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Abstract
Robust critical systems are characterized by power laws which occur over a broad range of conditions. Their robust behaviour has been

explained by local interactions. While such systems could be widespread in nature, their properties are not well understood. Here, we

study three robust critical ecosystem models and a null model that lacks spatial interactions. In all these models, individuals aggregate in

patches whose size distributions follow power laws which melt down under increasing external stress. We propose that this power-law

decay associated with the connectivity of the system can be used to evaluate the level of stress exerted on the ecosystem. We identify

several indicators along the transition to extinction. These indicators give us a relative measure of the distance to extinction, and have

therefore potential application to conservation biology, especially for ecosystems with self-organization and critical transitions.
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INTRODUCTION

The idea that spatial patterns could provide important indicators of the level of

degradation of spatially organized ecosystems is gaining increased attention (Rietkerk

et al. 2004; Oborny et al. 2005; Manor & Shnerb 2008; Guttal & Jayaprakash 2009;

Scheffer et al. 2009). Many ecosystems show spatial organization, where patches of

different shapes, sizes and species compositions coexist. A well-known example is the

patchiness of the vegetation cover in drylands. The fact that this spatial organization

changes in response to external stress led to the idea that observing the spatial structure

of an ecosystem could provide information about the level of stress exerted on the

ecosystem and about its level of degradation (von Hardenberg et al. 2001; Rietkerk et al.

2004; Kéfi et al. 2007b).

The patch size distributions of vegetation in arid ecosystems have been found to

follow approximate power laws over a wide range of environmental conditions (e.g.

mean annual rainfall; Scanlon et al. 2007). In these ecosystems, the number of

vegetation patches appears as a straight line when plotted as a function of their size on

logarithmic scales. These ecosystems exhibit many small patches and progressively rarer

large ones, and they show no characteristic patch size. However, arid ecosystems that

experienced high grazing pressures show a deficiency in large patches compared with

power laws (Kéfi et al. 2007b). Therefore, it has been proposed that deviations from

pure power laws towards fewer large patches could serve as indicators of the proximity

to a desertification threshold (Kéfi et al. 2007b). Despite the potential practical

relevance of patch size distributions for the management and preservation of spatially

organized ecosystems, the ecological mechanisms underlying the wide emergence

of power laws and their deviations are not yet fully understood.

Power laws have been observed in a wide range of physical and biological systems

(e.g. Bak et al. 1988; Brown et al. 2002; Solé & Bascompte 2006). The number of links in

mutualistic and metabolic networks, the size of the clusters of ant nests, the size of

vegetation patches, the population of cities, the intensities of earthquakes, the size of

fires, the number of connections of internet routers, for example, are quantities whose

distributions tend to be power laws (Stauffer & Aharony 1985; Jordano et al. 2003;

Goldstein et al. 2004; Newman 2005; Vandermeer et al. 2008; White et al. 2008;

Bascompte 2009; Clauset et al. 2009). The ubiquitous occurrence of power laws in both

natural and man-made phenomena has long raised questions about their dynamical

origin (Newman 2005).

In physics, power laws are known to emerge in the proximity of continuous phase

transitions (also called second-order phase transitions) in closed systems (Stauffer &

Aharony 1985; Solé & Bascompte 2006). Examples of such transitions are

ferromagnetic and percolation transitions. At the critical point, i.e. the point at which

the phase transition occurs, power laws appear, leaving the system with no

characteristic scale (Newman 2005). The parameters of the system have to be finely

tuned to produce these scale-free patterns because the power laws occur only at (or

very close to) the percolation point. Because these power-law patterns are so dependent

on precise parameter values, such phase transitions are an unlikely explanation for the

widespread presence of power laws in real systems.

As an alternative explanation for the ubiquity of these patterns, Bak et al. (1988)

proposed that some open systems spontaneously evolve to the critical point at which

power laws emerge regardless of their parameter values. This phenomenon is referred

to as self-organized criticality. A classical and well-known example is the forest fire

model of Drossel & Schwabl (1992). Through time, the forest fire model self-organizes

to a state in which the distribution of sizes of fires follows a power law (in other terms

the systems leads itself to the critical point). Self-organized criticality requires the active

propagation of a disturbance, such as a fire, and the clear separation between the

temporal scales of disturbance and recovery (Pascual & Guichard 2005). Thus, this

concept is potentially relevant to other biological systems with local birth and death

processes, including infectious diseases with intermittent epidemics (Rhodes &

Anderson 1996), but not to all of them.

