Santa Fe Institute 2013 Complex Systems Summer School

Introduction to Nonlinear Dynamics

Instructor:

Liz Bradley Department of Computer Science University of Colorado Boulder CO 80309-0430 USA lizb@cs.colorado.edu www.cs.colorado.edu/~lizb

Syllabus:

1. Introduction; Dynamics of Maps	chs 1 & 10 of $[52]$
• a brief tour of nonlinear dynamics	[34] (in [18])
\bullet an extended example: the logistic map	
- how to plot its behavior	
– initial conditions, transients, and fixed points	
- bifurcations and attractors	
 chaos: sensitive dependence on initial conditions pitchforks, Feigenbaum, and universality 	s, λ , and all that [23] (in [18])
 premorks, reigenbaum, and universanty the connection between chaos and fractals 	[23] (m $[13]$) [24], ch 11 of $[52]$
– period-3, chaos, and the u-sequence	[33, 36] (latter is in $[18]$)
- maybe: unstable periodic orbits	[3, 26, 51]
2. Dynamics of Flows	
[52], sections 2.0-2.3, 2.8, 5, ar	nd 6 (except 6.6 and 6.8)
• maps vs. flows	
– time: discrete vs. continuous	
- axes: state/phase space	[10]
\bullet an example: the simple harmonic oscillator	
– some math & physics review	[9]
 portraying & visualizing the dynamics 	[10]
• trajectories, attractors, basins, and boundaries	[10]
• dissipation and attractors	[44]
• bifurcations	

\bullet how sensitive dependence and the Lyapunov exponent manifest in flows	
• anatomy of a prototypical chaotic attractor	[24]
– stretching/folding and the un/stable ma	anifolds
– fractal structure and the fractal dimens	ion ch 11 of $[52]$
– unstable periodic orbits	[3, 26, 51]
- shadowing	
- maybe: symbol dynamics	[27] (in $[14]$); $[29]$
• Lab: (Joshua Garland) the logistic map and the driven pendulum	
3. Tools	[2, 10, 39, 42]
• ODE solvers and their dynamics	[9, 35, 37, 46]
• Poincaré sections	[28]
• stability, eigenstuff, un/stable manifolds and a bit of control theory	
• embedology [30, 31, 32, 41, 48, 49, 47, 54] ([41] is in [39] and [47] is in [55];)	
• Lab: (Joshua Garland) nonlinear time series 32].	analysis with the TISEAN package $[1,$
4. Applications	[14, 39, 40]
• prediction	[4, 5, 6, 15, 16, 55]
• filtering	[21, 22, 25]
• control	[8, 7, 12, 38, 50] ([38] is in [39])
• communication	[17, 43]
• classical mechanics	[11, 45, 53, 56, 57]
• music, dance, and image	[13, 19, 20]

References

- [1] www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/index.html.
- [2] H. Abarbanel. Analysis of Observed Chaotic Data. Springer, 1995.
- [3] D. Auerbach, P. Cvitanovic, J.-P. Eckmann, G. Gunaratne, and I. Procaccia. Exploring chaotic motion through periodic orbits. *Physical Review Letters*, 58:2387–2389, 1987.
- [4] T. Bass. The Eudaemonic Pie. Penguin, New York, 1992.
- [5] T. Bass. *The Predictors*. Owl Books, 2000.
- [6] D. Berreby. Chaos hits Wall Street. Discover, 14:76–84, March 1993.
- [7] E. Bollt and J. Meiss. Targeting chaotic orbits to the moon. *Physics Letters A*, 204:373– 378, 1995.
- [8] E. Bradley. Using chaos to broaden the capture range of a phase-locked loop. IEEE Transactions on Circuits and Systems, 40:808–818, 1993.
- [9] E. Bradley. Numerical solution of differential equations. Research Report on Curricula and Teaching CT003-98, University of Colorado, Department of Computer Science, 1998.
 www.cs.colorado.edu/~lizb/na/ode-notes.pdf.
- [10] E. Bradley. Analysis of time series. In Intelligent Data Analysis: An Introduction, pages 199–226. Springer-Verlag, 2nd edition, 2000. M. Berthold and D. Hand, eds.
- [11] E. Bradley. Classical mechanics. Research Report on Curricula and Teaching CT007-00, University of Colorado, Department of Computer Science, 2000. www.cs.colorado.edu/~lizb/chaos/classmech.pdf.
- [12] E. Bradley and D. Straub. Using chaos to broaden the capture range of a phase-locked loop: Experimental verification. *IEEE Transactions on Circuits and Systems*, 43:914–822, 1996.
- [13] E. Bradley and J. Stuart. Using chaos to generate variations on movement sequences. Chaos, 8:800–807, 1998.
- [14] D. Campbell, R. Ecke, and J. Hyman. Nonlinear Science: The Next Decade. M.I.T. Press, 1992.
- [15] M. Casdagli. Nonlinear prediction of chaotic time series. *Physica D*, 35:335–356, 1989.
- [16] M. Casdagli and S. Eubank, editors. Nonlinear Modeling and Forecasting. Addison Wesley, 1992.
- [17] K. M. Cuomo and A. V. Oppenheim. Circuit implementation of synchronized chaos with applications to communications. *Physical Review Letters*, 71:65–68, 1993.
- [18] P. Cvitanovic. Introduction. In Universality in Chaos. Adam Hilger, Bristol U.K., 1984.
- [19] D. Dabby. Musical variations from a chaotic mapping. Chaos, 6:95–107, 1996.

