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Abstract. In this paper, we explain the social foraging behavior of
E. coli and M. xanthus bacteria and develop simulation models based
on the principles of foraging theory that view foraging as optimization.
This provides us with novel models of their foraging behavior and with
new methods for distributed nongradient optimization. Moreover, we
show that the models of both species of bacteria exhibit the property
identified by Grunbaum that postulates that their foraging is social in
order to be able to climb noisy gradients in nutrients. This provides a
connection between evolutionary forces in social foraging and distrib-
uted nongradient optimization algorithm design for global optimization
over noisy surfaces.
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1. Introduction

Natural selection tends to eliminate animals with poor foraging
strategies (methods for locating, handling, and ingesting food) and favor
the propagation of genes of those animals that have successful foraging
strategies, since they are more likely to enjoy reproductive success (they
obtain enough food to enable them to reproduce). After many generations,
poor foraging strategies are either eliminated or shaped into good ones
(redesigned). Logically, such evolutionary principles have led scientists in
the field of foraging theory to hypothesize that it is appropriate to model
the activity of foraging as an optimization process: a foraging animal takes
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actions to maximize the energy obtained per unit time spent foraging, in the
face of constraints presented by its own physiology (e.g., sensing and cogni-
tive capabilities) and environment (e.g., density of prey, risks from pred-
ators, physical characteristics of the search area). Evolution has balanced
these constraints and essentially engineered what is sometimes referred to
as an optimal foraging policy (such terminology is especially justified in
cases where the models and policies have been ecologically validated). Opti-
mization models are also valid for social foraging where groups of animals
communicate to cooperatively forage.

Foraging can be modeled as an optimization process where an animal
seeks to maximize the energy obtained per unit time spent foraging. We
begin by overviewing the relevant research in foraging theory, foraging by
communicating organisms (social foraging) which sometimes operate in
swarms, and the relevance of these areas to optimization. Next, we provide
a brief literature overview of the area of bacterial foraging as it forms the
biological foundation for this paper.

Foraging theory is described in Ref. 1. Animal behavior, including for-
aging theory and its ecological validity is discussed in Ref. 2 and the
behavioral ecology of finding resources is discussed in Ref. 3. The view that
social foraging evolved for improving climbing of noisy gradients of nutrient
resources is introduced in Ref. 4. Group behavior of organisms is discussed
in the areas of swarm intelligence and artificial life (Refs. 5–8). Ant colony
optimization is an optimization method based on foraging in ant colonies
and is discussed in Ref. 5 (the discussion on the Argentine ants was taken
from Ref. 9). There, the focus is on biomimicry for solution of combina-
torial optimization algorithms (e.g., shortest path algorithms). An overview
of the biology and behavioral ecology of swarms is given in Ref. 10. A
relevant book on self-organization in biological systems is Ref. 11, and this
book discusses also foraging of several types of organisms, synchronization
of fire fly flashing, and other types of self-organization properties of groups
of organisms (e.g., construction of structures such as honeycombs).

In this paper, we adopt the optimal foraging theory perspective in for-
mulating our computer simulation models. We validate the models and
show that the principle of climbing noisy gradients introduced in Ref. 4 is
valid for both models and species of bacteria, something that has not been
done in the literature (e.g. in Refs. 12–14).

The description of the biological details of the E. coli bacteria and their
motile behavior in this paper was taken from Refs. 15–21. Pattern forma-
tion in E. coli and S. typhimurium is discussed in Refs. 22–27; a mathemat-
ical swarm model and simulations are provided in Ref. 25. An overview of
tactic responses that was used to explain the motile behavior of bacteria
other than E. coli is given in Ref. 26.
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Motile behavior of bacterial swarms of M. xanthus and some related
bacteria are described in Refs. 26 and 28–30. A swarm motility model for
M. xanthus that is based on a high-frequency gene mutation called the ‘‘Pied
piper model’’ is given in Refs. 31–32; computer simulations of some aspects
of this model are given in Ref. 32. Simulations of myxobacteria based on a
stochastic cellular automata approach are described in Refs. 13–14.

Finally, we note that the conjugation of bacteria has been modeled in
genetic algorithms and used for optimization (Ref. 33). There, taxes and
foraging were not considered, just the particular mechanism of sex for gene
transfer and how this impacts the optimization process of the genetic
algorithm.

Here, our models for the social foraging are different from past ones.
For example, we model more details of the social foraging of E. coli than
in Ref. 12 (e.g., the effect of nutrient concentration on intercell communi-
cations). For M. xanthus, we model all aspects of the life cycle of the cell,
unlike in Refs. 13–14 where only certain aspects are considered. Moreover,
we provide links between the two models via showing that they both illus-
trate the Grunbaum concept of climbing noisy gradients.

