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A Brief, Introductory Overview of

Dynamical Systems and Chaos

• A Dynamical System is any system that changes over time

– A Differential Equation

– A system of differential equations

– Iterated functions

– Cellular Automata

• The goal of this brief introduction is to define a handful of terms and introduce

the phenomena associated with chaos.

• I will focus on iterated functions.

• Let’s start with an example.
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Example: Iterating the squaring rule, f(x) = x2

• Consider the function f(x) = x2. What happens if we start with a number

and repeatedly apply this function to it?

• E.g., 32 = 9, 92 = 81, 812 = 6561, etc.

• The iteration process can also be written xn+1 = x2
n

.

• In this is example, the initial value 3 is the seed , often denoted x0.

• The sequence 3, 9, 81, 6561, · · · is the orbit or the itinerary of 3.

• Picture the function as a “box” that takes x as an input and outputs f(x):

f(x)x
f

• Iterating the function is then achieved by feeding the output back to the

function, making a feedback loop:

f(x)x
f
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The squaring rule, continued

In dynamics, we are usually interested in the long-term behavior of the orbit, not

in the particulars of the orbit.

• The seed 3 tends toward infinity—it gets bigger and bigger.

• Any x0 > 1 will tend toward infinity.

• If x0 = 1 or x0 = 0, then the point never changes. These are fixed points.

• If 0 ≤ x0 < 1, then x0 approaches 0.

• We can summarize this with the following diagram:

10

• 0 and 1 are both fixed points

• 0 is a stable or attracting fixed point

• 1 is an unstable or repelling fixed point

c©David P. Feldman and SFI http://hornacek.coa.edu/dave

SFI CSSS, Beijing China, July 2006: Chaos & Dynamical Systems, Part I 4

Logistic Equation

• Logistic equation: f(x) = rx(1 − x).

• A simple model of resource-limited population growth.

• The population x is expressed as a fraction of the carrying capacity.

0 ≤ x ≤ 1.

• r is a parameter—the growth rate—that we will vary.

• Let’s first see what happens if r = 0.5.
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• This graph is known as a time series plot .

• 0 is an attracting fixed point.
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Logistic Equation, r = 2.5

• Logistic equation, r = 2.5.

• All initial conditions are pulled toward 0.6.

• (Note that there are different vertical scales on the two plots.)

• 0.6 is an attracting fixed point.
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Logistic Equation, r = 3.2

• Logistic equation, r = 3.2.

• Initial conditions are pulled toward a cycle of period 2.

• The orbit oscillates between 0.513045 and 0.799455.

• This cycle is an attractor. Many different initial conditions get pulled to it.
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Logistic Equation, r = 4.0

• Logistic equation, r = 4.0.

• What’s going on here?!

• The orbit is not periodic. In fact, it never repeats.

• This is a rigorous result; it doesn’t rely on computers.

• What happens if we try different initial conditions?
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Different Initial conditions

• Logistic equation, r = 4.0. Two different initial conditions, x0 = 0.4 and

x0 = 0.41.

• The right graph plots the difference between the two orbits on the left with

slightly different initial conditions.

• Note that the difference between the two orbits grows.

• Can think of one initial condition as the true one, and the other as the

measured one.
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• The plot on the right then shows what happens to our prediction error over

time.

• What happens if the two initial conditions are closer together?
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Sensitive Dependence on Initial Conditions

• Logistic equation, r = 4.0. Two different initial conditions, x0 = 0.4 and

x0 = 0.4000001.

• The two initial conditions differ by one part in one million

• The orbits differ significantly after around 20 iterations, whereas before they

differed after around 4 iterations.

• Increasing the accuracy of the initial condition by a factor of 105 allow us to

predict the outcome 5 times further.
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• Thus, for all practical purposes, this system is unpredictable, even though it is

deterministic.

• This phenomena is known as Sensitive Dependence on Initial Conditions ,

or, more colloquially, The Butterfly Effect .
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Definition of Sensitive Dependence on Initial Conditions

• A dynamical system has sensitive dependence on initial conditions (SDIC) if

arbitrarily small differences in initial conditions eventually lead to arbitrarily

large differences in the orbits.

More formally

• Let X be a metric space, and let f be a function that maps X to itself:

f : X 7→ X .

• The function f has SDIC if there exists a δ > 0 such that ∀x1 ∈ X and

∀ǫ > 0, there is an x2 ∈ X and a natural number n ∈ N such that

d[x1, x2] < ǫ and d[fn(x1), fn(x2)] > δ.

• In other words, two initial conditions that start ǫ apart will, after n iterations,

be separated by a distance δ.
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Definition of Chaos

There is not a 100% standard definition of chaos. But here is one of the most

commonly used ones:

An iterated function is chaotic if:

1. The function is deterministic .

2. The system’s orbits are bounded .

3. The system’s orbits are aperiodic ; i.e., they never repeat.

4. The system has sensitive dependence on initial conditions .

Other properties of a chaotic dynamical system (f : X 7→ X) that are

sometimes taken as defining features:

1. Dense periodic points: The periodic points of f are dense in X .

2. Topological transitivity: For all open sets U, V ∈ X , there exists an

x ∈ U such that, for some n < ∞, fn(x) ∈ V . I.e., in any set there exists

a point that will get arbitrarily close to any other set of points.
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Geometry of Chaos

Geometrically, all chaotic systems involve stretching and folding:
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• Stretching pulls nearby points apart, leading to sensitive dependence on

initial conditions.

• Folding keeps the orbits bounded .
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Geometry of Chaos, continued

The logistic equation may be viewed as stretching and folding the unit interval

onto itself:
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• Note that the amount of stretching is captured by the slope of the function.

• We shall see that the “average slope” is related to the degree of SDIC, which

is in turn related to the unpredictability.
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• Thus, SDIC is a geometric property of the system.

• We will make this idea precise in the next set of lectures.
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Chaos and Dynamical Systems: Selected References

There are many excellent references and textbooks on dynamical systems. Some

of my favorites:

• Peitgen, et al. Chaos and Fractals: New Frontiers of Science. Springer-Verlag. 1992.

Huge (almost 1000 pages), and very clear. Excellent balance of rigor and intuition.

• Cvitanović, Universality in Chaos, second edition, World Scientific. 1989.

Comprehensive collection of reprints. Very handy. Nice introduction by Cvitanović.

• Gleick, Chaos: Making a New Science. Penguin Books. 1988. Popular science book.

But very good. Extremely well written and accurate.

• Devaney. An Introduction to Chaotic Dynamical Systems, second edition. Perseus

Publishing. 1989. Advanced undergrad math textbook. Very clear.

c©David P. Feldman and SFI http://hornacek.coa.edu/dave


