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    In the past, researchers have applied epidemiological models in the framework of complex social networks 

to explain dynamics of contagious diseases therein. This paper analyzes the same in the framework of a 
disaggregated network viz. the world as a ‘network’ disaggregated into diverse countries as ‘clusters’. First, 
the random matrix analysis carried out on WHO data on ‘Hepatitis/other viral’ infections of 13 countries 
for period 1985-2008, rules out systematic correlations in prevalence between countries or a ‘common 
influence’. Next the effect of disaggregation is discussed in terms of how the connectivity and population 
diversities affect epidemic threshold (λc). Connectivity, k is interpreted as a cultural determinant and 
estimated from ‘ethnic fractionalization’ data. Statistical analysis is used to estimate the model parameters- 
spreading rate, curing rate -and to examine the effect of population on prevalence. Agent-based modeling 
(abm) is employed to investigate the roles of k and population N. The analyses reveal that (i) the patterns of 
infection spreading from the model match well with those observed (ii) the differences in disease patterns 
of countries revealed by the disaggregated framework are actually a reflection of the heterogeneity across 
the countries. A less perfect power law fit is obtained for distribution of k. (iii) λc depends on not just k (as 
established in previous studies that higher k adversely affects epidemics) but actually on its interplay with 
population of the region/country. It turns out that isolation may not be as effective in lowering infection 
spread in crowded communities as in sparsely populated regions (iv) a small but positive significant effect 
of population on prevalence got from statistical analysis confirms the above (v) the result of abm’s for 3 
configurations – [N, k], [N, k/4] and [3N, k/4] is consistent with above findings. Thus disaggregated 
modeling framework explains disease dynamics in spatially separated regions in terms of their cultural and 
demographic aspects and the variations revealed are interesting.  

 
 

1. Introduction 
 

Spreading dynamics of infectious diseases has long captured the attention of researchers across various 
disciplines including physics and mathematics [1-2]. Both stochastic and deterministic epidemic models 
have been proposed to explain the outbreak and spread of contagious diseases. Some studies have focused 
on epidemic models based on applications of statistical mechanics in the framework of a complex social 
network [3]. These models enable us to understand the disease dynamics and make predictions by 
assuming a suitable network structure with certain connectivity and other properties which play a crucial 
role in prediction and understanding. It has been found at large that higher connectivity in any network 
makes it easier to spread infection from infected to susceptible individuals (nodes) due to their 
‘interactions’. However the role of ‘activity’ or ‘interaction’ in disease transmission studied does not 
always address issues of disease aetiology [4], which may depend on numerous factors such as spatial, 
cultural, demographic aspects. These factors are often omitted from mathematical models and more stress 
is laid on a suitable network structure to know when and how people get infected therein, rather than what 
happens when the network becomes disaggregated based on spatial, cultural and demographic differences. 
Geographic models may help us understand disease dynamics given the local structure of barriers and etc 
[5]. A common strategy since the time of Black Plague epidemics (14th century) to control geographic 
spread of diseases has been to inhibit movement, to isolate or “quarantine”. This way the probability of 
geographical disease may be negligible. As cited in [5] Gould (1989) said “ Ignoring spatial dimensions 
of an epidemic is like predicting the time of eclipse but being unable to tell people where they can see it” 
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Further WHO policies on disease control are based on the understanding of dynamics of disease 
transmission in the world as whole network. This is likely to work effectively by considering a 
disaggregated framework of the world that will lead to country specific knowledge. The differences in 
culture and populations of the spatially separated countries/regions lead to differences in patterns of 
infection spread over time. It is in terms of these factors that differences in patterns of disease reflect 
heterogeneity across the groups. One of the aims here is to see the extent of heterogeneity across a subset 
of countries. The paper mainly investigates the effect of disaggregation of the ‘world’ as a network into 
different (some) countries on disease dynamics therein, in terms of their cultural (ethno-linguistic and 
religious) and demographic (populations) aspects. 