The optimization methods introduced in this paper can be classified as
distributed nongradient optimization methods. While genetic algorithms can
solve similar optimization problems, their structure and operation is quite
different. A good introduction to deterministic nongradient methods for
optimization is given in Refs. 34–35. There are a variety of relevant optimiz-
ation methods in the literature.

Here, we create simply optimization models of the social foraging of
two species of bacteria. While, just like in Ref. 12, there is potential for
application to engineering problems, and there may be benefits over existing
optimization methods, it is beyond the scope of this paper to prove that this
is the case (e.g., via theoretical convergence analysis or simulation bench-
mark studies). Indeed, there is ongoing research that is studying this now.

2. E. Coli: Optimization Model and Simulation Results

2.1. Modeling

2.1a. Foraging Theory. Animals search for and obtain nutrients in a
way that maximizes the ratio E�T (where E is the energy obtained and T is
the time spent foraging) or maximizes the long-term average rate of energy
intake. Evolution optimizes the foraging strategies, since animals that have
poor foraging performance do not survive.

Generally, a foraging strategy involves finding a patch of food (e.g.,
group of bushes with berries), deciding whether to enter it and search for
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food, and when to leave the patch. There are predators and risks, energy
required for travel, and physiological constraints (sensing, memory, cogni-
tive capabilities). Foraging scenarios can be modeled and optimal policies
can be found using, for instance, dynamic programming. Search and opti-
mal foraging decision-making of animals can be broken into three basic
types: cruise (e.g., tunafish, hawks), saltatory (e.g., birds, fish, lizards, and
insects), and ambush (e.g., snakes, lions). In a cruise search, the animal
searches the perimeter of a region; in an ambush, it sits and waits; in salta-
tory search, an animal typically moves in some directions, stops or slows
down, looks around, and then changes direction (it searches throughout a
whole region).

Some animals forage as individuals and others forage as groups. While
to perform social foraging an animal needs communication capabilities, it
can gain advantages in that it can exploit essentially the sensing capabilities
of the group, the group can gang-up on large prey, individuals can obtain
protection from predators while in a group, and in a certain sense the group
can forage with a type of collective intelligence. Social foragers include
birds, bees, fish, ants, wildbeasts, and primates. Note that there is a type of
cognitive spectrum where some foragers have little cognitive capability and
other higher life forms have significant capabilities (e.g., compare the capa-
bilities of a single ant with those of a human). Generally, endowing each
forager with more capabilities can help them succeed in foraging, both as
an individual and as a group. From an engineering perspective, both ends
of such a spectrum are interesting.

2.1b. Chemotactic Behavior of E. coli. Here, we consider the foraging
behavior of E. coli, which is a common type of bacteria (it lives in your gut)
with a diameter of 1 µm and a length of about 2 µm, and which under
appropriate conditions can reproduce (split) in 20 min. Its ability to move
comes from a set of up to six rigid 100–200 rps spinning flagella, each driven
by a biological motor. An E. coli bacterium alternates between running (at
10–20 µm�sec, but they cannot swim straight) and tumbling (changing
direction). When the flagella rotate clockwise (counterclockwise), they oper-
ate as propellers and hence an E. Coli may run or tumble.

Chemotactic Actions:

(A1) If in neutral medium, alternate tumbles and runs⇒ search.
(A2) If swimming up a nutrient gradient (or out of noxious sub-

stances), swim longer (climb up nutrient gradient or down nox-
ious gradient)⇒ seek increasingly favorable environments.

(A3) If swimming down a nutrient gradient (or up noxious substance
gradient), then search⇒ avoid unfavorable environments.
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In this way, it can climb up nutrient hills and at the same time avoid
noxious substances. The sensors it uses are receptor proteins which are very
sensitive, and overall there is a high gain (i.e., a small change in the concen-
tration of nutrients can cause a significant change in behavior). The sensor
averages sensed concentrations and computes a time derivative. This is
probably the best-understood sensory and decision-making system in
biology (it is understood and simulated at the molecular level).

Bacteria are often killed and dispersed and this can be viewed as part
of their motility. Mutations in E. coli affect, e.g., the reproductive efficiency
at different temperatures, and occur at a rate of about 10−7 per gene and
per generation. E. coli occasionally engage in a type of sex called conju-
gation that affects the characteristics of a population of bacteria. There are
many types of taxes that are used by bacteria. For instance, some bacteria
are attracted to oxygen (aerotaxis), light (phototaxis), temperature (thermo-
taxis), or magnetic lines of flux (magnetotaxis). Some bacteria can change
their shape and number of flagella based on the medium to reconfigure so
as to ensure efficient foraging in a variety of media.

E. coli and S. typhimurium can form intricate stable spatio-temporal
patterns in certain semisolid nutrient media. They can eat radially their way
through a medium if placed together initially at its center. Moreover, under
certain conditions, they will secrete cell-to-cell attractant signals so that they
will group and protect each other. These bacteria can swarm.

