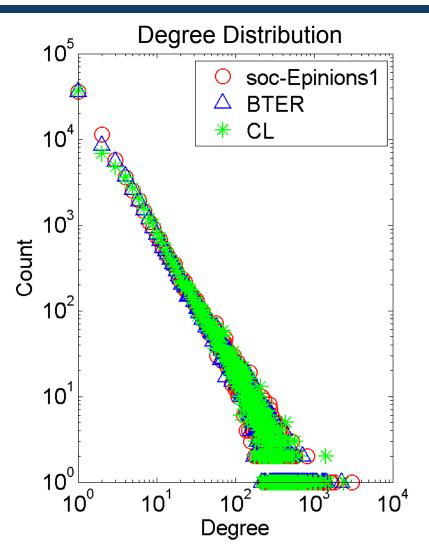
- CL model on excess degree (a sort of weighted Erdös-Rényi)
- Creates connections across blocks

Occurring independently

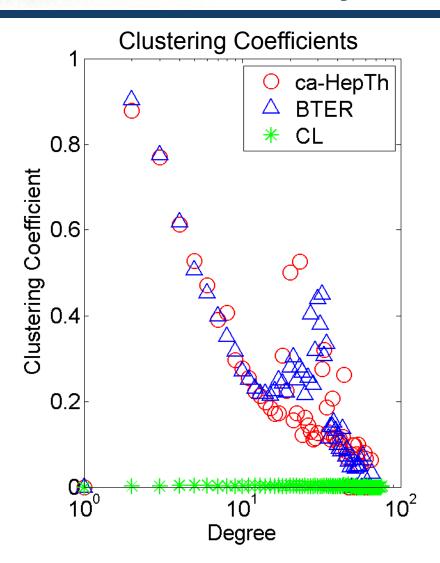
Seshadhri, Kolda, Pinar, *Phys. Rev. E,* 2012 Kolda, Plantenga, Pinar, Seshadhri, arXiv:1302.6636, Feb. 2013

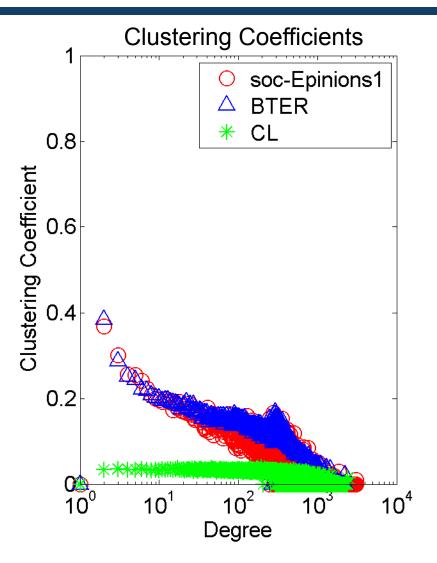
Degree Distributions Captured by Both CL and BTER



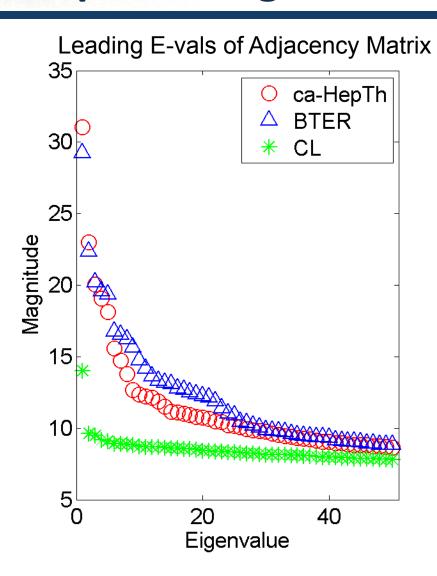


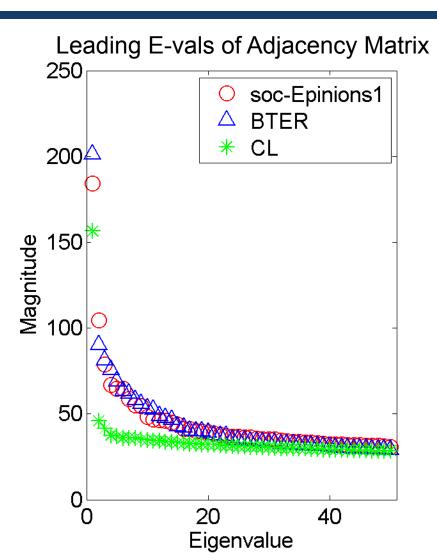
Clustering Coefficients Captured by BTER, but not by CL