Another explanation for the widespread observation of power laws in ecological

systems, and the focus of this article, was proposed by Pascual and colleagues (Pascual

et al. 2002; Roy et al. 2003). They showed that, in stochastic spatial systems with local

interactions, distributions resembling power laws can arise over a range of

environmental conditions without the typical separation of time scales of self-

organized criticality (Wootton 2001; Pascual et al. 2002). More specifically, in these

systems power laws arise at a percolation point, where the typical size and

connectedness of the system change drastically. However, an important distinction

between these systems and classical critical systems is that when the system moves away

from that percolation point towards extinction, deviations from power law occur less

rapidly than expected for classical percolation because of the presence of the local

interactions (Roy et al. 2003). This phenomenon of slower decay, also influenced by the

finite size of the systems, is referred to as �robustness� here and would make the

observation of patterns that resemble power laws more likely in nature. This type of

behaviour may apply to a variety of ecosystems recently described in the ecological

literature (e.g. Pascual et al. 2002; Kéfi et al. 2007b; Scanlon et al. 2007; Solé 2007;

Vandermeer et al. 2008). However, the properties of these systems, referred to as

�robust critical systems�, are still poorly studied.

We should note that many processes, including the Yule process, coherent noise

mechanisms and stochastic processes such as stochastic multiplicative processes (Levy

& Solomon 1996; Sornette 1998; Manor & Shnerb 2009) have been proposed as

possible mechanisms capable of generating power-law distributions in nature (see

Mitzenmacher 2003; Newman 2005 for reviews). However, we are specifically

interested here in stochastic spatial systems with local interactions that are able to

generate power-law like patterns in the size distribution of patches. Among all the
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possible processes, robust criticality appears especially relevant because it is able to

generate robust power-law like patterns, likely to be observed in nature, also for systems

with no clear separation of time scales (Guichard et al. 2003; Kéfi et al. 2007b; Scanlon

et al. 2007; Solé 2007).

This paper specifically addresses the complete trajectory of spatial patterns in the

transition between the percolation point, where power laws emerge, and extinction in

various robust critical systems. We ask: how do spatial patterns in these systems vary as

a function of external conditions? More specifically, do they all show the same

behaviour in their deviation from power laws towards extinction as observed in arid

ecosystems?

We address the above questions by comparing simulation results from three

ecological models: a vegetation model of arid ecosystems which includes local

facilitation, a mussel bed model which includes both local facilitation and disturbance

and a predator–prey model with local antagonistic interactions. All three models exhibit

spatial self-organization, with clusters that continually form and disappear, and the size

distributions of these clusters exhibit power law (Pascual et al. 2002). We further

consider a null model that lacks any sort of local interaction (i.e. in which no underlying

dynamical process governs the spatial organization of the system) for comparison.

We describe the full range of patterns that emerge in these models when a �stress-

factor� becomes progressively stronger. Our study is motivated by the identification of

indicators of proximity to extinction based on these distributions. Moreover, we

compare this pathway to extinction to that of the null model to determine the role of

local interactions in the existence of such indicators.

METHODS

All the models are asynchronous, stochastic cellular automata (also called interacting

particle systems; Durrett & Levin 1994). Space in these systems consists of a grid of

cells each of which, at any given time, can be in one of different possible states. At

each time step, the status of each cell can change with a rate that determines the

probability per unit time of the different events (or dynamical rules). Except for the

null model, these dynamical rules depend on the state of the neighbourhood, defined

as the four nearest neighbours. We briefly review here the dynamical rules of the four

models. See Appendix S1; Pascual et al. (2002), Guichard et al. (2003) and Kéfi et al.

(2007c) for detailed descriptions of the parameters of the three models with local

interactions.

Null model

In the null model, the cells can be in one of two states, occupied or empty. A fraction

of the lattice is initially filled randomly with occupied cells. At each time step, an

empty cell is recolonized at a rate r (probability per unit of time), and an occupied cell

becomes empty at rate m. Both processes occur independent of the states of the

neighbouring cells. In the mean field picture, the dynamics of this system would be

described by:

dp

dt
¼ r � ðm þ rÞp;

where p is the fraction of occupied cells. At steady state, the fraction of occupied cells is

determined by the ratio p ¼ 1
1þðm=rÞ. This system cannot exhibit other transition than

the percolation one. As the percolation threshold in a 2D system (four neighbours) is

pc = 0.59 (Stauffer & Aharony 1985), the r value at which percolation takes place in our

null model is: rc ¼ mpc

ð1�pcÞ. For example, for m = 0.25, rc = 0.36.

This model is �null� in the sense that there is no process governing the spatial

distribution of occupied cells. The null model is introduced to check how local

interactions affect the spatial organization of the occupied cells compared with the null

case for a given fractional cover. The ratio m ⁄ r was therefore adjusted (by keeping m

fixed and changing r) so that the cover of occupied cells (i.e. the fraction of occupied

cells in the lattice) matches those of the other models (for comparison).

Arid ecosystem model

In the arid ecosystem model (Kéfi et al. 2007c), the cells can be in three possible states:

vegetated, empty or degraded. The first one designates patches that are occupied by

plants. The second state designates empty patches whose soil is still fertile. The third

one refers to degraded soil that is unsuitable for colonization by plants.