 
This paper is organized as follows. Section 2 describes the data analyzed. The basic modeling framework 
and its implications are discussed in section 3. Random matrix analysis is shown section 4. Sections 5,6 
describe the cultural and demographic aspects and estimate the model parameters statistically. The effects 
of these aspects are shown by agent based modeling in section 7. The paper concludes with a discussion 
of key findings in section 8. 

 
2. Data  

 
   The paper uses data provided by WHO on yearly incidence, prevalence of common infections ‘Hepatitis, 

other viral’ for the time period 1985-2008 for 13 countries namely- Azerbaijan, Belarus, Georgia, 
Slovenia, Bosnia-Herzegovinia, Norway, Ireland, Denmark, Netherlands, Czechoslovakia, Iceland, 
Lithuania, Slovakia. They have been selected mainly according to the availability of data. The 
populations and ethnic fractionalization index data for these countries is used. The population growth rate 
for the countries considered is very small for the period of analysis. 

 
3. Model Dynamics 
 
3.1  Modeling Framework 
 
The dynamics of infection spreading through a network has been studied using the standard susceptible – 
infected –susceptible (SIS) model [3]. This ‘mean field’ model described below applies to a wide class of 
networks that exhibit bounded connectivity fluctuations. It is got by computing the change in number of 
infected individuals (or nodes) ni(t) at a time t given as: 
 
Δni(t) = ni(t+Δt) – ni(t) = - # of nodes Recovered in Δt + # of nodes Newly Infected in Δt 
                                               
                                    = - h ni(t) Δt + λk p(t) [N – ni(t)] Δt 
                                            (i)                      (ii) 
 
Δp   = -hp(t) + λk p(t) [1 – p(t)]                                                                                           (1a) 
Δt 
when Δt→0      dp  = -hp(t) + λk p(t) [1 – p(t)]                                                                    (1b) 
                         dt 
 
where N = total number of nodes in the network;  
          h = probability per unit time an infected node is cured (Curing rate); 
          λ = probability per unit time per link that a healthy node is infected (Spreading rate); 
          p(t) = fraction of infected nodes in the network at time t = ni(t)/ N 
          k = average connectivity 
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 Equation (1) can be divided into 2 parts because change in prevalence depends on 2 factors – (i) 
Recovery (R) and (ii) Incidence (I). These two can be thought of as outflux and influx respectively and 
prevalence is the net stock in the reservoir. Here of course we assume the recovered individuals are never 
fully immune. This SIS framework is apt for the kind of infection being studied here. 
At the steady state of infection transmission (and taking h=1), dp/dt =0 and from (1)  p = λ - λc                 
                                                                                                                                                  λ 

   implies       p = 0               if λ < λc 
and             p ~ λ - λc         if  λ ≥ λc 
 
where λc = 1/k is the epidemic threshold which specifies the phase transition of infection spread (from 
non-endemic to endemic state). 
 

  3.2  Departure 
 
Heterogeneity is introduced in the social network by dividing into almost disjoint clusters. The nodes 
within a cluster are uniformly connected with some average connectivity but connectivity between the 
clusters is sparse. In other words a community structure is seen in the social network which is 
disaggregated into homogenous groups. Heterogeneity may be observed across the groups based on 
differences in average connectivity, size etc. It may be noted that these clusters differ in terms of cultural 
and demographic aspects and may be considered spatially separated such that the probability of infection 
crossing barriers from one region/cluster to another is almost zero. In this set up equation (1) for 
dynamics of jth group changes to: 
 
Δpj        =  -hj pj(t) + λj kj pj(t) [sj – pj(t)]                                                         (2a) 
Δt 
dpj        =  -hj pj(t) + λj kj pj(t) [sj – pj(t)]                                                          (2b) 
dt 
 

(i)                  (ii) 
 
where hj, λj, kj,  pj= curing rate, spreading rate, average connectivity, probability of infection in jth group 
respectively. And sj is Nj/N , the relative population of jth group. 
 