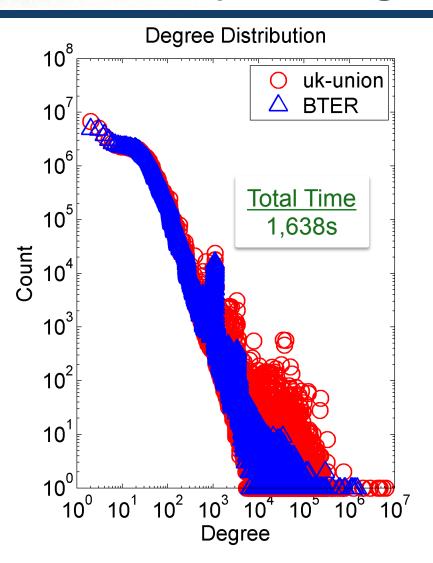


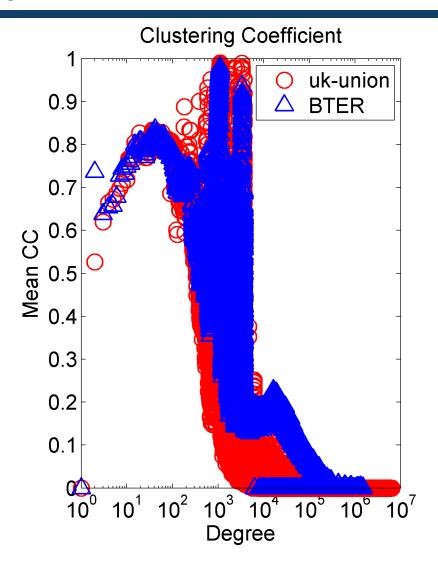
Community Structure of BTER Improves Eigenvalue Fit versus CL



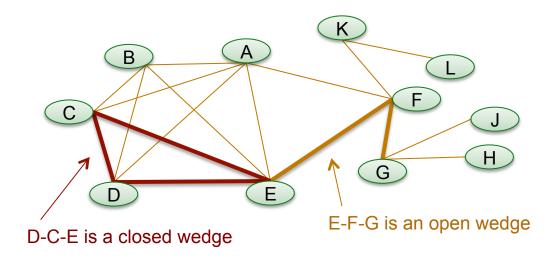


FWIW, BTER Scales uk-union (4.6B edges)





c = fraction of wedges that are closed



Enumeration: Find every wedge. Check if each is closed.
c = # closed wedges / # wedges

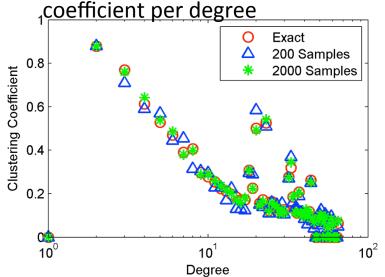
Sampling: Sample a few wedges (uniformly). Check if each is closed. c 1/4 # closed sampled wedges / # sampled wedges

Seshadhri, Pinar, Kolda, Proc. SIAM Intl. Conf. Data Mining, 2013

Benefits of Wedge Sampling

- Bounded error for specified sample size and desired confidence
- Work is O(# edges) vs O(# wedges)
- 1000X average speedup versus enumeration, k = 32,000 (² = 0.011)
- Faster than edge sampling (Doulion) and less variance