Vegetation reproduces by spreading seeds in the lattice. A fraction of the seeds is

dispersed locally in the neighbourhood of the mother plant; the rest is dispersed

globally throughout the whole lattice. A seed that ends up on an empty cell can

germinate. After vegetation dies, vegetated cells revert to empty. A cell that is empty

for too long can become degraded (in reality, e.g. by processes like erosion).

The regeneration rate of degraded cells into fertile empty cells (that can later be

recolonized by seedling) increases with the proportion of neighbours that are occupied

by vegetation. With this local positive effect, plants increase the recruitment of new

individuals in the system (in their nearest neighbourhood).

Mussel bed model

In the mussel bed model (Guichard et al. 2003), the cells can be in three states:

disturbed, empty or occupied by mussels.

An empty cell can be colonized by mussels if at least one of its neighbours is

occupied by a mussel. An occupied cell may become disturbed (in reality, e.g. when

wave disturbance destroys the byssal thread attachment of the mussels to their

neighbours and substratum). Mussels that are in sites adjacent to disturbed cells have a

higher chance of becoming disturbed themselves: thus, the disturbance spreads locally.

A disturbed cell eventually becomes empty. Mussels die at a density-independent rate.

Predator–prey model

In the predator–prey model (Durrett & Levin 1994; Pascual et al. 2002), the cells can

either be occupied by a prey, occupied by a predator or be empty (a cell cannot contain

both predators and prey).

A prey samples its neighbourhood at random and, if the chosen site is empty, gives

birth at a given rate and the empty site then becomes occupied by a new prey.

A predator that has at least one prey in its surrounding chooses one prey site at random

and eats it, moving to the prey site. This predator that has just eaten reproduces at a

certain rate and the offspring occupies the original site of the predator. Predators who

failed to find a prey die at a given rate. Note that in the original model of Pascual et al.

(2002), there was also local dispersal by which random neighbouring pairs of cells

exchanged their state at a slow rate. This local dispersal was not implemented here.

Analysis

A �patch� is a connected set of cells of the same type (this definition assesses

connectivity based on the same neighbourhood than the one used for the range of local

interactions, i.e. the four nearest neighbours). We considered patches of occupied cells

(null model), vegetation cells (arid ecosystem model), mussel cells (mussel bed model)

and prey cells (predator–prey model). We sampled the patch size distribution after a

stationary state was reached in 100 · 100 lattices (Kéfi et al. 2007a).

In Fig. 1 and Fig. 3 (the latter in Appendix S2), the percolation probability was

estimated using 500 · 500 lattices. The system is considered to be percolated when it has

at least one patch that spans from one edge of the system to the opposite edge. The

location of the percolation point is defined as the parameter value at which the percolation

probability is 0.5 (see the Results for further details about the percolation point).

The patch size distributions were obtained as follows. Simulations were run for

10 000 time units. The first 3000 transient time steps were discarded. Thereafter, patch

size data were recorded every 40 snapshots, to minimize any temporal correlation

among successive snapshots. Data from 175 such snapshots were used to plot the patch

size distribution.

We plotted the non-cumulative patch size distribution using bins of five cells. The

distributions were fitted to three different functional forms: power law, power law with

an exponential cutoff and exponential. We used least squares regressions on the binned

log–log data and determined which model fitted the data best with the Akaike

Information Criterion (Akaike 1974).

This method of binning of the data followed by least squares regression has been

shown to produce bias and large variance in the estimation of the scaling exponent of the

power law (Newman 2005; White et al. 2008; Clauset et al. 2009). White et al. (2008)

showed that maximum likelihood estimates (MLE) give the most accurate and less variable

estimates of the scaling exponents. Here, we are interested in the shape of the distribution

and not in the exact value of the scaling exponent. However, binning can also lead to

differences in the determination of which distribution best fits the data. MLE are currently

available for power laws and exponential distributions, but not for power laws with an

exponential cutoffs. We tried to fit the patch size distributions with other distributions for

which MLE exist, but we could not find one able to reproduce the bending of the

distribution adequately. The same problem arises when using the cumulative distribution

function. For this reason, although we are aware of the limitations of the method, we

decided to illustrate our idea here using binning and least squares regression.

We ran the three models with local interactions for different stress levels and plotted

the corresponding patch size distributions at the stationary state. What we call �stress�
differs among the different models: aridity for the facilitation model, wave disturbance

for the mussel bed model and predation pressure in the predator–prey model (in

this simple system, the predation pressure can be modulated by varying the predator

mortality rate, which affects the density of predators in the system; when

the predator mortality rate is higher, there are less predators in this system and the

predation pressure on the prey is lower; note, however, that this link between predator

mortality and their population size is not always that simple; see, e.g. Gamarra & Solé

2002). There is no stress in the null model. In this case, what we vary is the fractional

expected cover of occupied cells determined by the ratio 1 ⁄ [1 + (m ⁄ r)].
We then compared the patch size distributions generated by the three models with

local interactions with those generated by the null model for the same fractional

cover.
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We call �extinction point� the level of stress above which the system cannot maintain

itself anymore, e.g. the aridity level above which there is no vegetation in the system,

the wave disturbance above which there is no mussel or the predation rate above which

there is no prey. �Extinction� in the three spatial models is similar to a phase transition

to an absorbing state which belongs generically to Directed Percolation in time discrete

systems or to Contact Processes in time continuous systems (Marro & Dickman 1999).

