Evaluating energy technologies against climate targets

Jessika E. Trancik Institute for Data, Systems, and Society, MIT Santa Fe Institute

July 29, 2016 Global Sustainability Summer School Santa Fe Institute

Today's agenda

- Role of energy systems in climate change mitigation
- Evaluating energy technologies against climate targets

Lecture 2 outline: evaluating energy technologies

- Technology innovation dynamics
- Evaluating technologies against demand patterns

U.S. carbon intensity target

Trancik, *Nature*, 2014
Trancik, Cross-Call, *ES&T*, 2013

Trancik, *Nature*, 2014
Trancik, Cross-Call, *ES&T*, 2013

Cost-carbon curve

Trancik, *Nature*, 2014
Trancik, Cross-Call, *ES&T*, 2013

Cost and carbon intensity of energy (electricity)

Change in energy technology costs over time

Trancik, Brown, Jean, Kavlak, Klemun, Edwards, McNerney, Miotti, Mueller, Needell, Technical Report, 2015

Determinants of the rate of technology innovation

Are technology costs changing in regular ways?

If so, what equations describe these changes?

How might costs change in future?

Performance curves

$$c(x) \sim x^{-\alpha}$$

$$PR = 2^{-\alpha}$$

Cumulative Production

Series	Years	Range
Coal plants	1902-2006	$6.1 \times 10^5 - 3.1 \times 10^8 \text{ kW}$
Ethanol	1980-2004	$3.4 \times 10^6 - 2.7 \times 10^8 \text{ m}^3$
PV cells	1975-2003	$5.4 \times 10^2 - 2.2 \times 10^6 \text{ kW}$
Transistors	1968-2005	$2.0 \times 10^9 - 1.1 \times 10^{19}$

Evaluating competing models

Nagy, Farmer, Bui, Trancik, PLoS One, 2013

Nagy, Farmer, Bui, Trancik, PLoS One, 2013

Limits to tech improvement: commodity cost floors

Technology design and rate of improvement

d=number of component dependencies; n=number of components

Forecasting cost improvement under Paris pledges

Trancik, Brown, Jean, Kavlak, Klemun, Edwards, McNerney, Miotti, Mueller, Needell, Technical Report, 2015

Forecasting cost improvement under Paris pledges

Trancik, Brown, Jean, Kavlak, Klemun, Edwards, McNerney, Miotti, Mueller, Needell, Technical Report, 2015

Evaluating technologies against demand patterns

- Stationary energy storage
- Electric vehicles

Evaluating stationary storage technologies

Balancing the cost and benefit of storage

Storage system sized to maximize chi

Evaluating stationary storage technologies

Braff, Mueller, Trancik, Nature Climate Change 2016

Evaluating technologies against demand patterns

- Stationary energy storage
- Electric vehicles

Today's agenda

- Role of energy systems in climate change mitigation
- Evaluating energy technologies against climate targets