Can also compute clustering



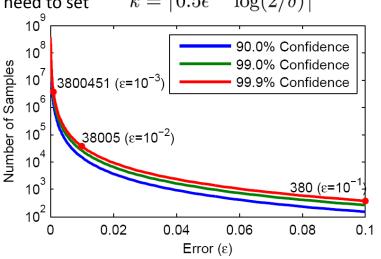
Bounded Error: Hoeffding's Inequality

<u>Theorem</u>: (Hoeffding 1963) Let $X_1, X_2, ..., X_k$ 2 [0,1] be independent random variables. Define the sample mean: $\bar{X} = \frac{1}{k} \sum_{i=1}^k X_i$

Let 1 be the true mean. Then for 2 (0,1-1),

Prob
$$\{|\bar{X} - \mu| \ge \epsilon\} \le \delta \equiv 2 \exp(-2k\epsilon^2)$$

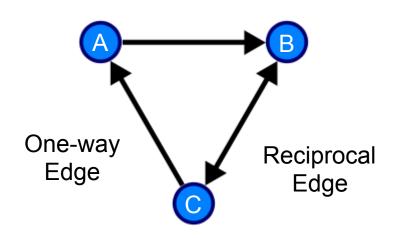
Hence, for a given error ² and confidence 1- δ , we just need to set $k=\lceil 0.5\epsilon^{-2}\log(2/\delta) \rceil$



Seshadhri, Pinar, Kolda, *Proc. SIAM Intl. Conf. Data Mining*, 2013 Kolda, Pinar, Plantenga, Seshadhri, Task, *arXiv:1301.5886*, Jan. 2013

DIRECTED GRAPHS

Two Ways of Measuring the Degree Distribution of a Digraph



Node	Total In	Total Out
Α	1	1
В	2	1
С	1	2

$$d_i^{\Leftarrow} = d_i^{\leftarrow} + d_i^{\leftrightarrow} = \text{total in-degree}$$

 $d_i^{\Rightarrow} = d_i^{\rightarrow} + d_i^{\leftrightarrow} = \text{total out-degree}$

Node	In	Out	Recip.
Α	1	1	0
В	1	0	1
С	0	1	1

$$d_i^{\leftrightarrow}$$
 = reciprocal degree d_i^{\leftarrow} = in-degree d_i^{\rightarrow} = out-degree

Durak, Kolda, Pinar, Seshadhri, IEEE Network Science Workshop 2013

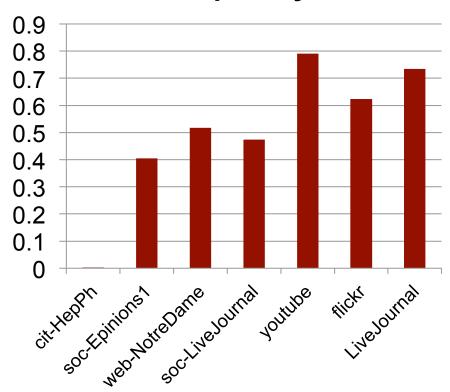
$$n_d^{\leftrightarrow} = \#$$
 of nodes with reciprocal-degree d
 $n_d^{\leftarrow} = \#$ of nodes with in-degree d
 $n_d^{\rightarrow} = \#$ of nodes with out-degree d

$$m = \sum_{d} d \cdot n_{d}^{\leftarrow} + d \cdot n_{d}^{\leftrightarrow} = \sum_{d} d \cdot n_{d}^{\rightarrow} + d \cdot n_{d}^{\leftrightarrow}$$

Reciprocity (Newman et al., 2002)

$$r = \frac{\text{\# reciprocated edges}}{\text{\# edges}} = \frac{\sum_{d=1}^{d_{\max}} d \cdot n_d^{\leftrightarrow}}{m}.$$

Reciprocity



Two Null Models

Fast Directed (FD)

Each node is *randomly* assigned a desired total in- and out-degree.

$$\bar{d}_i^{\Leftarrow} = \text{desired total in-degree}$$

 $\bar{d}_i^{\Rightarrow} = \text{desired total out-degree}$
 $\bar{m} = \sum_i \bar{d}_i^{\Leftarrow} = \# \text{ edges}$

For
$$k = 1, ..., \bar{m}$$

Prob $(i_k = i \mid e_k = (i_k, j_k)) = \bar{d}_i^{\Rightarrow}/\bar{m}$
Prob $(j_k = j \mid e_k = (i_k, j_k)) = \bar{d}_j^{\Leftarrow}/\bar{m}$

Fast Reciprocal Directed (FRD)

Each node is *randomly* assigned a desired reciprocal-, in-, and out-degree.