Our three spatial models exhibit two phase transitions: the emergence of a giant

cluster (critical percolation point) and transition to an absorbing state (here, extinction).

We are interested here in showing that the path between these transitions runs through

generic trajectories in the geometrical patterns.

RESULTS

The sequence of patch size distributions towards extinction in the null model

We first follow the changes in the size distribution of patches of occupied cells when

the cover (i.e. the fraction of occupied cells) decreases in the null model (Fig. 1). For

high cover, the patch size distribution is characterized by the presence of very large

patches of the size of the system itself (so-called spanning clusters). As the cover

decreases, spanning clusters of occupied cells first disappear at a point that is referred to

as the percolation point of occupied cells. Interestingly, at this point there is a drastic

change in system-wide connectivity, as the probability that a spanning patch appears in

the system changes dramatically, but other ecological variables of interest, such as

the fraction of occupied cells, vary smoothly with no apparent shift (Fig. 1a). As

well-known in physics, the power laws are born at this point (Stauffer & Aharony 1985;

Solé & Bascompte 2006). From the percolation point of occupied cells towards lower

covers, the large patches are progressively lost, leading to deviations from power laws.

These deviations become stronger as the system approaches extinction, and the tail of

the distribution exhibits increasingly fewer large patches than at the percolation point.

Simultaneously, as the cover keeps decreasing, the probability that spanning clusters of

empty cells appear in the system increases (Fig. 1a).

We propose that the sequence of patch size distributions with decreasing cover can

be characterized by four distinct patterns (Fig. 1):

a: Two widely separated scales of patch sizes, corresponding to large patches of the

order of the system size and remnant small patches;

b: A power-law behaviour extending from small to large patches, where the patch

distribution can be described by:

N ðS Þ ¼ CS�k; ð1Þ

with N(S ), the number of patches of sizes S, k(>0), the estimated scaling exponent and

C, a constant.

c: A deviation from a power law towards fewer large patches, which we describe as a

power law with an exponential cutoff; the patch size distribution is given by:

N ðS Þ ¼ CS�ke�
S

Sx ; ð2Þ

with Sx the cut-off above which patch size N(S ) decreases faster than in a power law

(Sx > 0). At the percolation point, Sx goes to infinity and expression (2) reduces to a

(a)

(b)

Size of the patches

1
γ β αδ

0.8

0.6

0.4

0.2

104

N
um

be
r 

of
 p

at
ch

es

102

100

100 101 102 103 104 100 101 102 103 104 100 101 102 103 104 100 101 102 103 104

10–2

104

102

100

10–2

104

102

100

10–2

104

102

100

10–2

0

δ γ β α

0.2 0.4 0.6
r

0.8 1

Figure 1 Succession of patch size distributions in the null model for different recolonization rates (r increases to the right). (a) Each of the grey areas corresponds to a different region. Full line:

fraction of occupied cells in the lattice at steady state for different r values. Dashed left line: percolation probability of empty cells. Dashed right line: percolation probability of occupied cells.

(b) Patch size distributions of occupied cells at steady state on a log–log scale, and the corresponding snapshots of the system at the end of the simulations for each of the four regions shown in (a).

Black: occupied cell. White: empty cell. Parameter values m = 0.25; from left to right: exponential, r = 0.15, cover = 0.37; power law with an exponential cutoff, r = 0.28, cover = 0.53; power law,

r = 0.35, cover = 0.58; spanning clusters, r = 0.45, cover = 0.64. Percolation point of empty cells: r = 0.170 ± 0.005; truncation point: r = 0.290 ± 0.005; percolation point of occupied cells:

r = 0.365 ± 0.005.
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power-law distribution such as in (1). Away from this point, Sx begins to decrease and

this function combines a power-law behaviour with an exponential decay for larger

patches. In the extreme case, when k tends to zero, the patch size distribution falls as

an exponential law over the entire range of patch sizes [i.e. N(S ) = Ce)eS ]. Distribu-

tions characterized by eqn 2 are also referred to as �truncated power laws� (Roy et al.

2003; Solé & Bascompte 2006; Kéfi et al. 2007b). However, here we prefer the

expression �power law with an exponential cutoff� which we find more explicit. This

case where the patch size distribution deviates from a power law as described by eqn 2

can be subdivided in two parts depending on whether there are spanning clusters of

empty cells or not in the system. Region c corresponds to systems in which there are no

spanning clusters of empty cells.

d: A deviation from a power law as described by eqn 2 with spanning clusters of

empty cells.

