

GridLAB-D Smart Grid Simulation

Project Manager: David P. Chassin

Pacific Northwest National Laboratory

david.chassin@pnnl.gov

GridLAB-D development and support is funded by the US Department of Energy's Office of Electricity and managed by the US DOE's Pacific Northwest National Laboratory in Richland, Washington.

Contact: Dan Ton (dan.ton@hq.doe.gov)

For more information see www.gridlabd.org

Overview

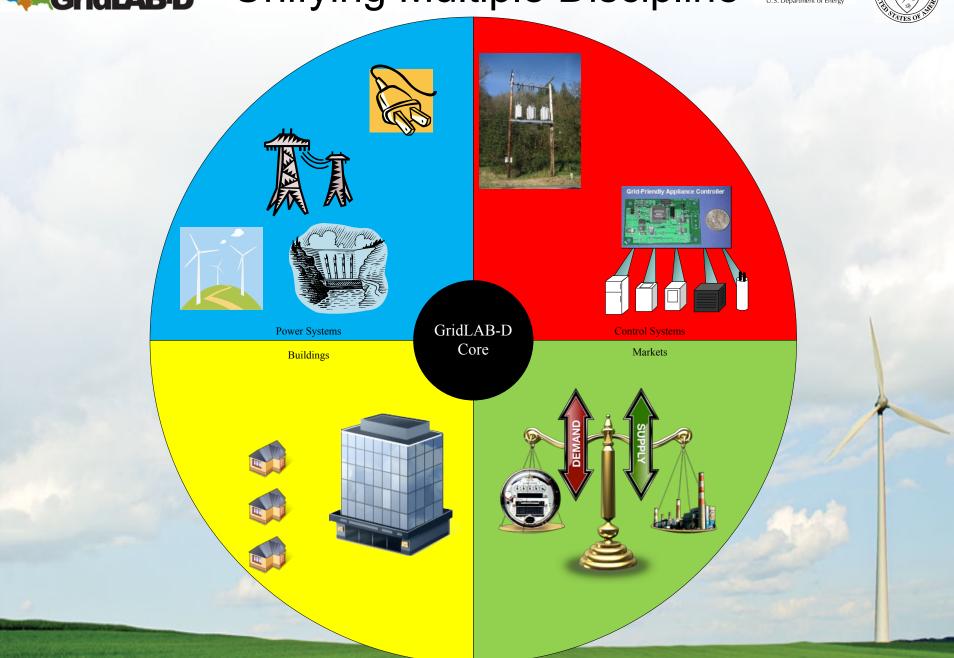
- What is GridLAB-D?
- How is GridLAB-D different?
- How does GridLAB-D work?
- Why use GridLAB-D?
- Examples of analysis results

A Unique Tool for Designing and Studying Smart Grids

Unifies models of the key elements of a smart grid:

Power Systems

- Smart grid analyses
 - field projects
 - technologies
 - control strategies
 - cost/benefits
- ✓ Time scale: sec. to years
- ✓ Open source
- ✓ Contributions from
 - government
 - industry
 - academia
- ✓ Vendors can add or extract own modules


- GridLAB-D is a DOE-funded, open—source, time-series simulation of all aspects of operating a smart grid from the substation level down to loads in unprecedented detail
- Simultaneously solves:
- Unbalanced, 3-phase power flow (radial or network), w/explicit control strategies
- End use load physics, voltage-dependency, behavior & control in 1000s of buildings.
- Double-auction retail supply/demand markets

Unifying Multiple Discipline

Comparison of Simulation Methods

Conventional Methods

- System dynamics
 - Series of interacting feedback loops (focus on rates)
- Dynamic systems
 - State model w/physical meaning (focus on states)
- Discrete Event
 - Queuing models of entities (focus on events)

Agent-based Method

- Complex bottom-up models
- Focus on behaviors and relationships of many entities
- Agents placed in environments
- Agents can be endowed with a wide range of behaviors
 - No restrictions on agent behaviors or outcomes
- Relationships can be arbitrary
 - No restrictions on what information is used by agents or when information is transferred