2.1c. Bacterial Swarm Foraging for Optimization. Here, the basic goal
is to find the minimum of J(θ ), θ∈Rp, when we do not have the gradient
∇ J(θ ). Suppose that θ is the position of a bacterium, and J(θ ) represents
an attractant-repellant profile; i.e., it represents where nutrients and noxious
substances are located, so JF0, JG0, JH0 represent the presence of
nutrients, a neutral medium, and the presence of noxious substances,
respectively.

Let

P( j, k, l )G{θ i( j, k, l ) � iG1, 2, . . . , S}

represent the positions of each member in the population of the S bacteria at
the jth chemotactic step, kth reproduction step, and lth elimination-dispersal
event. Let J(i, j, k, l) denote the cost at the location of the ith bacterium
θ i( j, k, l )∈Rp. Let Nc be the length of the lifetime of the bacteria as meas-
ured by the number of chemotactic steps. To represent a tumble, a unit
length random direction, say φ ( j ), is generated; then, we let

θ i( jC1, k, l )Gθ i( j, k, l )CC (i)φ ( j ),
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so that C (i)H0 is the size of the step taken in the random direction specified
by the tumble. If at θ i( jC1, k, l ) the cost J(i, jC1, k, l ) is better (lower) than
at θ i( j, k, l ), then another chemotactic step of size C (i) in this same direction
will be taken and repeated up to a maximum number of steps Ns .

Let dattract be the depth of the attractant released by the cell, and let
wattract be a measure of the width of the attractant signal. How does a cell
repel another one? Via local consumption, and cells are not food for each
other. Let hrepellantGdattract be the height of the repellant effect (magnitude),
and let wrepellant be a measure of the width of the repellant. Then, we may
use functions Ji

cc (θ ), iG1, 2, . . . , S, to model the cell-to-cell signaling via an
attractant and a repellant. Let

Jcc (θ )G ∑
iG1

S

Ji
ccG ∑

iG1

S

�−dattract exp�−wattract ∑
jG1

p

(θ jAθ i
j)

2��
C ∑

iG1

S

�hrepellant exp�−wrepellant ∑
jG1

p

(θ jAθ i
j)

2�� ,

where θG[θ1 , . . . , θp ]
T is a point on the optimization domain. The

expression of Jcc (θ ) implies that its value does not depend on the nutrient
concentration at position θ . Actually, it is reasonable to assume that the
depth of the chemical secreted by a bacterium is affected by environment;
i.e., a bacterium with high nutrient concentration will secret stronger
attractant than one with low nutrient concentration. In our model, we use
the function Jar (θ ) to represent the environment-dependent cell-to-cell sig-
naling. Let

Jar (θ )G exp(MAJ(θ ))Jcc (θ ),

where M is a tunable parameter. Then, for swarming, we will consider mini-
mization of J(i, j, k, l )CJar (θ i( j, k, l )), so that the cells will try to find nutri-
ents, avoid noxious substances, and at the same time try to move toward
other cells, but not too close to them.

Note the function Jar (θ i( j, k, l )) implies that, with M being constant,
the smaller J(θ ), the larger Jar (θ ) and thus the stronger attraction, which is
intuitively reasonable. In tuning the parameter M, it is normally found that,
when M is very large, Jar (θ ) is much larger than J(θ ) and thus the profile
of the search space is dominated by the chemical attractant secreted by E.
coli. On the other hand, if M is very small, then Jar (θ ) is much smaller than
J(θ ) and it is the effect of the nutrients that dominates. In Jar (θ ), we choose
the scaling factor of Jcc (θ ) as in exponential form, but this is not the only
choice. Other functions which decrease monotonically and approach zero
asymptotically are feasible candidates, though some additional constraints
may be required.



JOTA: VOL. 115, NO. 3, DECEMBER 2002 609

After Nc chemotactic steps, a reproduction step is taken. Suppose there
are Nre reproduction steps. For reproduction, the healthiest bacteria (the
ones that have the lowest accumulated cost over their lifetime) split, and
then we kill the same number of unhealthy ones (hence, we get a constant
population size). Let Ned be the number of elimination-dispersal events and,
for each elimination-dispersal event, each bacterium in the population is
subjected to elimination-dispersal (death, then random placement of a new
bacterium at a random location on the optimization domain) with prob-
ability ped. Is this a biologically valid model? No, not completely. The objec-
tive is simply to capture the gross characteristics of chemotactic hill-
climbing and swarming.

2.2. Simulation Results. As an illustrative example, we use our model
to try to find the location with highest nutrient concentration on a certain
map and show the results on Fig. 1. The nutrient map is constructed by
summing up several Gaussian functions with different magnitude and vari-
ance. The contour plots of the map are shown in the figure, with the best

Fig. 1a. Foraging of E. coli with reproduction, elimination and dispersion: Contour plot
before elimination and dispersion.
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nutrient concentration located at [15, 5]T. In this example, we include repro-
duction, elimination, and dispersion of E. coli and demonstrate the roles
which these processes play in the E. coli evolution (Ref. 12). In the simu-
lation, we choose NreG4 and NedG2, which means that, during the simu-
lation, E. coli evolve four generations and experience elimination and
dispersal event once, respectively.