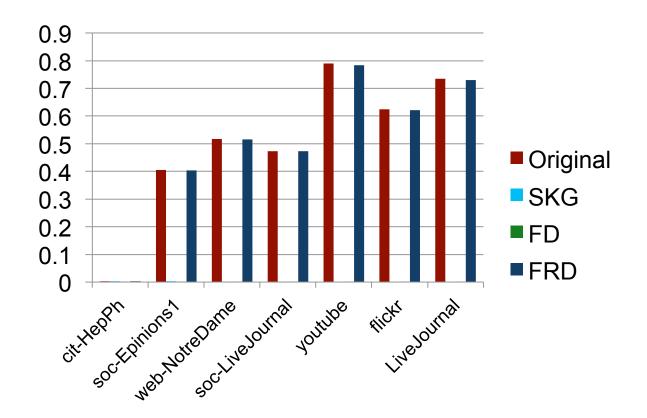
$$d_i^{\leftrightarrow} = \text{desired reciprocal degree}$$
 $\bar{d}_i^{\leftarrow} = \text{desired in-degree}$
 $\bar{d}_i^{\rightarrow} = \text{desired out-degree}$
 $\bar{m}' = \frac{1}{2} \sum_i \bar{d}_i^{\leftrightarrow} = \# \text{ recip. edges}$
 $\bar{m}'' = \sum_i \bar{d}_i^{\leftarrow} = \# \text{ one-way edges}$

For
$$k = 1, ..., \bar{m}'$$

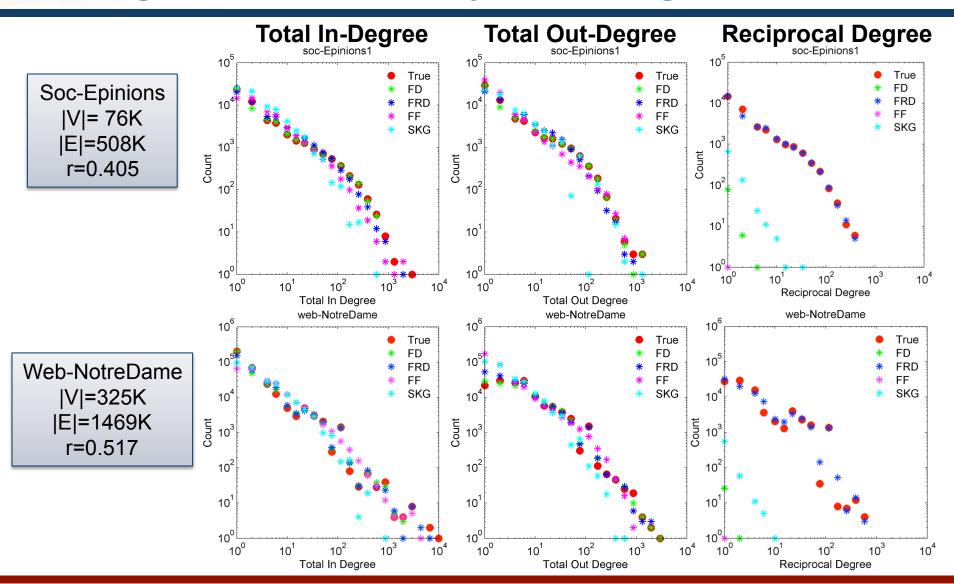
Prob $(i_k = i \mid e_k = (i_k, j_k)) = \bar{d}_i^{\leftrightarrow}/\bar{m}'$
Prob $(j_k = j \mid e_k = (i_k, j_k)) = \bar{d}_j^{\leftrightarrow}/\bar{m}'$
For $k = 1, ..., \bar{m}''$
Prob $(i_k = i \mid e_k = (i_k, j_k)) = \bar{d}_i^{\to}/\bar{m}''$
Prob $(j_k = j \mid e_k = (i_k, j_k)) = \bar{d}_i^{\leftarrow}/\bar{m}''$