Method Strengths & Weaknesses

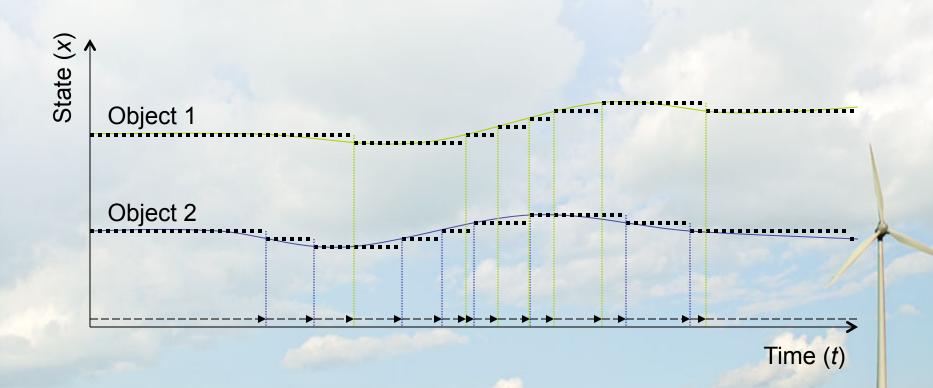
Conventional Simulations

- Advantages
 - Very easy to validate analytically
 - Often computationally efficient
 - Distinct steady state/dynamic sol.
- Disadvantages
 - Requires solvable set of equations
 - Homogeneous solution often difficult to modify/update/improve
 - Essentially incompatible with each other
 - Difficult to integrate with other models
 - Can be difficult to scale
 - Typically domain specific solution

Agent-based Simulations

- Advantages
 - Very general approach
 - Domain-independent solver
 - Outcome is emergent
 - Quasi-steady/dynamic
 - Scales quite well
 - Local conventional models
 - Allows multi-disciplinary models
- Disadvantages
 - Very detailed models needed
 - Massive data I/O requirements
 - Very difficult to validate
 - Requires multi-disciplinary teams

GridLAB-D Core Solver


Determines a time-series of steady states of resolution Δx with variable time-step of resolution Δt

Each object can influence time

High Fidelity Integration

$$\Delta I_{rk} = \frac{P_k^{sp} V_{rk} + Q_k^{sp} V_{mk}}{V_{rk}^2 + V_{mk}^2} - \sum_{i=1}^n \left(G_{ki} V_{ri} - B_{ki} V_{mi} \right) = 0$$

$$\Delta I_{mk} = \frac{P_k^{sp} V_{mk} - Q_k^{sp} V_{rk}}{V_{rk}^2 + V_{mk}^2} - \sum_{i=1}^n \left(G_{ki} V_{mi} - B_{ki} V_{ri} \right) = 0$$

$$\begin{bmatrix} \Delta V_{rk} \\ \Delta V_{mk} \end{bmatrix} = -J^{-1} \begin{bmatrix} \Delta I_{mk} \\ \Delta I_{rk} \end{bmatrix} \qquad J = \begin{bmatrix} \frac{\partial \Delta I_{mk}}{\partial V_{rk}} & \frac{\partial I_{mk}}{\partial V_{mk}} \\ \frac{\partial \Delta I_{rk}}{\partial V_{rk}} & \frac{\partial \Delta I_{rk}}{\partial V_{mk}} \end{bmatrix}$$

Buildings

GridLAB-D Core

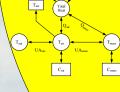
if
$$V_D < V_D^h$$
, then $V_{bw} = V_{bw}^l$

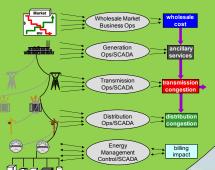
if
$$V_D > V_D^h$$
, then $V_{bw} = V_{bw}^h$

if
$$|V_{set} - V_{measured}| > V_{bw}$$
, adjust tap

if
$$Q_{needed} > d_{max}Q_{capacitor}$$
, switch on

if
$$Q_{needed} < d_{min}Q_{capacitor}$$
, switch off


Markets

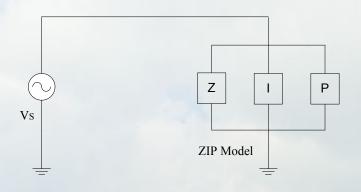

$$\frac{dT_{air}}{dt} = \frac{1}{C_{air}} \begin{bmatrix} T_{mass}UA_{mass} - T_{air}(UA_{env} + UA_{mass}) + \\ Q_{air} + T_{out}UA_{env} \end{bmatrix}$$

$$\frac{dT_{mass}}{dt} = \frac{1}{C_{mass}} \begin{bmatrix} UA_{mass}(T_{air} + T_{mass}) + Q_{mass} \end{bmatrix}$$