In this case steady state infection condition changes as dpj/dt =0 and from (2)  pj = λj - λcj                                                          
                                                                                                                                        λj 
implies   pj =  0    if   λj  < λcj 
and         pj  ≥ 0    if   λj  ≥ λcj 
 
where  λcj =  hj     =   1         taking hj = 1    
                    kj sj           kj sj 
 
Some studies like [6] have focused on preventing epidemics by using community structure models to find 
critical immunization coverage for different communities. However this disaggregation analysis is 
intended to focus on specific groups by assuming that disease transmission across groups is negligible. 
The effect of disaggregation can be seen by comparing the epidemic thresholds for phase transitions in 
two cases - λc, λcj. The threshold for the disaggregated case depends on not just the average connectivity 
but the relative population of the cluster/region/country being considered; in fact it is the interplay of 
these two factors which determines the threshold.  
 
There could be 2 interpretations of the above mentioned dependence. One is that kjsj  may be interpreted 
as keff –the effective average connectivity of the jth group/network meaning if the population is higher, the 
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connectivity is bound to be large. However it must be distinguished from the case when average 
connectivity may not be affected by the population of the group/network. This is where cultural and other 
socio-epidemiological aspects play a key role in understanding the social structure of the network being 
considered and hence the epidemics therein. For instance ‘ethnic fractionalization’ in some social 
networks tends to be much higher than in others and also people may sometimes tend to isolate 
themselves especially in times of infection scare. These are some factors that impact k irrespective of the 
population of the cluster. Apart from that there are some latent socio-epidemiological factors which may 
impact the epidemics even when there are not many direct/immediate links. These factors become more 
crucial in some cases- for instance when diseases spread because of the individuals’ propensity to imitate 
the lifestyles of their group/social network. Ethnic fractionalization data may be a sort of indicator of all 
such kinds of direct and indirect linkages that matter. 
This means that the ‘demographic’ or population factor may adversely affect the epidemics of the 
region/country considered. Some of the very plausible reasons for this are that crowded communities 
offer low level of hygiene/ resources etc, airborne diseases are easily transmitted in crowded communities 
despite having lesser number of direct contacts. Thus it is this interplay of connectivity and population of 
the group that is interesting to compare given the data on different countries in the world. The role of 
above mentioned cultural and demographic factors is discussed and analyzed in detail in section 5. 

 
   
   4. Correlation Analysis 

 
The framework described above is a network- the world, disaggregated into different clusters- countries. 
Before moving on to data analysis this section investigates the presence of any explicit correlation or 
dependence between the prevalence rates of different countries. The model framework employed in this 
paper considers prevalence dynamics in each country/region as unaffected by any other region/country. 
With the tools of Random Matrix theory (RMT) and statistics, we try to justify this. RMT approach here 
is on exactly similar lines as that outlined in studies [7-8] for analyzing financial cross-correlations.   
 
We first construct the correlation matrix of ‘proportionate’ changes in yearly prevalence for 13 countries 
over a time period 1985-2008. 
Gi(t) =  pi(t+1) – pi(t)                           i = 1,2…..13 
                 pi(t) 
for ith country at time t. G is MxT matrix where M=number of countries and T=length of time considered. 
The correlation matrix C is constructed from entries of G for each of the M countries using the standard 
procedure and Cij = 1 implies complete correlation between countries i,j. Cij = 0 implies no correlation 
between countries i,j; Cij = -1 implies complete anti-correlation between countries i,j 
 