Initially, the bacteria are distributed randomly over the nutrient map.
In Fig. 1a, we see that the first generation of E. coli are moving around to
search for places with a better nutrient concentration, as shown by those
curvy trajectories on the contour plot. In the second generation, almost all
the bacteria have found such places, though all of them are not global opti-
mal points. With evolution, all in the third generation find the position on
the map with the best nutrient concentration, and the fourth generation
stays there firmly. Simulation results in Fig. 1b are a continuation of Fig.
1a, but an elimination and dispersal process happens in between. In Fig. 1b,
some bacteria of the first generation appear in some bad positions. But after

Fig. 1b. Foraging of E. coli with reproduction, elimination and dispersion: Contour plot after
elimination and dispersion.
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reproduction, almost all of the E. coli locate the global optimal position
quickly and stay there from the second generation.

In the above example, we assume that the nutrient map is noise-free.
But in reality, the environment is always noisy, which generally will prevent
the individual bacterium from finding the optimal position. Next, with
another simple example, we will illustrate that, by secreting chemicals, E.
coli may swarm and perform social foraging. As a result, the bacteria may
overcome the noise trap and pull each other into the optimal position. This
was first discussed by Grunbaum (Ref. 4). Now, we will try to validate it
by simulation.

In this case, we use a simple noise-contaminated quadratic nutrient
profile with contour map shown on Fig. 2. The profile has the best nutrient
concentration at [15, 15]T. The simulation is run 300 steps. Figure 2a demon-
strates the results when no chemical-attractant-induced swarming is present.
Specifically, it shows the positions of the bacteria on certain chemotactic
steps, where each C in the plots represents a bacterium. Obviously, lots of

Fig. 2a. Foraging of E. coli in a noisy environment: Bacteria positions at different chemotac-
tic steps (without cell-to-cell attractant).
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Fig. 2b. Foraging of E. coli in a noisy environment: Bacteria positions at different chemotac-
tic steps (with cell-to-cell attractant).

bacteria fail to find the optimal point even at step 300. Figure 2b demon-
strates the results when attractant exists. It is clear that, by performing
social foraging, E. coli have better chance in locating the optimal point in
a noisy environment, which validates the Grunbaum idea.

3. M. xanthus: Optimization Model and Simulation Results

3.1. Modeling

3.1a. Biology of M. xanthus Social Behavior. Myxococcus xanthus,
one type of myxobacterium that lives in soil and on leaves on forest floors,
is a gliding bacterium that can move only on solid surfaces (it cannot swim
in a liquid medium). When a single bacterium is isolated in an appropriate
nutrient-rich environment, it moves forward and backward and it seems to
make no progress. In other environments, it will more frequently move in
one direction than in the other so there can be net movement. As it moves,
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it lays down a slime trail. It seems that the slime may help it to stick to a
solid so it can move, and it seems to grease its path to make movements
easier. The mechanisms for gliding are not yet well understood. If in its
movements the bacterium encounters a trail (perhaps of another bacterium),
it will tend to get on that trail, and it tends to move faster on a previously
laid trail than when it has to lay its own trail. Hence, when you observe the
motile behavior of the bacteria you see that the slime secreted by each bac-
terium tends to attract other bacteria to follow it. The tendency of one cell
to prefer to follow the slime trails by previously passing cells results in one
type of mechanism for intercellular cohesion in that it will tend to keep
bacteria together since they will tend to follow each other.

This slime-trail following mechanism is not the only means to achieve
cell-cell communication in M. xanthus. Complex intercellular chemical sig-
naling in Myxobacteria can cause significant changes in motile behavior and
activity of the cells. For instance, under certain conditions, they engage in
social foraging (vegetative swarms) where the moving swarm releases com-
plex mixtures of chemicals to help digest nutrients and other species of bac-
teria that are their prey. Analysis has shown that such group foraging can
increase the energy intake per unit time for each cell over the case when a
cell forages alone; hence, social foraging provides a selective advantage.

Current evidence seems to indicate that single cells are not chemotactic
(see Ref. 36), even though some evidence has suggested that a single cell can
avoid repellants and exhibit a type of kinesis; e.g., when a M. xanthus enters
a group of E. coli (a prey), it stops moving until all of the E. coli are
digested. Instead, some argue that a group-chemotactic mechanism is poss-
ible (see review in Refs. 26 and 36). For this, some complex types of sig-
naling may be present where each cell somehow learns something about the
quality of life of the other bacteria in the swarm and move in the direction
of the one (or the ones) who are doing the best. But the sensing mechanisms
are not well understood. One theory could be that, when a cell is finding
lots of food, a special chemical is released that every other cell is chemotactic
toward. This would tend to pull the cells together into a feeding frenzy that
results in even more efficient energy acquisition than if the cell were alone.
Now, if a cell is on the edge of the swarm so that, due to chemical diffusion,
its attraction to the swarm is lower than for cells in the middle, then it may
act to move faster away from the swarm. If the cells always try to stay with
their neighbors, then fast moving edges of the swarm could pull the group
in different directions (or perhaps a split could occur).