$$P_i = \left[\frac{\left| \frac{V_a^2}{a} \right|}{\left| V_a^2 \right|} \cdot \left| S_n \right| \cdot Z_{s_b} \cdot \cos(Z_\theta) + \frac{\left| V_a \right|}{\left| V_a \right|} \cdot \left| S_n \right| \cdot I_{s_b} \cdot \cos(I_\theta) + \left| S_n \right| \cdot P_{s_b} \cdot \cos(P_\theta) \right]$$

$$Q_i = \begin{bmatrix} V_a^2 \\ |V_a^2| \end{bmatrix} \cdot |S_a| \cdot Z_{56} \cdot \sin(Z_\theta) + \frac{|V_a|}{|V_a|} \cdot |S_a| \cdot I_{56} \cdot \sin(I_\theta) + |S_a| \cdot P_{56} \cdot \sin(P_\theta) \end{bmatrix}$$

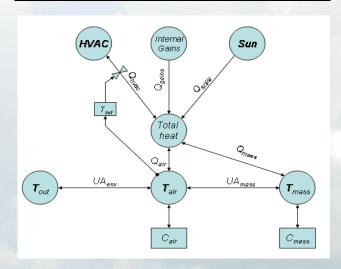
$$100 = Z_{\%} + I_{\%} + P_{\%}$$


Electric Systems

- Full-featured steady-state powerflow solvers
 - Forward-backsweep and Newton-Raphson
- Focus is currently on distribution systems
 - 3Φ unbalanced distribution system modeling
 - Theoretically capable of transmission (but not used)
- High-performance implementation
 - Quasi-steady: last solution used to find next
 - Parallelization used depends on solver
- Dynamic solver coming soon

Buildings and Appliances

Static ZIP Models



$$P_{i} = \begin{bmatrix} \frac{|V_{a}^{2}|}{|V_{n}^{2}|} \cdot |S_{n}| \cdot Z_{\%} \cdot \cos(Z_{\theta}) + \frac{|V_{a}|}{|V_{n}|} \cdot |S_{n}| \cdot I_{\%} \cdot \cos(I_{\theta}) + \\ |S_{n}| \cdot P_{\%} \cdot \cos(P_{\theta}) \end{bmatrix}$$

$$Q_{i} = \begin{bmatrix} \begin{vmatrix} V_{a}^{2} \\ V_{n}^{2} \end{vmatrix} \cdot |S_{n}| \cdot Z_{\%} \cdot \sin(Z_{\theta}) + \frac{|V_{a}|}{|V_{n}|} \cdot |S_{n}| \cdot I_{\%} \cdot \sin(I_{\theta}) + \\ |S_{n}| \cdot P_{\%} \cdot \sin(P_{\theta}) \end{bmatrix}$$

$$1 = Z_{\%} + I_{\%} + P_{\%}$$

Dynamic Load Models

$$\frac{dT_{air}}{dt} = \frac{1}{C_{air}} \left[T_{mass} U A_{mass} - T_{air} \left(U A_{env} + U A_{mass} \right) + Q_{air} + T_{out} U A_{env} \right]$$

$$\frac{dT_{mass}}{dt} = \frac{1}{C_{mass}} \left[UA_{mass} \left(T_{air} + T_{mass} \right) + Q_{mass} \right]$$

Power Markets

- Double auction
 - Retail real-time pricing
- General bidding controller
 - Thermostatic controls
 - Generation/storage control
- Retail market integration with AMES (lowal State University)

Many other capabilities

- Appliance control and demand response
- Communication systems
- Reliability analysis
- Feeder reconfiguration
- Distribution automation
- Distributed generation
- Thermal storage
- PHEV charging
- Fault current analysis & protection coordination
- Telemetry (data collection/analysis)
- Interoperability (Excel/Matlab/Java/ODBC)

Current Activities

- Commercial buildings
- Bulk generators
- Wholesale power markets
- Optimization
- Telecommunications protocols
- Renewable generation models
- Unit commitment/economic dispatch
- Subsecond/transient simulation

Prototypical Feeders

- Set of distribution feeder models
 - Representative of North American systems.
- Openly available
 - Derived from 575 actual feeders at 151 substations.
- 17 utilities contributed data.
 - 5 PUDs, 4 MUNs, 7 IOUs, 1 REA
- Used to extrapolate results to national level
 - Can also be done on a smaller regional scale

