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A Brief, Introductory Overview of Example: Iterating the squaring rule,  f(x) = 22

Dynamical Systems and Chaos
y y e Consider the function f(x) = x2. What happens if we start with a number

e A Dynamical System is any system that changes over time and repeatedly apply this function to it?
— A Differential Equation e Eg.,32=9 9% =281, 812 = 6561, etc.
— A system of differential equations e The iteration process can also be written z,, 11 = 2.
— Iterated functions e In this is example, the initial value 3 is the seed, often denoted .

Cellular Automata

e The sequence 3,9, 81,6561, - - - is the orbit or the itinerary of 3.

e The goal of this brief introduction is to define a handful of terms and introduce e Picture the function as a “box” that takes z as an input and outputs f (z):

the phenomena associated with chaos.

S
e | will focus on iterated functions.

e [terating the function is then achieved by feeding the output back to the

e Let's start with an example. function, making a feedback loop:
X f(x)
L]
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The squaring rule, continued Logistic Equation
In dynamics, we are usually interested in the long-term behavior of the orbit, not e Logistic equation: f(z) = rz(1 — x).

in the particulars of the orbit.

A simple model of resource-limited population growth.
e The seed 3 tends toward infinity—it gets bigger and bigger.

The population x is expressed as a fraction of the carrying capacity.

e Any xo > 1 will tend toward infinity. 0<z <1,
e If zg = 1 or ¢y = 0, then the point never changes. These are fixed points. e 1 is a parameter—the growth rate—that we will vary.
e If0 < zg < 1, then zg approaches 0. e Let's first see what happens if r = 0.5.

e \We can summarize this with the following diagram:

0 1

r— ———<—0

Y
Y
)

Population

0 and 1 are both fixed points

0 is a stable or attracting fixed point

e 1 isan unstable or repelling fixed point
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e This graph is known as a time series plot .

e () is an attracting fixed point.
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Logistic Equation, 7 = 3.2

e Logistic equation, r = 3.2.

e Initial conditions are pulled toward a cycle of period 2.

e The orbit oscillates between 0.513045 and 0.799455.

e This cycle is an attractor. Many different initial conditions get pulled to it.
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Logistic Equation, 7 = 2.5

e Logistic equation, r = 2.5.

Population

e All initial conditions are pulled toward 0.6.
o (Note that there are different vertical scales on the two plots.)

e 0.6 is an attracting fixed point.
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Logistic Equation, r = 4.0

e Logistic equation, r = 4.0.

What's going on here?!

The orbit is not periodic. In fact, it never repeats.

This is a rigorous result; it doesn’t rely on computers.

What happens if we try different initial conditions?
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Different Initial conditions

e Logistic equation, r = 4.0. Two different initial conditions, zo = 0.4 and
zo = 0.41.

Difference

Papulstion

Fopulation

e The right graph plots the difference between the two orbits on the left with

slightly different initial conditions.
e Note that the difference between the two orbits grows.

e Can think of one initial condition as the true one, and the other as the
measured one.
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Sensitive Dependence on Initial Conditions

e Logistic equation, r = 4.0. Two different initial conditions, ¢ = 0.4 and
zo = 0.4000001.

ation I
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e The two initial conditions differ by one part in one million

e The orbits differ significantly after around 20 iterations, whereas before they
differed after around 4 iterations.

e [ncreasing the accuracy of the initial condition by a factor of 10° allow us to
predict the outcome 5 times further.
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e The plot on the right then shows what happens to our prediction error over
time.

e What happens if the two initial conditions are closer together?
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e Thus, for all practical purposes, this system is unpredictable, even though it is

deterministic.

e This phenomena is known as Sensitive Dependence on Initial Conditions

or, more colloquially, The Butterfly Effect
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Definition of Sensitive Dependence on Initial Conditions

e A dynamical system has sensitive dependence on initial conditions (SDIC) if
arbitrarily small differences in initial conditions eventually lead to arbitrarily

large differences in the orbits.
More formally

e Let X be a metric space, and let f be a function that maps X to itself:
f:X—X.

e The function f has SDIC if there exists a § > 0 such that Vx; € X and
Ve > 0, there is an x5 € X and a natural number n € N such that
d[zq,x2] < eand d[f™(x1), fn(x2)] > 0.

e |n other words, two initial conditions that start € apart will, after n iterations,

be separated by a distance 0.
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Geometry of Chaos

Geometrically, all chaotic systems involve stretching and folding:

Begin t t

Stretch| @ &

Fold

End

K
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Definition of Chaos

There is not a 100% standard definition of chaos. But here is one of the most
commonly used ones:

An iterated function is chaotic if:
1. The function is deterministic .
2. The system'’s orbits are bounded .
3. The system'’s orbits are aperiodic ; i.e., they never repeat.
4. The system has sensitive dependence on initial conditions

Other properties of a chaotic dynamical system (f : X +— X) that are
sometimes taken as defining features:

1. Dense periodic points:  The periodic points of f are dense in X.

2. Topological transitivity: ~ For all open sets U, V' € X, there exists an
x € U such that, for some n < 00, f,(x) € V. Le., in any set there exists
a point that will get arbitrarily close to any other set of points.
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e Stretching pulls nearby points apart, leading to sensitive dependence on
initial conditions.

e Folding keeps the orbits bounded .
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Geometry of Chaos, continued
The logistic equation may be viewed as stretching and folding the unit interval
onto itself:
1
08
0.6
0.4
0.2
0
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e Note that the amount of stretching is captured by the slope of the function.
o We shall see that the “average slope” is related to the degree of SDIC, which
is in turn related to the unpredictability.
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Chaos and Dynamical Systems: Selected References

There are many excellent references and textbooks on dynamical systems. Some

of my favorites:

Peitgen, et al. Chaos and Fractals: New Frontiers of Science. Springer-Verlag. 1992.
Huge (almost 1000 pages), and very clear. Excellent balance of rigor and intuition.

Cvitanovi¢, Universality in Chaos, second edition, World Scientific. 1989.

Comprehensive collection of reprints. Very handy. Nice introduction by Cvitanovi¢.

Gleick, Chaos: Making a New Science. Penguin Books. 1988. Popular science book.

But very good. Extremely well written and accurate.

Devaney. An Introduction to Chaotic Dynamical Systems, second edition. Perseus
Publishing. 1989. Advanced undergrad math textbook. Very clear.
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e Thus, SDIC is a geometric property of the system.

o We will make this idea precise in the next set of lectures.
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