The properties (eigenvalues and eigenvectors) of C are compared with those of a ‘random matrix’ R 
constructed from purely random entries with mean 0 and variance 1 that are mutually uncorrelated. The 
probability density of eigen-values of R [9] is given by 
                   _______________ 
Prm(λ) = Q√ (Λ + - Λ) (Λ – Λ -)  ,                     
                        2π Λ 
 
where Q=T/M. RMT applies well in the limit of large M and T and Q>1 (fixed). Λ + and Λ - are maximum 
and minimum eigenvalues given as Λ ± = 1 + 1/Q ± 2√1/Q known as RMT bounds. (However RMT is 
known to apply well even when these restrictions about size and limiting distribution are relaxed). 
The largest e-value, Λ13 of C reflects the nature of correlations. If it deviates from RMT limit (>Λ +), it 
contains some systematic information and reflects the non-random character of the interactions. The 
closer it is to the trace of the C, more information it contains about actual correlations. Here Q =24/13 and  
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Λ + and Λ - are 3 and 0.07 respectively. The figure 1 below shows that the max(min)imum e-value of C is  
2.97 (0.07) just within or at the RMT bounds.  

 
 

Figure 1 (Left) Comparison of probability density of empirical correlation matrix C (given by bars) and that of random 
matrix R (shown by solid line) 
Figure 2 (Right) (i) (Top) Probability density of components of U13 ; (ii) (Bottom) Ethnic fractionalization of all 13 
countries versus corresponding contributions to U13 

 
This suggests that there is no evidence of any systematic correlations between countries in this 
ensemble as far as prevalence is concerned. Earlier work [10] has enunciated the relevance of Λ13 along 
with its eigenvector U13 in reflecting the presence or absence of a common influence (shock) on the 
whole ensemble depending on whether and how much it exceeds the RMT limits. Social scientists have 
modeled to see if ‘exogenous shocks’ [11] (e.g. improvements in health technology) affect the health in 
all countries alike or not. In figure 2(i), the pdf of U13 components clearly shows that the countries 
behave quite independently of each other’s or any common influence (shock) as both positive and 
negative components occur with finite probability. The contribution of every country in the ensemble to 
the magnitude of correlations (and anti-correlations) reflected by the square of corresponding 
components of U13.  

 
 

5. Ethnic Fractionalization, Population and Heterogeneity 
 

The prevalence patterns are different in every country. In the disaggregated modeling framework 
described above, the epidemics in each country/region, is seen to be dependent on the interplay of 2 
factors- connectivity and population. Hence the effect of disaggregation on epidemics is actually a 
reflection of the heterogeneity across the countries in terms of these. As argued previously, these factors 
may act independently and are determinants of cultural and demographic aspects respectively. 
Connectivity in any country/region is largely dependent on propensity of ‘herding’ to seek social capital 
[12] which often arises from ethno-linguistic, religious homogeneities.  
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The term ‘ethnic fractionalization’ is used by social scientists to refer to the extent of fragmentation 
occurring due diversity in language, ethnicity and religion. This is a cultural aspect and affects disease 
dynamics. The ethnic fractionalization index is commonly [13] defined as the probability that 2 
randomly selected individuals do not belong to same group. For the jth country of size Nj divided into Mj 
groups and mg being population of gth group, the index is given as : 

                  Mj 
EFj = 1 - ∑ (mg / Nj) 2 

                           g=1 
Assuming mg = Nj/Mj for all g, EFj = 1 – 1/Mj and so Mj = 1/(1-EFj). Of course this assumption may not 
hold strictly but on a large scale it does not make a big difference. EF is considered as a measure of 
heterogeneity both within and across the countries in the world and it may serve as a measure of 
average connectivity of the country. Say kg is a fraction f of the population of gth group in jth country i.e. 
kg=fmg = kj. The epidemic threshold λcj is now given as Mj / f sjNj . 
We find different values of k for different countries indicating heterogeneity. Figure 4 shows a less 
perfect fit to power law of cumulative probability of average connectivity P(k>x) computed from data 
on 30 countries taking f=10-4. If data on country-wise average connectivity were available, this 
estimation could be validated. The heterogeneity within countries is being ignored but on a large scale, 
bounded connectivity fluctuations may be assumed. It is interesting to see a positive relationship 
between EF of countries and corresponding components of U13 (Figure 2(ii)). Since EF is an indicator 
of average connectivity, it implies lower the connectivity of a country; more (not necessarily 
significant) is its contribution to correlations. EF has been found to be negatively correlated with 
economic growth; latter being associated with healthy countries [11,13].  