For M. xanthus, when nutrients are in short supply, hundreds of thou-
sands of the cells aggregate into a multicellular structure called a mound,
which is a special type of fruiting body. In the formation of the fruiting
body, some cells die and others turn into spores (thick-coated spherical cells
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resistant to heat, desiccation, and long-term starvation). The M. xanthus
fruiting body is visible by the naked eye and can be seen as yellow, red, or
green specks on decaying leaves or bark of trees. The entire fruiting body
can be picked up by wind, water, or an animal that passes by and can be
transported to destinations more suitable for establishing a new colony.
Hence, from one perspective, motility may be viewed as being aided by
other environmental factors, the ones called elimination and dispersal events
earlier.

3.1b. Stochastic Cellular Automaton Model. In our model, both the
spatial and temporal domains are discretized with a regular grid. We assume
that each bacterium occupies one grid point at any time point and that it
moves with a constant speed of one cell per each time step. The spatial
domain is a three-dimensional space Ω∈R3 with a uniform NxBNyBNz

grid units, where Nx , Ny , Nz are the number of grid partitions in the x, y, z
directions, respectively. Ω is a closed space so that no bacteria may escape
from it. If a bacterium reaches the boundary of Ω, it either moves along it
or back to the interior of Ω, determined by the rules listed below.

At the beginning of our simulation, all bacteria are randomly distrib-
uted on the ground of Ω [i.e., on the (x, y) plane]. They keep moving on
the ground layer until they begin to form a fruiting body, when they will
try to climb onto each other and form a multilayer stack of cells that com-
prise the fruiting body. Since M. xanthus is a kind of soil bacteria, we
assume that nutrients, if any, are available only on the ground.

With time passing by, different bacteria may be in different states.
Specifically, depending on which life cycle it is in, a bacterium may secrete
different chemicals such as slime, swarming attractant, and fruiting body
attractant. It may also change into a spore or die. We list the rules that
specify the behaviors of each bacterium as follows:

(B1) Each bacterium moves at a fixed speed, one cell per time step.
(B2) If and only if a bacterium moves along the ground, it does lay

down slime. Each deposition amount of slime is fixed and the
slime evaporates at a constant rate.

(B3) Each bacterium will secrete swarming attractant only when the
average nutrient concentration obtained over the previous m
steps is higher than a certain threshold τ1.

(B4) Each bacterium will secrete fruiting body attractant only when
the average nutrient concentration it obtained over the previous
m steps is lower than a threshold τ2 , τ2Fτ1 .

(B5) To determine its next movement, a bacterium detects its neigh-
boring grid points. The detection continues until the bacterium
changes into a spore or dies.
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(B6) If a bacterium has secreted a fruiting body attractant for n steps,
it either dies or changes into a spore. A dead bacterium is
removed from the space. A spore cannot move around, secrete
chemoattractant, or lay down slime; it just remains stationary
and occupies a space.

(B7) Neither a bacterium nor a spore may float in the air, but one
bacterium may climb on top of another. No bacteria or spores
may occupy the same grid at the same time point.

To explain these rules in more detail, we define some parameters and
variables first. For a simulation with a population of N bacteria and T time
steps, we employ the definitions below:

P(n, t), the coordinate of the grid point occupied by the nth bacterium
at time step t;

Ssa (n, t), the swarming attractant-secreting state of the nth bacterium
at time step t, with nG1, . . . , N, tG1, . . . ,T, and

Ssa (n, t)G�
1, if the nth bacterium is secreting

swarming attractant,
0, if the nth bacterium is not secreting

swarming attractant.

Sfa (n, t), the fruiting-body attractant-secreting state of the nth bac-
terium at time step t, with nG1, . . . , N, tG1, . . . , T, and

Sfa (n, t)G�
1, if the nth bacterium is secreting

fruiting body attractant,
0, if the nth bacterium is not secreting

fruiting body attractant.