Studies Completed to Date

Government & Industry

- Demand Response Business Case (NRECA)
- National Conservation Voltage Reduction Study (DOE)
- Columbus Ohio CVR Study (GE)
- Appliance Control CRADA (GE/DOE)
- ARRA SGIG Technology Impacts Analysis (DOE)
 - Renewable Integration
 - Distribution Automation
 - Demand Response
 - Energy Storage
- ARRA AEP gridSmart SGDP

Academic

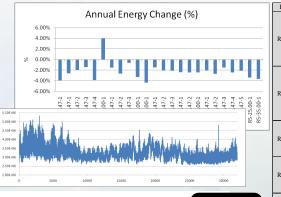
- Courses that use GridLAB-D
 - University of Washington
 - Washington University
 - CalTech
- Master's Theses
 - Demand Response (DTU)
- PhD Dissertations
 - Unit Commitment/Economic Dispatch (Stanford)
 - Renewable Integration (UVic)
 - Distribution Automation (ISU)

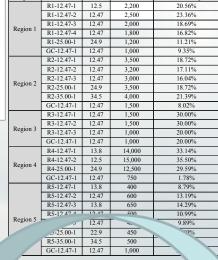
Studies Considered, Proposed or Active/In Progress

Government/Industry

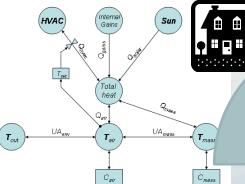
- National Lab Studies
 - Advanced controls (PNNL)
 - HPC (LANL)
 - Microgrids (PNNL)
 - Renewables (NREL)
 - Telecommunications (PNNL)
 - Transmission/dynamics (PNNL)
- Other smart grid studies
 - Denmark, Australia, New
 Zealand, California, Pacific
 Northwest, New Jersey

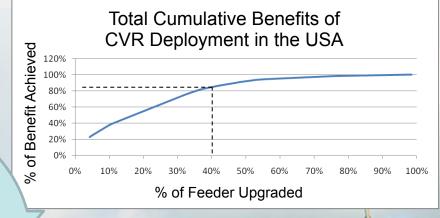
Academic

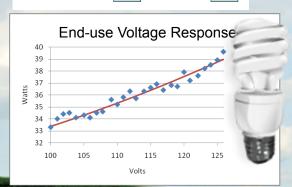

- Optimization (Stanford)
- Wind integration (UVic)
- Distribution automation (WSU)
- Wholesale market impacts (lowa State)



National Conservation Voltage Reduction Study






GridLAB-D
25 feeders x 1 minute
over 1 year x 2 cases

Keys Results:

- 1. Peak load reductions between 0.5% and 3%
- 2. Benefits vary widely depending on feeder, etc.
- 3. 100% deployment saves ~3% national energy
- 4. 40% deployment saves ~2.4% national energy

Ref: Evaluation of Conservation Voltage Reduction on a National Level
Schneider, K.P., Fuller, J.C., Tuffner, F., Singh, R.
Pacific Northwest National Laboratory report for the US Department of Energy, 2010

Demand Response Business Case Study

GridLAB-D: Calibrated residential & Commercial building load models

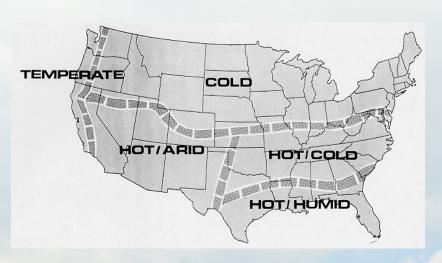
Cust	Customer Billing: Fixed_A vs. RTP_A									
Manth	Average Bill (\$)				Average Consumption					
Month	Fixed_A		RTP_A		Fixed_A	RTP_A				
1	\$	88.45	\$	85.95	1,078	1,079				
2	\$	84.45	\$	80.14	1,019	1,018				
3	\$	98.47	\$	95.46	1,226	1,208				
4	\$	106.86	\$	113.66	1,233	1,207				
5	\$	139.91	\$	136.68	1,654	1,630				
6	\$	160.05	\$	153.49	1,911	1,869				
7	\$	193.47	\$	201.91	2,336	2,307				
8	\$	193.44	\$	231.09	2,336	2,322				
9	\$	126.09	\$	94.11	1,478	1,462				
10	\$	102.06	\$	77.38	1,279	1,266				
11	\$	87.00	\$	73.17	1,057	1,053				
12	\$	89.81	\$	88.54	1,098	1,098				
Annual	\$	1,470.07	\$1	1,431.58	17,705	17,519				
Sum (N=(\$))	\$	145,537	\$	141,726	1,752,817	1,734,424				