Models fail at capturing reciprocity

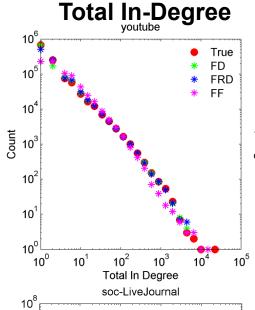
- SKG has very little reciprocation (Lescovec et al., JMLR, 2010)
- Forest Fire (FF) has <u>no</u> reciprocation (Leskovec, Kleinberg, Faloutsos, KDD'05)
- FD corresponds to a fast implementations of CL
- FRD takes reciprocal edges into account

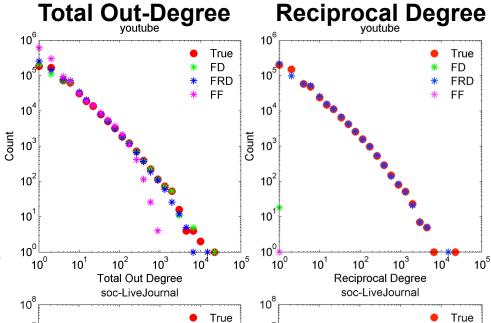


Tough to Match Reciprocal Degree

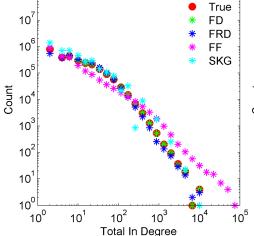


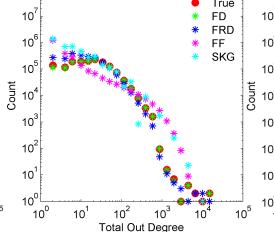
Tough to Match Reciprocal Degree

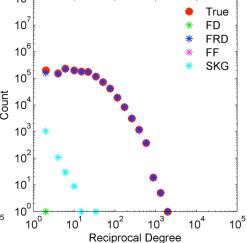




Soc-LiveJour |V|=4847K |E|=68475K r=0.632

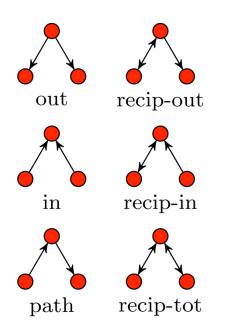




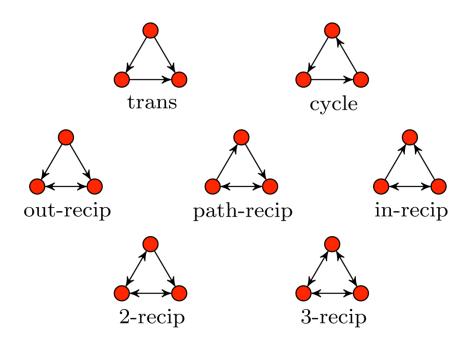


Triangles in Directed Networks

Directed Wedges



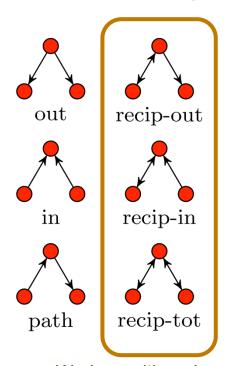
Directed Triangles

