

- Any $x_0 > 1$ will tend toward infinity.
- $\bullet\,$ If $x_0=1$ or $x_0=0$, then the point never changes. These are fixed points.
- If $0 \leq x_0 < 1$, then x_0 approaches 0 .
- We can summarize this with the following diagram:

- ⁰ and ¹ are both **fixed points**
- ⁰ is ^a **stable** or **attracting** fixed point
- ¹ is an **unstable** or **repelling** fixed point

$\bf{Example: }$ **Iterating the squaring rule,** $f(x) = x^2$

- Consider the function $f(x) = x^2$. What happens if we start with a number and repeatedly apply this function to it?
- E.g., $3^2 = 9$, $9^2 = 81$, $81^2 = 6561$, etc.
- \bullet The iteration process can also be written $x_{n+1} = x_n^2$.
- In this is example, the initial value 3 is the **seed**, often denoted x_0 .
- \bullet The sequence $3, 9, 81, 6561, \cdots$ is the **orbit** or the **itinerary** of 3 .
- $\bullet\,$ Picture the function as a "box" that takes x as an input and outputs $f(x)$:

• Iterating the function is then achieved by feeding the output back to the function, making ^a feedback loop:

x

CDavid P. Feldman and SFI

http://hornacek.coa.edu/dave

SFI CSSS, Beijing China, July 2006: Chaos & Dynamical Systems, Part I

Logistic Equation

- Logistic equation: $f(x) = rx(1-x)$.
- ^A simple model of resource-limited population growth.
- $\bullet\,$ The population x is expressed as a fraction of the carrying capacity. $0 \leq x \leq 1$.
- $\bullet\,$ r is a parameter—the growth rate—that we will vary.
- $\bullet\,$ Let's first see what happens if $r=0.5.$

 \bullet 0 is an attracting fixed point.

• This graph is known as ^a **time series plot**.

http://hornacek.coa.edu/dave

http://hornacek.coa.edu/dave

SFI CSSS, Beijing China, July 2006: Chaos & Dynamical Systems, Part I 8

SFI CSSS, Beijing China, July 2006: Chaos & Dynamical Systems, Part I 7 7

C) David P. Feldman and SFI

slightly different initial conditions.

• Note that the difference between the two orbits grows.

 $x_0 = 0.41.$

į., ê. $\theta_{\rm m}$ $\theta_{\rm m}$ α .

measured one.

CDavid P. Feldman and SFI

Different Initial conditions

 $\bullet\,$ Logistic equation, $r=4.0$. Two different initial conditions, $x_0=0.4$ and

• The right graph plots the difference between the two orbits on the left with

• Can think of one initial condition as the true one, and the other as the

- The plot on the right then shows what happens to our prediction error over time.
- What happens if the two initial conditions are closer together?

CDavid P. Feldman and SFI

http://hornacek.coa.edu/dave

SFI CSSS, Beijing China, July 2006: Chaos & Dynamical Systems, Part I 12

SFI CSSS, Beijing China, July 2006: Chaos & Dynamical Systems, Part I 11 **Sensitive Dependence on Initial Conditions** \bullet Logistic equation, $r=4.0$. Two different initial conditions, $x_0=0.4$ and $x_0 = 0.4000001.$ $20 25 30$ 20 25
Generation 48 -45 58 15 • The two initial conditions differ by one part in one million • The orbits differ significantly after around ²⁰ iterations, whereas before they differed after around ⁴ iterations. $\bullet\,$ Increasing the accuracy of the initial condition by a factor of 10^5 allow us to

• Thus, for all practical purposes, this system is unpredictable, even though it is deterministic.

• This phenomena is known as **Sensitive Dependence on Initial Conditions**, or, more colloquially, **The Butterfly Effect**.

predict the outcome 5 times further.

http://hornacek.coa.edu/dave

Definition of Chaos

There is not ^a 100% standard definition of chaos. But here is one of the most commonly used ones: An iterated function is **chaotic** if: 1. The function is **deterministic**. 2. The system's orbits are **bounded**. 3. The system's orbits are **aperiodic**; i.e., they never repeat. 4. The system has **sensitive dependence on initial conditions**. Other properties of a chaotic dynamical system ($f : X \mapsto X$) that are
constinues taken as defining factories: sometimes taken as defining features: 1. $\,$ **Dense periodic points:** The periodic points of f are dense in $X.$ 2. **Topological transitivity:** For all open sets $U, V \in X$, there exists an $x \in U$ such that, for some $n < \infty$, $f_n(x) \in V$. I.e., in any set there exists ^a point that will get arbitrarily close to any other set of points.

CDavid P. Feldman and SFI

http://hornacek.coa.edu/dave

SFI CSSS, Beijing China, July 2006: Chaos & Dynamical Systems, Part I 16 16

- Stretching pulls nearby points apart, leading to **sensitive dependence oninitial conditions.**
- Folding keeps the orbits **bounded**.

• ^A dynamical system has sensitive dependence on initial conditions (SDIC) if arbitrarily small differences in initial conditions eventually lead to arbitrarilylarge differences in the orbits.

More formally

- Let X be a metric space, and let f be a function that maps X to itself: $f: X \mapsto X$.
- The function f has SDIC if there exists a $\delta > 0$ such that $\forall x_1 \in X$ and $\forall \epsilon >0,$ there is an $x_2 \in X$ and a natural number $n \in N$ such that $d[x_1, x_2] < \epsilon$ and $d[f^n(x_1), f_n(x_2)] > \delta$.
- $\bullet\,$ In other words, two initial conditions that start ϵ apart will, after n iterations, be separated by a distance $\delta.$

CDavid P. Feldman and SFI

http://hornacek.coa.edu/dave

SFI CSSS, Beijing China, July 2006: Chaos & Dynamical Systems, Part I 15

CDavid P. Feldman and SFI

- Thus, SDIC is ^a geometric property of the system.
- We will make this idea precise in the next set of lectures.

C) David P. Feldman and SFI

http://hornacek.coa.edu/dave

• We shall see that the "average slope" is related to the degree of SDIC, which is in turn related to the unpredictability.

C) David P. Feldman and SFI

onto itself:

http://hornacek.coa.edu/dave

Chaos and Dynamical Systems: Selected References

There are many excellent references and textbooks on dynamical systems. Someof my favorites:

- Peitgen, et al. Chaos and Fractals: New Frontiers of Science. Springer-Verlag. 1992. Huge (almost 1000 pages), and very clear. Excellent balance of rigor and intuition.
- Cvitanović, Universality in Chaos, second edition, World Scientific. 1989. Comprehensive collection of reprints. Very handy. Nice introduction by Cvitanović.
- Gleick, Chaos: Making ^a New Science. Penguin Books. 1988. Popular science book. But very good. Extremely well written and accurate.
- Devaney. An Introduction to Chaotic Dynamical Systems, second edition. Perseus Publishing. 1989. Advanced undergrad math textbook. Very clear.