 
Another aspect in terms of which heterogeneity across countries/groups is described is their 
populations. No significant relationship between populations and magnitudes of U-13 components was 
found. The epidemic threshold depends inversely on population. As argued previously, isolation may 
bring down connectivity and hence the probability of infection but it may not help if the network 
population is very large. The following regression model would predict the effect of population on 
prevalence. (Note that the countries considered have a very small population growth rate per year) 
Pit   = α + β1 popi + β2 timet + εit 

 
where Pit is the prevalence rate in country i at time t, popi is the population of ith country relative to total 
population of all 13 countries, timet is time in years (1,2…) and εit is the error term. Table 1 below gives 
the results 

 
   
                      Estimate                      P-value    
------------------------------------- --------------------                                   R squared = 0.3, p-value<2e-16 
α                      0.00026                         0.0106                     
                        (0.0001)  
---------------------------------------------------------- 
pop                  8.067e-03                            0.1 
                        (0.00063) 
-----------------------------------------------------------                         
time                 -0.000036                       9.41e-14 
                        (0.0000046)                    

 
   Table 1 
 
   The result confirms that population has a small but positive and quite significant effect on prevalence. 

However R squared is low and the residuals are high. 
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     6. Estimation 
 

This section estimates the parameters (λ,h)Є [0,1]2. Two parts of equation (2) are analyzed separately as 
follows: 
In time Δt = 1 year for jth group, Δpj = - Rj + Ij where Rj(t) = hj pj(t)         (i)     

   and Ij(t) = aj pj(t) (sj-pj(t))       (ii)    where aj = λjkj   
 

We use data on Ij , Rj and pj and relative population sj to estimate aj , hj for all j (13 countries).  OLS is 
performed for (i) and (ii). Serial order correlation effects were not significant. Transformations did not 
increase significance. We report here the estimates from best models (least residuals) taking pj(t) as the 
predictor in (i) and pj(sj – pj) as the predictor in (ii). 

 
h = 1 was obtained for all cases (consistent with [3]) and  λj was determined from estimates of aj by fixing 
kj (computed using EFj). The table below summarizes the results on λ, k for all countries for different 
values of f and compare with threshold: 

 
Country Relative 

Population 
Ethnic 
Fractionalizatio
n Index 

Numb
er of 
group
s,  M 

f 
 
  
 