We model the effect of the swarming attractant, fruiting body attract-
ant, and nutrient consumption of bacteria as Gaussian functions with differ-
ent magnitude and variance. Let p∈Ω be the 3D coordinate of a gridpoint.
We employ the definitions below:

Jsa ( p, p0), the attracting effect of a swarming attractant at position p
produced by a bacterium at position p0, with dsa and wsa

being the magnitude and diffusion of the swarming attract-
ant, and

Jsa ( p, p0)Gdsa exp(wsa ��pAp0 ��2);

Jfa ( p, p0), the attracting effect of a fruiting body attractant at position
p produced by a bacterium at position p0 , with dfa and
wfa being the magnitude and diffusion of the fruiting body
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attractant and

Jfa ( p, p0)Gdfa exp(wfa ��pAp0 ��2);

Jc ( p, p0), the amount of nutrient consumed at position p by a
bacterium at position p0 in each bite with

Jc ( p, p0)Gdc exp(wc ��pAp0 ��2);

Jsl ( p, n, t), the deposition amount of slime at position p by the nth
bacterium at time step t, with the constant λ being the
amount of each deposition:

Jsl ( p, n, t)G�λ , if pGP(n, t),

0, if p ≠P(n, t).

Then, we have the following consequences:

JSA ( p, t)G ∑
nG1

N

Jsa ( p, P(n, t))Ssa (n, t),

which is the concentration of swarming attractant at position p and time
step t;

JFA ( p, t)G ∑
nG1

N

Jfa ( p, P(n, t))Sfa (n, t),

which is the concentration of fruiting body attractant at position p and time
step t;

JN ( p, t)GJN ( p, t0)A ∑
t′Gt0

t

∑
nG1

N

Jc ( p, P(n, t′ )),

which is the concentration of nutrient at position p and time step t, with t0
being the starting time of the simulation;

JSL ( p, t)G ∑
t′Gt0

t

∑
nG1

N

λ tAt′Jsl ( p, n, t′ ),

which is the density of the slime trail at position p and time step t;

J( p, t)GJN ( p, t)CJSL ( p, t)CJFA ( p, t)CJSA ( p, t),

which is the overall cost function at position p and time step t.
The first rule is implemented mainly for simplicity. Time-varying speed

could be added easily to the model. Biologically, the bacterium is a rodlike
cell, with the ratio of cell width to cell length being around 1�8. But for the
convenience of modeling, we assume that each bacterium takes up only two
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neighboring grid points, which indicate its head and tail, respectively,
though head or tail does not exist in biological terms (Ref. 14).

When a bacterium is moving along the ground, it deposits a fixed
amount of slime on each grid point it passed. It is observed that M. xanthus
prefers to move on slime trails. Thus, a bacterium that comes across this
slime trail tends to slide onto it and follow it. On the one hand, the slime
trail decays as time goes by. On the other hand, it can be accumulated. That
is, if several bacteria passed the same grid point, the resultant density of
slime trail at that point will simply be the sum of the individual slime trail
densities. However, we assume also that the sensing organ of a bacterium
becomes saturated at high concentration of slime trails. So, we modify the
previous expression for JSL as

JSL ( p, t)Gmin(JSL ( p, t), γ ),

where γ is the saturation density of slime trail. This means that a spot with
very high slime trail density may have a similar attracting effect to a spot
with medium slime trail density.

Besides slime, a bacterium may also secret chemoattractant under cer-
tain conditions. When the environment is rich in nutrients, M. xanthus will
perform foraging and try to find the place with highest density nutrients. A
single bacterium might get trapped in a local extremum if the environment
is noisy. But, when many of them work together, they may pull each other
into the global extremum (Ref. 4). This is realized by following the slime
trails and secreting the swarming attractant. When an environment has lim-
ited nutrients, it will be consumed by the bacteria, with the consumption
function Jc defined above. Then, more and more bacteria will get starved.
In such cases, M. xanthus begins to request the formation of a fruiting
body. This is achieved by stopping the secretion of a swarming attractant
and starting the secretion of another chemoattractant, the fruiting body
attractant. It will keep secreting this attractant until enough nutrient is
available again, it changes into a spore, or it dies.

Basically the effect of a fruiting body attractant is quite similar to that
of a swarming attractant, i.e., attracting other bacteria to swarm. But the
former purpose is to build a fruiting body instead of foraging. Moreover,
the two chemoattractants have different diffusion and strength. It is also
important to note that, although both slime and chemoattractant are chemi-
cals with attracting effects, they are different in that the chemoattractant
diffuses while the slime does not (Ref. 14).

To specify how a bacterium moves at each time step, consider Fig. 3
which shows a three-layer cubic network. The big solid black circle in the
figure represents the head of the bacterium and the small solid circle indi-
cates, in this case, where its tail is located. Thus, a bacterium is modeled as
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Fig. 3. Illustration of M. xanthus’ movement on a cubic network.

occupying two neighboring grid points and it has a specific orientation in
terms of the moving direction. Note that, in our model, we assume that
only the head position of a bacterium cannot be cooccupied, while the tail
position can be. That is, no two bacteria can have their heads at the same
position at the same time, but their tails can overlap; also a bacterium’s
head can occupy another bacterium’s tail position. Therefore, the tail is
merely used for locating the bacterium’s orientation, which is important for
determining its movement on the next time step, detailed as follows.