Key results:

- 1. Single family homes offer most returns (16% reduction)
- 2. New construction less costly
- 3. All competitive with coal
- 4. Existing commercial not competitive with CT
- 5. Comfort/billing impacts minimal

ARRA SGIG Impact Study

- Quantify <u>technical potential</u> of ARRA SGIG
 - Federal money invested: ~\$3.4 billion
 - Total investment including industry co-funding: ~\$8.2 billion
- Deployment/data collection/analysis >5 years
 - Grant recipients not <u>required</u> to report impact/benefits
- GridLAB-D can estimate SGIG technology impacts
 - Gives DOE preview/forecast of SGIG impacts
 - Opportunity to validate GridLAB-D results with actual results


Common SGIG Technologies

- Distribution Automation (52 grants)
 - Capacitor and Regulator Automation
 - Fault Detection, Isolation, and Recovery/Reconfiguration (FDIR)
 - Conservation Voltage Reduction (CVR)
- Demand Response (65 grants)
 - Time-of-Use (TOU) and Critical Peak Pricing (CPP)
 - User interface technologies (HEMs, Smart Thermostats, etc.)
 - Direct Load Control (DLC)
- Renewable Integration (12 grants)
 - Distributed Solar Photovoltaic
 - Distributed Wind Generation
- Energy Storage (13 grants)
 - Thermal Energy Storage (Ice Bear®)
 - Plug-In Hybrid Electric Vehicles (PHEV with WSU-TC)

Simulation Models Used

Annual simulations of Taxonomy Feeders

- ▶ 25 feeder models
- One-minute time-steps
- Regionalized to extrapolate national level impacts
- Technologies individually compared with base case
 - Over 400 annual simulations completed
 - Large quantities of data produced and analyzed
 - Cluster computation resources used

Benefit Metrics

- DOE Smart Grid Impact Metrics used
 - Customer Electricity Usage (\$ & kWh)
 - Peak Load Reduction
 - System Losses
 - Reliability Indices (SAIDI, SAIFI, CAIDI, MAIFI)
 - Component Loading and Overloads
 - Generator Capacity Factors and Emissions (CO₂, NO_x, SO_x)
 - Distributed Resources and Renewable Energy Supplied
 - Component Switching Operations
- Excludes job creation & market innovation metrics

Potential Impacts of SGIG Technologies

•	Distribution	automation	benefits
---	--------------	------------	----------

 Volt-VAR optimization (annual energy saved) 	2% – 4%
 Reclosers & sectionalizers (SAIDI improved) 	2% – 70%
 Distribution & outage management systems (SAIDI improved) 	7% – 17%
 Fault detection, identification, & restoration (SAIDI improved) 	21% – 77%

Demand response

-	Instantaneous load reductions	25% – 5 <mark>0</mark> %
_	Sustainable (e.g., 6-hour) load reductions	15% – 20%

Thermal storage (commercial buildings)

Peak load reduction @ 10% penetration:
 up to 5%

Residential photovoltaic generation (3 kW- 5 kW each)

0% – 6% penetration (annual energy saved):0.1% – 3%

Low penetration: losses generally decreased
 High penetrations, uncoordinated deployment: can increase system losses

AEP Smart Grid Demo Project

Where to Get More Information

- Main website: www.gridlabd.org
- SourceForge main page:
 - http://sourceforge.net/projects/gridlab-d/
- Downloads site:
 - https://sourceforge.net/projects/gridlab-d/files/
- Documentation site:
 - http://sourceforge.net/apps/mediawiki/gridlab-d/index.php?title=Main_Page
- List of technical papers:
 - http://sourceforge.net/apps/mediawiki/gridlab-d/index.php?title=Related_Papers
- Bug reporting site:
 - http://sourceforge.net/apps/trac/gridlab-d/
- User forum site:
 - http://sourceforge.net/projects/gridlab-d/forums

GridLAB-D Project Contacts

DOE PM: Dan Ton (dan.ton@hq.doe.gov)

PNNL PI: David Chassin (david.chassin@pnnl.gov)

Support: Jason Fuller (jason.fuller@pnnl.gov)

Training: Kim Chamberlin (kim.chamberlin@pnnl.gov)