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Syllabus:

1. Introduction; Dynamics of Maps chs 1 & 10 of [52]

• a brief tour of nonlinear dynamics [34] (in [18])

• an extended example: the logistic map

– how to plot its behavior

– initial conditions, transients, and fixed points

– bifurcations and attractors

– chaos: sensitive dependence on initial conditions, λ, and all that

– pitchforks, Feigenbaum, and universality [23] (in [18])

– the connection between chaos and fractals [24], ch 11 of [52]

– period-3, chaos, and the u-sequence [33, 36] (latter is in [18])

– maybe: unstable periodic orbits [3, 26, 51]

2. Dynamics of Flows

[52], sections 2.0-2.3, 2.8, 5, and 6 (except 6.6 and 6.8)

• maps vs. flows

– time: discrete vs. continuous

– axes: state/phase space [10]

• an example: the simple harmonic oscillator

– some math & physics review [9]

– portraying & visualizing the dynamics [10]

• trajectories, attractors, basins, and boundaries [10]

• dissipation and attractors [44]

• bifurcations
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• how sensitive dependence and the Lyapunov exponent manifest in flows

• anatomy of a prototypical chaotic attractor: [24]

– stretching/folding and the un/stable manifolds

– fractal structure and the fractal dimension ch 11 of [52]

– unstable periodic orbits [3, 26, 51]

– shadowing

– maybe: symbol dynamics [27] (in [14]); [29]

• Lab: (Joshua Garland) the logistic map and the driven pendulum

3. Tools [2, 10, 39, 42]

• ODE solvers and their dynamics [9, 35, 37, 46]

• Poincaré sections [28]

• stability, eigenstuff, un/stable manifolds and a bit of control theory

• embedology [30, 31, 32, 41, 48, 49, 47, 54] ([41] is in [39] and [47] is in [55];)

• Lab: (Joshua Garland) nonlinear time series analysis with the tisean package[1,
32].

4. Applications [14, 39, 40]

• prediction [4, 5, 6, 15, 16, 55]

• filtering [21, 22, 25]

• control [8, 7, 12, 38, 50] ([38] is in [39])

• communication [17, 43]

• classical mechanics [11, 45, 53, 56, 57]

• music, dance, and image [13, 19, 20]
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References [2, 4, 5, 14, 16, 18, 29, 39, 52, 55] above are in the CSSS library.

More Resources:

www.cs.colorado.edu/~lizb/chaos-course.html

amath.colorado.edu/faculty/jdm/faq.html

www.mpipks-dresden.mpg.de/~tisean
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