From Fig. 3, we can see that, for a bacterium, there are 26 neighboring
points, which are denoted by (i, j), where iG1, 2, 3, and jG0, 1, . . . , 8,
excluding the point (2, 0), which is the current location occupied by the head
of the bacterium. To decide which position to move into on the next time
step, a bacterium must be able to detect the cost values of some of its
neighboring points. Here, we assume that for a bacterium with the same
orientation as shown in Fig. 3, it can sense only the neighboring points
corresponding to the locations (i′, j ′ ), where i′G1, 2, 3 and j ′G1, . . . , 5. The
choice of the candidate next-step positions is made intuitively. Other reason-
able choice is feasible. From the view of algebra, different neighboring pos-
itions have different distances to the bacterium. For example, the distance
of (3, 8) to (2, 0) is slightly longer than that of (2, 8) to (2, 0). But this is not
regarded as an essential aspect of the problem. Thus, we simply assume that
a bacterium needs only one time step to reach any of the neighboring points.

To determine the next step movement, a bacterium simply computes
the cost values J( p, t) on these neighboring points and chooses to move to
the best one available. Note that the available best cost position may not
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always be the best cost position, since the movement of a bacterium cannot
violate the rules that we listed previously. One example is that the position
may have already been occupied by the head of another bacterium. Another
example is that forcefully moving into the best cost position may mean that
the bacterium will be floating. Here, by floating we mean a position which
has no other bacteria staying at the 3B3 neighboring points underneath. In
Fig. 3, we say that the bacterium is floating if there is no bacteria on position
(1, j ), where jG0, 1, . . . , 8. Sometimes, it may happen that none of the poss-
ible moving positions are available; i.e., they are either floating positions or
are occupied by other bacteria. Then, the bacterium will stay at its current
spot at that step. But we assume that it will turn around, i.e., change its
orientation by moving its tail, hoping that an exit may be found by such
efforts. It is also possible that all of the available positions and current spot
occupied by the bacterium become floating positions due to the movement
of other bacteria. In such a case, the only movement of the bacterium is to
drop down due to gravity, so long as it is on a layer other than the ground.

The above description is for the general case. Actually, such three-
dimensional search happens only when the bacteria are forming a fruiting
body. When the bacteria are foraging, they move only along the ground and
perform a two-dimensional search. That is, they detect only the neighboring
positions in the same layer. Again, taking the bacterium in Fig. 3 as an
example, it will compute only the positions (2, j ), jG1, . . . , 5, when it is
foraging. Of course, in this case, the positions (1, j ), jG0, 1, . . . , 8, are
meaningless.

During the formation of a fruiting body, some bacteria die and others
change into spores gradually. We assume that the probability of death is
constant. Dead bacteria are eliminated permanently. Bacteria in spore status
will not move around and respond to stimulus like chemical attractants.
Their only possible movement is dropping down due to gravity, if they are
in layers higher than the ground. Only when the spore touches the ground
and gets nutrient again can it recover.

3.2. Simulation Results. In this simulation, we used a noise-contami-
nated quadratic nutrient profile, which has the best value around the posi-
tion (0.75, 0.75) on the (x, y) plane. This nutrient profile is used in all of the
following simulations except the last one. All the simulations are run in 128
steps.

To demonstrate the effect of social foraging, we run two simulations.
In both simulations, there are 30 cells which are randomly distributed on
the (x, y) plane initially. Though in reality the number of M. xanthus in a
typical social foraging group will be on the order of hundreds of thousands
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or millions, we believe these simulations can still illustrate some character-
istics of social foraging of M. xanthus. In the first simulation, the bacteria
will not secrete any chemicals, which means that they cannot get any help
or hint from others and hence have to work independently. Therefore, this
shows us the nonsocial foraging effect, which is shown in Fig. 4a. In the
second simulation, the bacteria can both secrete the swarming attractant
and lay down the slime trails, by which they communicate with each other.
Thus, it demonstrates the result of social foraging, which is shown in Fig.
4b. As we expected, in social foraging, most cells succeeded in finding the
approximate location with the best nutrient, while those bacteria which for-
aged independently failed to achieve this.

Obviously, the success of social foraging lies in the communication
among bacteria. The communication is realized by secreting and sensing the
chemical attractant and the slime trails. Now, we compare via simulation
the individual effect of these two components, which cannot be realized in
the real world. Again, the bacteria are randomly distributed on the (x, y)
plane initially. The final swarming results are shown in Fig. 5. Comparison
of Fig. 5a and 5b shows that the simulation with only chemoattractant has
a better swarming result.

Fig. 4a. Comparison of M. xanthus swarming under different foraging: Final position of M.
xanthus without social foraging.
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Fig. 4b. Comparison of M. xanthus swarming under different foraging: Final position of M.
xanthus with social foraging.