- [20] D. Dabby. A chaotic mapping for musical and image variation. In Proceedings of the Fourth Experimental Chaos Conference, 1997.
- [21] J. Farmer and J. Sidorowich. Predicting chaotic time series. *Physical Review Letters*, 59:845–848, 1987.
- [22] J. Farmer and J. Sidorowich. Exploiting chaos to predict the future and reduce noise. In Evolution, Learning and Cognition. World Scientific, 1988.
- [23] M. J. Feigenbaum. Universal behavior in nonlinear systems. Los Alamos Science, 1:4–27, 1980.
- [24] C. Grebogi, E. Ott, and J. A. Yorke. Chaos, strange attractors and fractal basin boundaries in nonlinear dynamics. *Science*, 238:632–638, 1987.
- [25] J. Guckenheimer. Noise in chaotic systems. Nature, 298:358–361, 1982.
- [26] G. Gunaratne, P. Linsay, and M. Vinson. Chaos beyond onset: A comparison of theory and experiment. *Physical Review Letters*, 63:1, 1989.
- [27] B.-L. Hao. Symbolic dynamics and characterization of complexity. *Physica D*, 51:161–176, 1991.
- [28] M. Hénon. On the numerical computation of Poincaré maps. Physica D, 5:412–414, 1982.
- [29] C. Hsu. Cell-to-Cell Mapping. Springer-Verlag, New York, 1987.
- [30] J. Huke. Embedding nonlinear dynamical systems: A guide to takens theorem. Technical Report MIMS EPrint: 2006.26, University of Manchester, 2006. eprints.ma.man.ac.uk/175/.
- [31] J. Iwanski and E. Bradley. Recurrence plots of experimental data: To embed or not to embed? *Chaos*, 8:861–871, 1998.
- [32] H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge University Press, Cambridge, 1997.
- [33] T.-Y. Li and J. A. Yorke. Period three implies chaos. American Mathematical Monthly, 82:985–992, 1975.
- [34] E. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20:130– 141, 1963.
- [35] E. N. Lorenz. Computational chaos A prelude to computational instability. Physica D, 35:229–317, 1989.
- [36] N. Metropolis, M. Stein, and P. Stein. On finite limit sets for transformations of the unit interval. J. Combinational Theory, 15:25–44, 1973.
- [37] R. Miller. A horror story about integration methods. J. Computational Physics, 93:469– 476, 1991.
- [38] E. Ott, C. Grebogi, and J. A. Yorke. Controlling chaos. Physical Review Letters, 64:1196– 1199, 1990.

- [39] E. Ott, T. Sauer, and J. Yorke. *Coping with chaos.* Wiley, 1994.
- [40] J. M. Ottino. The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge, Cambridge U.K., 1992.
- [41] N. Packard, J. Crutchfield, J. Farmer, and R. Shaw. Geometry from a time series. *Physical Review Letters*, 45:712, 1980.
- [42] T. S. Parker and L. O. Chua. Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag, New York, 1989.
- [43] L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems. *Physical Review Letters*, 64:821–824, 1990.
- [44] I. Percival. Chaos in Hamiltonian systems. Proceedings of the Royal Society, London, 413:131–144, 1987.
- [45] I. Peterson. Newton's Clock: Chaos in the Solar System. W. H. Freeman, New York, 1993.
- [46] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge U.K., 1988.
- [47] T. Sauer. Time-series prediction by using delay-coordinate embedding. In *Time Series Prediction: Forecasting the Future and Understanding the Past.* Santa Fe Institute Studies in the Sciences of Complexity, Santa Fe, NM, 1993.
- [48] T. Sauer. Interspike interval embedding of chaotic signals. Chaos, 5:127, 1995.
- [49] T. Sauer, J. Yorke, and M. Casdagli. Embedology. Journal of Statistical Physics, 65:579– 616, 1991.
- [50] T. Shinbrot. Progress in the control of chaos. Advances in Physics, 44:73–111, 1995.
- [51] P. So, E. Ott, S. Schiff, D. Kaplan, T. Sauer, and C. Grebogi. Detecting unstable periodic orbits in chaotic experimental data. *Physical Review Letters*, 76:4705–4708, 1996.
- [52] S. Strogatz. Nonlinear Dynamics and Chaos. Addison-Wesley, Reading, MA, 1994.
- [53] G. J. Sussman and J. Wisdom. Chaotic evolution of the solar system. Science, 257:56–62, 1992.
- [54] F. Takens. Detecting strange attractors in fluid turbulence. In D. Rand and L.-S. Young, editors, *Dynamical Systems and Turbulence*, pages 366–381. Springer, Berlin, 1981.
- [55] A. Weigend and N. Gershenfeld, editors. *Time Series Prediction: Forecasting the Future and Understanding the Past.* Santa Fe Institute Studies in the Sciences of Complexity, Santa Fe, NM, 1993.
- [56] J. Wisdom. Chaotic behavior in the solar system. Nuclear Physics B, 2:391–414, 1987.
- [57] J. Wisdom. Is the solar system stable? and Can we use chaos to make measurements? In D. K. Campbell, editor, *Chaos/XAOC : Soviet-American perspectives on nonlinear science*. American Institute of Physics, New York, 1990.

References [2, 4, 5, 14, 16, 18, 29, 39, 52, 55] above are in the CSSS library.

More Resources:

www.cs.colorado.edu/~lizb/chaos-course.html

amath.colorado.edu/faculty/jdm/faq.html

www.mpipks-dresden.mpg.de/~tisean