  k 
approx 
range 

λ λc Epidemic 
Observed 

Azerbaijan 0.1044 0.49 2 10-5 

10-4 
10-3 

40 
400 
4000 

0.21 
0.021 
0.0021 

0.24 
0.024 
0.0024 

Prevails,  
trails off to 
0 toward 
the end  

Georgia 0.0652 0.6543 3 10-5 

10-4 

10-3 

17 
170 
1700 

0.74 
0.074 
0.0074 

0.9 
0.09 
0.009 

No 
No 
No 

Belarus 0.1318 0.612 3 10-5- 10-3 34-
3400 

0.19-
0.0019 

0.22-
0.0022 

Prevails,  
trails off to 
0 toward 
the end  

Slovenia 0.0257 0.29 2 10-4-10-3 100-
1000 

0.21-
0.021 

0.38-
0.038 

No 

Bosnia 
Herzegovinia 

0.0457 0.69 3 10-4-10-3 117-
1170 

0.15-
0.015 

0.18-
0.018 

No 

Norway 0.0574 0.21 1 10-5-10-3 44-
4400 

0.17-
0.0017 

0.39-
0.0039 

No 

Ireland 0.0496 0.16 1 10-4-10-3 380-
3800 

0.12-
0.012 

0.05-
0.005 

Yes 

Denmark 0.0692 0.31 2 10-5-10-3 26-
2600 

0.32-
0.0032 

0.56-
0.0056 

No 

Netherlands 0.2023 0.722 4 10-5-10-3 39-
3900 

0.09-
0.0009 

0.13-
0.0013 

Yes 

Czech 
Republic 

0.1331 0.66 3 10-5-10-3 34-
3400 

0.15-
0.0015 

0.22-
0.0022 

No 

Iceland 0.0037 0.19 1 10-3 and 
lesser 

284 
and 
more 

0.9 and 
lesser 

0.95 
and 
lesser 

No 

Lithuania 0.0444 0.41 2 25 and 
lesser 

Out of 
range 

   

Slovakia 0.0692 0.57 2 10-5-10-3 27-
2700 

0.4 0.54 No 

Table 2 
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The results are based on approximate orders considered for f such that λЄ [0,1], the feasible range. The 
values of λ for different regions show the effect of disaggregation on disease spreading. The figures 3 
and 5 below confirm some of the findings. 
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Figure 3 Observed prevalence versus the prevalence obtained by model simulation shown for 2 countries-(1) 
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Figure 4 (Left) Log-log plot of Cumulative probability distribution of connectivity P(k>x) vs. k 
    Figure 5 (Right) Temporal evolution of Observed prevalence for Denmark and Netherlands 
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7. Agent Based Model 
 
   So far the effects of disaggregation of a network in terms of average connectivity and population have 

been analyzed. These factors may vary independently given the cultural and demographic diversity 
across the countries or clusters into which the network (world) is divided. It was found that epidemics 
in a disaggregated network depend mainly on the interplay of these two factors. And while isolation 
(lowering average connectivity) may work effectively in sparsely populated networks, it may not be the 
answer to epidemics in crowded networks. This section validates the above by explicitly comparing the 
disease transmission for 3 network configurations with parameters N, number of nodes and k, average 
connectivity. The schematic diagram below shows the sequence. To be seen first is the effect of 
lowering connectivity by fragmenting the network while keeping N fixed and second, the effect of 
increasing N at fixed k. An agent-based model (ABM) is simulated for each configuration (individuals 
as agents connected by links).  

 

 
    Figure 6 Sequence of network configurations used in simulation 
 

ABM’s have been found particularly useful as compared to analytical methods when the social network 
is more complex (e.g. scale free networks). The ABM’s built using data on the social structure, 
connections of a network have also been validated [14]. The purpose of doing this experiment here is to 
incorporate some randomness in the process. Studies have shown community structure arising from 
evolving network properties such as degree distribution, clustering etc [15]. However here, the 
homogeneity of the network is preserved while changing either k or N. Although broadly it is the SIR 
approach, here only the intermediate state is considered i.e. what happens before nodes are immunized 

H__H__I__H__H__H_ 
 |      |      |      |      |       | 
I__H__H__H__H__H_ 
 |      |      |      |      |       | 
H__H__H__I__H__H_ 
 |      |      |      |       |      | 
H__H__H__I__ H__ H_ 
 |      |      |      |       |      | 
N nodes, connectivity=k 

     _H__H__I__H__H__H 
  --------------------------------       
_I__H__H__H__H__H_ 
------------------------------------   
 N nodes, connectivity=k/4    
 
_H__H__I__H__H__H_ 
---------------------------------- 
  _H__H__H__H__H__I_ 
            

 2N nodes, conn=k/4 
 
H__H__I__H__H__H 
 |                                 |   
H__H__H__H__H__I  
------------------------------- 
H__H__H__I__H__H 
 |                                 |    
H__H__I__H__H__H 
------------------------------- 
H__I__H__H__H__H 
 |      |                           | 
H__H__I__H__H__H 
------------------------------- 
H__H__H__H__I__H 
 |                                 | 
H__H__H__H__H__I 

This figure gives an idea of the 
network configurations with 
different N and k using the 
example of simplest (lattice) 
structure. 
Nodes are labeled as : H- 
Healthy/Susceptible nodes and  
I- Infected nodes
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or removed permanently. This is valid for common infections for which humans remain susceptible 
even after being cured. The rules of simulation are as follows.  