After the percolation point of occupied cells is passed, the change from a power law to

a power law with an exponential cutoff (and then to an exponential law) reflects the

gradual loss of the largest patches along the transition towards extinction, and thus a

stronger deviation from a power law. The precise formulation of the mathematical

functions describing the different zones along transitions is of course subjective.

However, the functions we chose appear to describe very well the increasing deviation

from a power law when the system goes away from the percolation point of occupied cells.

Moreover, the functions are embedded within each other (the power law with an

exponential cutoff contains the pure power law and the exponential law) and this provides

a continuous representation of the gradual losses of patches along the transitions.

In an infinite system, we would expect the null model to exhibit a pure power law

(i.e. a distribution described by eqn 1) only at the percolation point. Here, because of

the finite size of the system (a norm in nature) and the statistical characterization of the

patterns (a logistical necessity), we consider a region, and not a point, for which the

deviations from power laws are not apparent (i.e. not statistically detectable).

We define ranges of conditions under which the patch size distribution is statistically

indistinguishable from a given distribution as follows: for a system without a spanning

cluster of occupied cells, statistical tests can be used to check which of the two functions

(a power law or a power law with an exponential cutoff) best describes the patch size

distribution of the system (Kéfi et al. 2007a,b). In systems best described by power laws

with an exponential cutoff, the presence of spanning clusters of empty sites can be

assessed. For practical purposes, we can thus define �regions� as the range of

environmental conditions under which the patch size distribution of the system is best

described by a given function combined with the presence or absence of spanning clusters

(of both occupied and empty cells). We define �indicators� as the points which sets the limit

of these regions. We call the point at which significant deviations from power laws,

towards fewer large patches, become empirically detectable, the �truncation point�. It is

noteworthy that this indicator is quite different than the percolation and the extinction

points. Indeed the truncation point is statistically defined and thus its absolute location

depends on the statistical test and its accuracy. On the contrary, the locations of the

percolation and the extinction points can be computed numerically using very large grids.

How general is this phenomenon? Adding the ecological mechanisms

Interestingly, in the three models with local interactions, the same sequence of patch

size distribution occurs in the same order towards extinction (Fig. 2a–c), showing an

increasing deviation from a power law towards distributions that have fewer large

patches than at the percolation point. Furthermore, this happens both when the

transition to extinction is continuous (i.e. when the population density gradually

decreases until extinction), and when it is discontinuous (i.e. when the population

suddenly drops to zero once a stress level is reached) (Fig. 3 in Appendix S2).

By considering the patch size distribution and sequential changes in the spatial

patterns from region a, to b, c and d, one can infer that the system is moving towards less

favourable conditions. As these sequential changes always occur in the same order (Fig. 4

in Appendix S3), the shape of the patch size distribution associated with the presence or

absence of spanning clusters provides a relative distance to the extinction point.

Local interactions do not affect the sequence of patch size distributions, but they affect

the shape of the patch size distribution that emerges for a given fractional cover (Fig. 2),

as well as the width of the regions (Fig. 4 in Appendix S3). The role of local interactions

can now be assessed more specifically by comparing the patch size distributions

generated by the null model (Fig. 2d) and models including local interactions with the

same fractional cover (Fig. 2a–c; Appendix S3). Given a certain cover, the patch size

distributions of the null model show a deficiency of large patches compared with those in

the local interaction models (Fig. 2a–c). In other words, in the local interaction models

more large patches occur than expected on the basis of the null model. Indeed, in the

three models with local interactions, the local interactions favour the formation of

patches (i.e. local dispersal of the prey in the predator–prey model, local recruitment of

the mussels in the mussel bed model and local facilitation in the local facilitation model).

This finding is in agreement with Scanlon et al. (2007), who found that power laws

produced by a null model showed a deficiency of scales compared with patch size

distributions produced by cellular automaton taking local positive interactions into

account.

This is also in agreement with Roy et al. (2003), who showed in the case of the

predator–prey model that the size distribution of prey clusters resembles a power law

for a broad range of parameter values. They also showed that, as the system moves

away from the percolation point, the departure from power laws occurs more slowly

than for classical percolation because of the presence of local interactions (see also

Fig. 5 in Appendix S3). This robustness of the power-law behaviour is not merely the

result of the system size (Roy et al. 2003; Pascual & Guichard 2005). More technically,

the exponent characterizing how quickly the correlation length of the system decays is

independent from system�s size (Roy et al. 2003).

DISCUSSION

The succession of patch size distributions in robust critical systems

We studied three stochastic spatial systems with local interactions (robust critical

models) and a null model. We investigated the changes in their spatial patterns under

increasing stress. Our results suggest that tracking changes in patch size distributions

associated with knowledge on the connectedness of the system (and more specifically

on the presence or absence of spanning clusters) might provide qualitative information

regarding the level of stress exerted on the ecosystem.