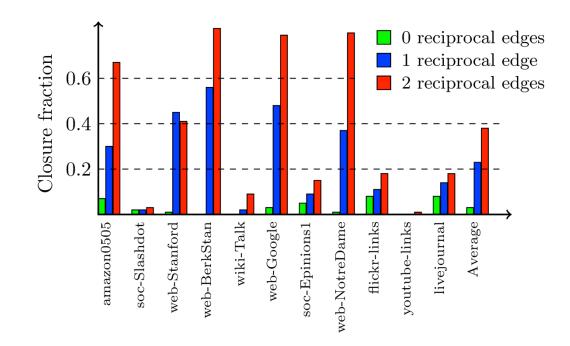


Seshadhri, Pinar, Durak, Kolda, arXiv:1302.6220, 2013

Reciprocity and Wedge Closure

Directed Wedges



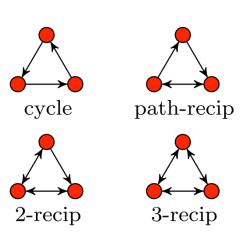


Wedges with reciprocal edges are much more likely to close in social and web networks.

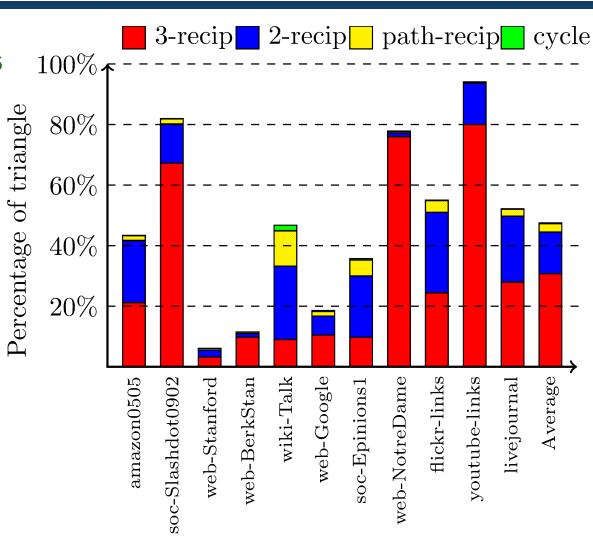
Seshadhri, Pinar, Durak, Kolda, arXiv:1302.6220, 2013

Reciprocity and Cycles

Triangles with Cycles



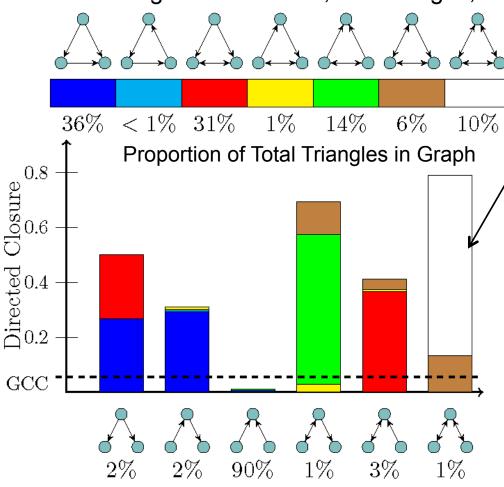
Cycles w/o reciprocation exceedingly rare



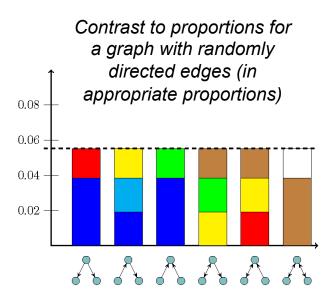
Seshadhri, Pinar, Durak, Kolda, arXiv:1302.6220, 2013

Wedges and Triangles in Web Network: web-Google

web-Google: 876K nodes, 5.1M edges, reciprocation = 31%, GCC=0.055



Proportion of these wedges that closed into that color triangle.