(i) Start with a network structure of size N and pi proportion of infected nodes, average connectivity 
k. 

(ii) Specify an adjacency matrix A such that Aij is 1 if nodes i and j are linked and 0 otherwise.  
(iii) ‘Infected’ nodes are identified as 0 and ‘healthy/susceptible’ as 1.  
(iv) At each time step, every healthy node is checked. If it is linked to an infected node then with 

some probability δ, it will be infected due to that node. Thus more the links a node has to an 
infected node, more will be the chance of it being infected.  

(v) If a healthy node becomes infected, it’s status is changed to 0.  
(vi) Randomly pick an infected node and make it healthy.  
(vii) At the end of every time step review how the proportion of infected has changed. 
Next, the network of size N is divided into 2 clusters of size N/2 (very sparsely connected between 
them) so that average connectivity of each and of the network is k/2. The steps 2-7 are repeated to see 
the growth of infection. 
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     Figure 7 Prevalence patterns for 3 different combinations of N and k. 
 

The above procedure is repeated for the network of size N divided into 4 groups, average connectivity 
k/4. From figure 7 (left), it is evident that not only the rate of spreading but also the steady state 
probability of infection has reduced in this case. Now for this case the network size is increased 3 times 
keeping connectivity = k/4 and the same simulation is carried out. Figure 7(right) shows the difference 
caused by larger network size. It confirms that a crowded network has not only higher growth rate of 
infection but also higher steady state infection level. This is happening because despite fewer direct 
links between healthy and infected, higher population increases the number of paths for transmission. 
This means that isolating oneself does not guarantee safety in crowded communities. This is different f- 
rom what has been generally believed that higher population implies higher connectivity,spreading rate.    

 
 
   8. Conclusion 
 
   This paper analyzes the impact that disaggregation of a network (the ‘world’) into groups (countries) 

with different cultural and demographic features, has on disease dynamics. Application of RMT 
methods reveals (confirms) no systematic correlation in the prevalence between countries of the 
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ensemble. Nor is there any apparent common influence or shock (e.g. new health technology). The 
basic modeling framework applied in some previous studies is extended to yield country specific 
patterns. In particular, it is seen that epidemic threshold in the new framework depends on not just the 
connectivity but also the population of the region/country. It is argued that these constitute the cultural 
(ethno-linguistic, religious), demographic aspects and are independent. Heterogeneity across countries 
is examined in terms of these aspects. A less perfect power law fit is obtained for connectivity 
distribution. Interestingly, from RMT analysis, it is seen that countries with higher EF seem to 
contribute more (but not significantly) to correlations and it has been established earlier that EF is 
negatively correlated with economic growth and hence national health[11, 13]. Even though it has been 
constructed as a rough estimate of connectivity, the results seem consistent with observed patterns. It 
would be interesting to see if/how the results would change if the probability of infection spreading 
across clusters/countries is considered finite (>>0). 

 
Infection spreading and curing rates are estimated using statistical analysis of data on prevalence, 
incidence. The analytical results seem consistent with those observed. Population factor is found to 
have a small but positive and quite significant impact on prevalence. This is consistent with the results 
obtained by agent based simulation of 3 network configurations. It is confirmed that while lowering k 
brings down the prevalence rate and steady state probability of infection, both of these increase when 
population of the network increases at same level of k. While the disaggregated modeling framework 
brings out differences in disease patterns based on cultural, demographic diversities, it reveals 
unapparent yet interesting variations. For instance, during the same period, epidemic exists in 
Netherlands but disappears in Denmark.  Hence it is important to consider the demographics of the 
region to make sure if isolation is the answer to epidemics. Crowded/populated countries run greater 
risk of infection/epidemic. ‘More’ may not be ‘Merrier’ 
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