The four models analysed here all present the same succession of patch size

distributions with decreasing cover (i.e. increasing stress level in the three spatial

models), revealing a gradual meltdown of the distribution due to the disappearance of

the large patches. Starting from favourable environmental conditions and increasing the

stress level exerted on the system, the connectedness of the system suddenly drops at the

percolation point of occupied cells. This point is the origin of the power-law behaviour

in the patch size distribution (Stauffer & Aharony 1985; Solé & Bascompte 2006). At this

point, there is a drastic change in the system-wide connectivity of the system, as well as in

the average patch size, but not in the fractional cover of occupied cells. The presence of

power-law behaviour, associated with the high connectedness of occupied cells reflects a

state of the system away from extinction. The observation of an increasing deviation

from power-law behaviour and an increasing connectedness of empty (or degraded) cells

indicate a movement of the system towards extinction. A deviation from a power law

towards fewer large patches associated with a high connectedness of empty (or

degraded) cells is the last state of the system that occurs before extinction.

The patch size distribution is a more complicated measure than the cover, which is

traditionally used as an indicator of ecosystem degradation (Maestre & Escudero 2009;

Kéfi et al. 2010). However, there are cases where looking at the cover only might not be

sufficient. For ecosystems that can potentially undergo discontinuous transitions, the

cover will not be a good indicator of potential shifts because the ecosystem might shift

at an unknown cover. In that case, other indicators must be used, in addition to cover,

to be able to detect the proximity to a transition, and spatial patterns could be such

additional indicators. Moreover, there is not always a straightforward link between

cover and spatial patterns as observed in the field (Bautista et al. 2007; Lin et al. 2010).

Bautista et al. (2007) showed that very different spatial structures may be observed at

similar vegetation cover, leading to important consequences in term of erosion, runoff

and more generally ecosystem functioning. In the models we studied, along a gradient

of increasing stress, there are indeed areas where the cover hardly changes but

important changes in the spatial structure occur (typically at the percolation points), and

conversely, showing that the two indicators are complementary and more informative

in concert. Additionally, because changes in cover with time are typically gradual and

slow, not only is it difficult to tell how close, or far, an ecosystem currently is from a

transition, but the changes may also reflect cyclical or some other form of endogenous

fluctuating dynamics, in which decreases are temporary. In this regard, it is especially

relevant that the temporal variance of variables such as cover tend to increase when

systems approach a transition (Carpenter & Brock 2006; Fig. 6 in Appendix S3), which

suggests that following cover only might be difficult and potentially misleading close to

extinction. By contrast, the indicator points describe directional, and exogenously

driven, transitions in the connectivity patterns, separated by (statistically) distinct

bounds in cover, and therefore, provide a reliable link between changes in the cover

and possible ecosystem transition.

Additionally, the patch size distribution can provide some information about

underlying ecological mechanisms. We showed that systems with the same cover (but

different underlying ecological mechanism) can be described by different distributions

(Fig. 2; Appendix S3). Considering a real ecosystem and knowing its fractional cover,

the patch size distribution can be compared with the patch size distribution generated

by a null model for the same fractional cover. An excess in large patches compared with

the null model would mean that local interactions might be at play, as a mechanism

promoting longer spatial correlations than expected otherwise.

These results open up the prospect of comparing predicted and observed patch size

distributions to infer the health of the ecosystem, or equivalently the level of stress

exerted on it, as well as the dominant mechanisms that might be at play.
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Figure 2 Succession of patterns for decreasing environmental stress from left to right. Patch size distributions at steady state on a log–log scale, and the corresponding snapshots of the system at

the end of the simulations. (a) Local facilitation model; from left to right: b = 0.4, b = 0.5, b = 0.54, b = 0.6. (b) Mussel bed model; from left to right: do = 0.041, do = 0.029, do = 0.025,

do = 0.021. (c) Predator–prey model; from left to right: s = 0.024, s = 0.15, s = 0.27, s = 0.8. (d) Null model; m = 0.6 (note that the m value of null model is different than the one used in Fig. 1);

from left to right: r = 0.17, r = 0.56, r = 0.70, r = 0.94. In the snapshots: black: vegetated ⁄ mussels ⁄ prey ⁄ occupied cells; white: degraded ⁄ empty cells; grey: recolonizable ⁄ disturbed ⁄ predators (no

grey cell in the null model). To each column corresponds a given cover of occupied cells (the same in the four models); from left to right: cover = 0.22, cover = 0.48, cover = 0.54, cover = 0.61.

See Appendix S1 for other parameter values.
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The percolation points

Although the percolation points are not linked to a drastic change in the actual cover or

abundance of individuals, it is noteworthy that the sudden change in the system-wide

connectivity, including the average size of the patches, might have important functional

consequences. Indeed, the spatial organization and connectivity of an ecosystem

modulate whether �contagious disturbances� such as fires, diseases, insect outbreaks,

species invasions or fluid shear can propagate throughout the system (e.g. Newman &

Watts 1999; Peterson 2002; Newman 2003). We provide some examples hereafter.

The percolation concept has been used to address the issue of habitat fragmentation.