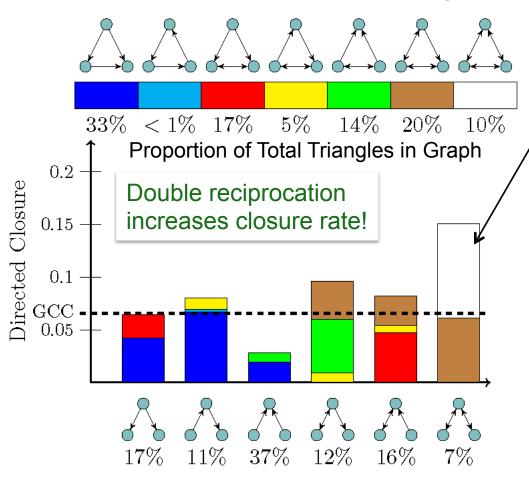


Proportion of Total Wedges in Graph

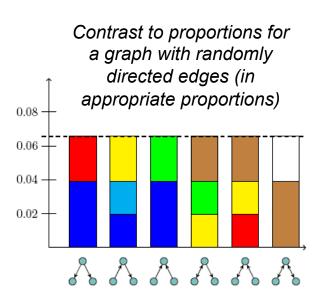
Data from SNAP

Wedges and Triangles in Social Network: soc-Epinions-1

soc-Epinions1: 76K nodes, 509K edges, reciprocation = 41%, GCC=0.066



Proportion of these wedges that closed into that color triangle.

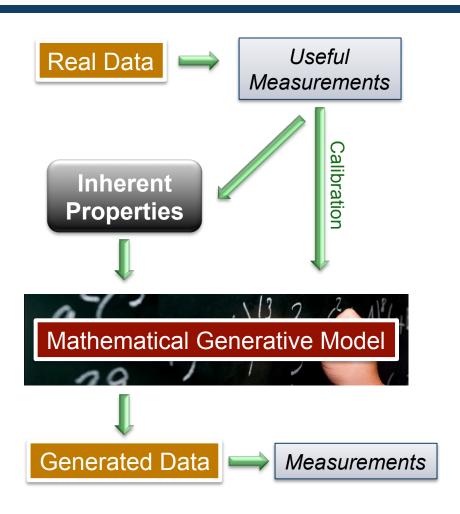


Proportion of Total Wedges in Graph

Data from SNAP

Conclusions

- Simple graphs
 - Useful measurements
 - Degree distribution
 - Clustering coefficients
 - Generative Models
 - CL matches degree distribution by not cluster coefficients
 - BTER matches degree distribution and clustering coefficients
- Digraphs
 - Useful measurements
 - Various degree distributions
 - Various directed clustering coefficients
 - Models
 - Most ignore reciprocation
 - FRD model matches degree distributions
 - No model yet matches triangle behavior



References

- BTER Model: C. Seshadhri, T. G. Kolda and A. Pinar. Community structure and scale-free collections of Erdös-Rényi graphs, Physical Review E 85(5):056109, May 2012, doi:10.1103/PhysRevE.85.056109
- Scalable BTER Model: T. G. Kolda, A. Pinar, T. D. Plantenga, and C. Seshadhri, A Scalable Generative Graph Model with Community Structure, arXiv:1302.6636, Feb 2013
- Directed Graph Models: N. Durak, T. G. Kolda, A. Pinar, and C. Seshadhri, A scalable directed graph model with reciprocal edges, IEEE Network Science Workshop, May 2013 (preprint: arXiv:1210.5288)
- Directed Triangles: C. Seshadhri, A. Pinar, N. Durak, T. G. Kolda, The Importance of Directed Triangles with Reciprocity: Algorithms and Patterns, arXiv:1302.6220, Feb 2013
- Wedge Sampling: C. Seshadhri, A. Pinar and T. G. Kolda, *Triadic Measures on Graphs:* The Power of Wedge Sampling, Proc. SIAM Intl. Conf. on Data Mining (SDM'13), Apr 2013 (preprint: arXiv:1202.5230)
- Wedge Sampling MapReduce: T. G. Kolda, T. Plantenga, C. Task, A. Pinar, and C. Seshadhri, Counting Triangles in Massive Graphs with MapReduce, arXiv:1301.5887, Jan 2013
- For copies or information about job openings: Tammy Kolda, tgkolda@sandia.gov