Syllabus:

1. Introduction; Dynamics of Maps
 - a brief tour of nonlinear dynamics
 - an extended example: the logistic map
 - how to plot its behavior
 - initial conditions, transients, and fixed points
 - bifurcations and attractors
 - chaos: sensitive dependence on initial conditions, λ, and all that
 - pitchforks, Feigenbaum, and universality
 - the connection between chaos and fractals
 - period-3, chaos, and the u-sequence
 - maybe: unstable periodic orbits
 chs 1 & 10 of [50] [32] (in [17]) [22] [23], ch 11 of [50] [31, 34] (latter is in [17]) [2, 25, 49]

2. Dynamics of Flows
 [50], sections 2.0-2.3, 2.8, 5, and 6 (except 6.6 and 6.8)
 - maps vs. flows
 - time: discrete vs. continuous
 - axes: state/phase space [9]
 - an example: the simple harmonic oscillator
 - some math & physics review [8]
 - portraying & visualizing the dynamics [9]
 - trajectories, attractors, basins, and boundaries [9]
 - dissipation and attractors [42]
 - bifurcations
• how sensitive dependence and the Lyapunov exponent manifest in flows
• anatomy of a chaotic attractor:
 – stretching/folding and the un/stable manifolds
 – fractal structure and the fractal dimension
 – unstable periodic orbits
 – shadowing
 – maybe: symbol dynamics

3. Tools

• ODE solvers and their dynamics
• maybe: PDE solvers
• Poincaré sections
• stability, eigenstuff, un/stable manifolds and a bit of control theory
• embedology
• maybe: calculating Lyapunov exponents and fractal dimensions

4. Applications

• prediction
• filtering
• control
• communication
• classical mechanics
• music, dance, and image

References

References [1, 3, 4, 13, 15, 17, 28, 37, 50, 53] are in the CSSS library.

More Resources:

www.cs.colorado.edu/~lizb

amath.colorado.edu/faculty/jdm/faq.html

www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/index.html