Bascompte & Solé (1996) showed that as the fraction of destroyed sites in a habitat

reaches a threshold value, a percolation cluster of destroyed sites forms which crosses

the lattice from one edge to the other. At that point, suitable habitat patches are

essentially isolated and this change in the landscape�s connectivity affects the

survivorship of populations by influencing their dispersal success (Achter & Webb

2006).

In the case of arid ecosystems, the connectivity of the vegetation may play an

important role in the functioning of the ecosystems. In many arid ecosystems, patches

of vegetation play an important function by capturing and retaining limited resources

such as rainwater, organic matter, soil sediments and nutrients (e.g. Schlesinger et al.

1990; Tongway et al. 2001; Bautista et al. 2007; Mayor et al. 2008). Ludwig et al. (2002)

propose that the functionality of an arid ecosystem can be evaluated as its ability to

retain vital ecological resources such as rainwater and soil: healthy or functional

landscapes conserve water and soil resources, whereas dysfunctional landscapes easily

lose these resources. Because the vegetation connectivity as well as the connectivity of

empty (degraded) sites dramatically changes at the percolation points, it is possible that

the functioning of the ecosystem is affected, e.g. the landscape could become

disproportionally leakier and therefore poorly retain resources.

In other words, the percolation points correspond to areas where small changes in

cover but large changes in spatial structure occur, potentially corresponding to large

functional changes for the ecosystem. Note that these functional changes could affect

other species in the ecosystem (e.g. not the ones modelled but other depending on the

spatial structures, such as herbivores in a vegetation system).

The truncation point

Closer to the extinction threshold, as environmental conditions deteriorate further,

there is a point where the patch size distribution changes from a power law to a power

law with an exponential cutoff, which has remnants of the scaling for smaller patches

but has lost the larger patches of the power law itself. When these power laws with

exponential cutoffs occur, the power-law pattern has degenerated sufficiently to

indicate that the system is now closer to extinction. The last spatial pattern to occur just

before extinction is characterized by spanning clusters of empty (or degraded) sites

(Fig. 4 in Appendix S3).

Interestingly, in a system characterized by power laws in the patch size distribution,

patches of all sizes (or a broad range of sizes as we move away from the percolation

point) are present in the system. Under stress, when the patch size distribution is best

described by a power law with an exponential cutoff, the range of possible sizes of

these patches is reduced. The fact that the range of patch sizes becomes smaller under

these harsh environmental conditions suggests that the vegetation patches might tend

towards a characteristic size and shape, as already suggested by other studies (von

Hardenberg et al. 2001).

The generality of this behaviour towards extinction

We showed that the same sequence of changes in the spatial patterns was present in a

range of systems, independently from the specific mechanisms involved, including the

arid ecosystem model of Kéfi et al. (2007c), the predator–prey model studied in Pascual

et al. (2002), the mussel bed model of Guichard et al. (2003) and a null model lacking

spatial interactions (Fig. 4 in Appendix S3).

We conjecture (but did not prove mathematically) that this behaviour of patch size

distribution can be generalized to at least all the so-called �robust critical systems�
(Pascual & Guichard 2005). However, we still need to better understand the

characteristics of these systems and their essential ingredients. For now, we conjecture

that systems combining local stochastic processes of birth and death, extremely

common in ecology, will have percolation-like transitions, and that a combination of

local interactions and finite size effects, will lead to a less drastic decay of the power

laws than expected for classical percolation. In other words, percolation-like transitions

may be in part responsible for the ubiquitous nature of patterns resembling power laws.

Caveats of the proposed approach and technical challenges

There are technical issues to be addressed before being able to test these ideas on field

data. We acknowledge that the absolute location of the indicators (and thus the size of

the different regions) might depend on the choice of the statistical test and power and

will vary with overall system size. Therefore, there are no absolute values of the cover

that can be expected to conform to a given spatial distribution. Yet, importantly, we

expect the sequence of the patch size distributions to be independent of the statistical

test and system size (Appendix S4). Therefore, the indicators we propose are

meaningful when one observes the change of the distributions in a given system in time

or in space. Also, when comparing different ecosystems, the fact that they are described

by different distributions does not necessarily mean that one is more or less degraded

than the other. Some ecosystems might generally have lower cover than others (e.g. we

expect very arid ecosystems to have in general lower vegetation covers than sub-humid

ecosystems). However, in the same ecosystem (similar species composition, same

climate and abiotic characteristics), the fact that two systems have a different amount

of deviation from a power law means that one of them can bare less perturbation than

the other.

The question remains of a more quantitative characterization of the relationship

between the percolation point at which the power laws arise and the extinction point.

More specifically, we need to identify what controls the size of the different regions

along transition (Appendix S3). Further efforts should be directed at quantifying the

distance from the extinction point. We know now that the vegetation patch size

distribution and the system�s connectivity change towards the extinction point, and that

the proposed indicators reflect this. However, we do not know yet how to evaluate (and

what determines) the absolute distance in parameter space between these points and

extinction.