At last, we show the whole life cycle of M. xanthus in one simulation,
with the focus on demonstrating the formation of the fruiting body. In this
simulation, we increase the number of bacteria to 150 and run 64 time steps.
Also, we change the nutrient profile into one which has its highest concen-
tration of nutrients at the center of the plane and is not contaminated by
noise. Moreover, we add the nutrient consumption function Jc into this
simulation, which we did not do in the previous simulations so that it would
not obscure the characteristics that we wanted to illustrate there. By making
these modifications, we may not only demonstrate the complete life cycle of
the bacteria, but also get a better view of the formation of a fruiting body
without being diverted by other less significant aspects in this issue. The
simulation results are shown in Fig. 6. All the plots in the figure correspond
to a different time step of the simulation. For example, Fig. 6b is for time
step 16, and so on.

At the beginning of the simulation (i.e., time step 0), there are nutrients
available on the ground and the bacteria are distributed randomly over it.
Since the highest concentration of nutrients is located around the center of
the plane, those bacteria will be moving toward there. With the time passing
by, the nutrient is soon eaten up. Thus, the bacteria get starved and begin
to form a fruiting body. They come together and climb up and down each



JOTA: VOL. 115, NO. 3, DECEMBER 2002622

Fig. 5a. Comparison of swarming results under different conditions: Social foraging with
attractant only.

Fig. 5b. Comparison of swarming results under different conditions: Social foraging with
slime trails only.
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Fig. 6a. Complete life cycle of M. xanthus: Initial status.

Fig. 6b. Complete life cycle of M. xanthus: Formation of fruiting body.
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other, as shown in Fig. 6b. During the formation of the fruiting body, some
bacteria change into spores and some die. The fruiting body reaches a cer-
tain height(in this case, the maximum number of layers is six during the
whole cycle), then its shape does not change much any more, as shown in
Fig. 6c. In our simulation, nutrients are made available again in step 44,
when the germination process begins. After that, the fruiting body begins
to collapse. Figure 6d, which corresponds to step 64, shows again that
almost all the bacteria touch the ground, recover from spores, and move
around to search for nutrient. The simulations give us some basic ideas
about the life cycle of M. xanthus.

From all of the above simulations, we can see that, with social foraging,
the bacteria can overcome noisy nutrient environments and pull each other
into the most nourishing places, which can be very important in real life
since it increases the chance of survival. The simulations capture this
important feature. Note that, in Fig. 4b, the bacteria did not really swarm
at the position (0.75, 0.75), which is the position with highest concentration
of nutrient on the clean nutrient map. This may be due to the fact that the
addition of noise changes the apparent best nutrient value, and thus its
corresponding position.

But the individual effects of the chemoattractant and slime trails is not
quite as convincing since their characteristics have not been studied in recent

Fig. 6c. Complete life cycle of M. xanthus: Fruiting body formed.
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Fig. 6d. Complete life cycle of M. xanthus: Fruiting body collapsed.

papers. Slime trails are readily observable and their effects are significant.
But this does not exclude the possibility of the chemoattractant having the
same significance, if not more. In the simulation, we assume that the attract-
ant effect is diffusing through the whole nutrient plane, that is, every grid
point on the ground of the space Ω. While the effect of the slime trails is
assumed to exist only on certain grid points once passed by some bacteria
instead of on the whole plane, this assumption may bias the result. More-
over, lacking a relevant biological study, we have to set the attracting mag-
nitude of the attractant and slime trails arbitrarily, which may also
contribute to the observed simulation result.

In summary, this model captures some important aspects of M. xan-
thus’ life. It also gives some ideas about which experiments would help us
understand the life cycle of M. xanthus.

4. Conclusions

The main conclusions that can be drawn from this study include:

(i) A continuous optimization model is appropriate for E. coli and
a stochastic cellular automaton is appropriate for M. xanthus.
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(ii) The models of social foraging are also distributed nongradient
optimization methods and each has the potential to be useful in
practical optimization problems (e.g., engineering design, online
distributed optimization in distributed computing and coopera-
tive control).

(iii) Grunbaum’s principle of social foraging for the purpose of climb-
ing noisy gradients emerged for two species of bacteria, even
when very different modeling�optimization methods were used
(i.e., a continuous optimization model and a 3D stochastic cellu-
lar automaton).

There are a wide variety of fruitful research directions. There are ways
to improve the models (e.g., modeling more dynamics of cell motion). Other
species of bacteria could be studied, and indeed it would be interesting to see
if Grunbaum’s principle works for others species of social foraging animals.
Moreover, it remains to be seen how practically useful the optimization
algorithms are for engineering optimization problems. Claims of practical
utility of any optimization algorithm are difficult to make; they depend on
the theoretical properties of the algorithm, theoretical and empirical com-
parisons to other methods, and extensive evaluation on many benchmark
problems and real-world problems.
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