As we mentioned earlier, White et al. (2008) demonstrated that binning and least

square fitting on binned data lead to biased estimates of the exponents of the power

law; MLE should be used instead. However, currently MLE are not available for power

laws with exponential cutoffs. Other distributions may be better able to describe the

deviations from power laws when the ecosystem approaches extinction. Robust and

routine statistics are required for testing these hypothesis and their potential

applications.

Applicability of the approach to the field: practical challenges

It is now important to verify these behaviours along transitions to extinction in the

field, for instance by analysing aerial photographs or satellite imagery (Appendix S4).

The results from Scanlon et al. (2007) suggest that this could be a promising

perspective, but the potential success of the approach will rely on the use of data with

appropriate resolution. In all the models considered here (and the sampling of the

systems the models were confronted to, in nature), the resolution was sufficiently fine-

grained in at least one of the following ways: (1) either one cell was approximately the

size of an individual (e.g. arid vegetation study; Kéfi et al. 2007b) or (2) the cell size was

below the typical size of the smaller patch in the system (Guichard et al. 2003). When

these conditions do not apply, the poor sampling resolution will degrade the quality of

the size distributions and compromise the applicability of the indicators related to those

distributions. There are now aerial pictures and satellite images with a resolution that is

high enough to reach the required level of precision for many of ecosystems.

Moreover, natural systems are confronted to heterogeneity, disturbance and noise,

and very little is known about how they affect the shape of the patch size distributions.

We expect the approach presented in this article to be applicable especially to self-

organized ecosystems, where self-organization can counteract the effect of noise or

spatial heterogeneity, but we also expect the signal to be blurred or difficult to detect in

ecosystems with strong stochasticity or underlying spatial heterogeneity. The fact that

power laws and deviations from them have been observed in a wide range of

ecosystems, independent from soil, vegetation or climate type (Kéfi et al. 2007b;

Scanlon et al. 2007) is already encouraging and suggests that our approach might be

applicable to at least a range of natural systems.

CONCLUSION

Under increasing environmental change at global scales, it is a pressing issue to

understand the response of ecological systems to these changes (Adeel et al. 2005).

In the last years, several indicators of ecosystem shifts have been proposed (e.g.

Carpenter & Brock 2006; Van Nes & Scheffer 2007; Carpenter et al. 2008; Guttal &

Jayaprakash 2008). When a system approaches a shift, the variance of its time series

(of a relevant variable such as cover), its skewness and auto-correlation increase [see

Scheffer et al. (2009) for a review]. These indicators typically rely on time-series

analyses and require long and well-defined time series to be reliable (Guttal &

Jayaprakash 2008). The spatial equivalents of these quantities (spatial variance, spatial

skewness and spatial auto-correlation) have also been recently investigated and shown

to exhibit clear trends towards a shift (Oborny et al. 2005; Guttal & Jayaprakash 2009;

Dakos et al. 2010).

All these indicators, temporal and spatial, have been proposed to help predicting the

occurrence of shifts and have been tested in some data sets (Scheffer et al. 2009).

Changes in these indicators usually occur gradually as the shift is approached. As a

consequence, a trend in the indicators may serve as a warning but the absolute distance

to the shift remains impossible to predict. This is a common caveat of all the indicators

currently available. Moreover, Hastings & Wysham (2010) showed that most of these

indicators (the �general leading indicators�) are unlikely to occur in a wide range of

ecosystems because systems including nonlinearities and environmental variability

might not exhibit smooth potentials (on which the general leading indicators depend).
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In conclusion, it seems quite clear that not a single indicator is likely to be sufficient.

On the contrary, we probably need a set of indicators that are sensitive to different

aspects of ecosystems vulnerabilities. Combinations of these indicators might be what

will help us get reliable estimations of the stress level experienced by ecosystems. For

example, Guttal & Jayaprakash (2009) showed that a combination of increasing spatial

variance and a peak in skewness is a clear signature that the system is close to a

transition. For spatially organized ecosystems, spatial patterns could also provide

important indicators of the level of degradation of the ecosystem (Rietkerk et al. 2004;

Oborny et al. 2005; Kéfi et al. 2007b; Manor & Shnerb 2008; Guttal & Jayaprakash

2009). Here, we propose complementary quantities based on the changes in the spatial

organization. Specifically, we propose a set of indicators based on the patch size

distribution and on the connectivity of the system at a snapshot in time, which provide

a relative measure of the distance to extinction. Although the question remains of a

more quantitative distance to extinction, this set of indicators will be especially relevant

in ecosystems with spatial self-organization and critical transitions.
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Kéfi, S., Rietkerk, M., Alados, C.L., Pueyo, Y., ElAich, A., Papanastasis, V.P. et al. (2007a). Inves-

tigating patchiness of spatially organized systems using field and simulated data. Nat. Protoc.,

DOI: 10.1038/nprot.2007.387.
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