
Cristopher Moore, Santa Fe Institute	

!
!

joint work (over the years) with	

Xiaoran Yan, Yaojia Zhu, Lenka Zdeborová, Florent Krzakala, Aurelien Decelle, Pan Zhang,

Cosma Shalizi, Jacob Jensen, Jean-Baptiste Rouquier, Tiffany Pierce, Lise Getoor,	

Aaron Clauset, Mark Newman, Elchanan Mossel, Joe Neeman, and Allan Sly

Big Data Needs Smart Algorithms:	

Or, How Physics can Help Us

Explore Social Networks

We’re swimming in data: the challenge is doing something with it

Finding simple trends isn’t enough: we need to find structures and patterns in
this data, that let us

understand it

predict it

generalize from what we know to what we don’t

We need algorithms that do this automatically (often with a human in the loop)

Algorithms need to be scalable: n2 or n3 time on a data set of size n is too slow
if n=1 million

Not just computing power! Moore’s law isn’t enough—we need mathematical
insight to avoid/simplify the search

Big data needs big algorithms

Structure is that which...

makes data different from noise: makes a network different from a
random graph, from a background “null model”

helps us compress the data: describe the network succinctly, giving a
human-readable summary of important structures

helps us generalize from data we’ve seen from data we haven’t seen:
e.g. predict missing links from the links we know about

helps us understand what multiple networks have in common:
e.g. structure of food webs, from the Cambrian to today

helps us coarse-grain the dynamics, reducing the number of variables:
e.g. compartmentalized models in epidemiology

What is structure?

Statistical inference

Imagine that the network is created by a generative model, and fit the
parameters of this model to the data

Use whatever (partial, noisy) information we have to constrain the search...

attributes of some nodes are known, or known with some confidence

some links are known, others not observed yet (e.g. food webs)

some links might be false positives (e.g. gene regulatory networks,
protein interactions)

...and make good guesses about the information we don’t have:

label unknown nodes

predict missing links

identify anomalies

The stochastic block model

k types of nodes

we know the links between the nodes, but not their types

assumption: probability that two nodes are linked depends only on their types

assortativity / homophily: nodes connect more to others of the same type

disassortativity / heterophily: links between types instead of within

directed: links from i→j but not j→i

given a network, we want to simultaneously...

label the nodes with their types

learn how the types affect the probability of a link

functional groups, not just clumps

food webs: predators and prey

economics: suppliers and customers

word adjacencies: adjectives and nouns

social: leaders and followers

Assortative and disassortative

Classifying words with a ground state:
I record that I was born on a Friday

A little statistical physics

each labeling of the nodes is a “state”, like orientations of atoms in a magnet

If there are k types, there are kn possible states

if a state has energy E, then its probability is proportional to

!

!
so the “energy” of a state in the block model is

!

!

most likely labeling = “ground state” with lowest energy.

“free energy” = log of total likelihood of the model

entropy = how uncertain we are about the labeling

E =� log P

P / e�E

What’s the best labeling?

the most likely group assignment, or MAP (maximum a posteriori) estimate,
is the ground state: it maximizes P(G|t)

but there are good-looking ground states even when there no real communities!

e.g. random 3-regular graphs have bisections with only 11% of the edges
crossing the cut [Zdeborová & Boettcher]

indeed, there are many such bisections, and they have nothing in common!

Statistical significance

we don’t just want the best fit!

random graphs have illusory communities, that only exist because of noise

sometimes the patterns we find aren’t really there:

we want to understand the coin, not the coin flips

What’s the best labeling, redux

a better approach: for each vertex, compute its marginal distribution, i.e., the
probability that it is of each type

assign each node to its most-likely label

this achieves a higher “overlap” with the true labeling than the ground state:
it maximizes the expected fraction of nodes labeled correctly
(as opposed to the probability that they are all correct)

if communities are really there, marginals represent clusters of many solutions
that agree on most nodes...

if they’re not really there, likely labelings are uncorrelated with each other,
and the marginals are uniform (or they fail to converge, à la spin glasses)

the consensus of many likely solutions is better than the most-likely one

Optimization vs. robust fits

Modularity is a popular measure of
community structure... but don’t
optimize it!

The consensus of many good
solutions is better than the
“best” single solution

If no consensus exists,
there’s nothing really there

Reveals substructure in a
network of political blogs

[Zhang and Moore, 2014]
Image by Tiago de Paula Peixoto

Method #1:
Markov Chain Monte Carlo

update the labels one node at a time

choose a random node v

fix types of all other nodes

update v’s type according to its neighbors and the link probabilities

can speed up by introducing a temperature parameter:

simulated annealing

parallel tempering

but to obtain free energies or soft labels requires many independent samples:
too slow!

Method #2:
Belief propagation (a.k.a. the cavity method)

each node i sends a “message” to each of its neighbors j, giving i’s probability
distribution of types based on its other neighbors k

avoids the “echo chamber”

update messages, assuming that i’s neighbors are independent of each other...

each update takes O(n+m) time: iterate until we reach a fixed point

how long does it take to converge? does it give us good info when it does?

j

i

k

BP convergence: nearly size-independent,
but with critical slowing down at a phase transition

14

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1

co
nv

er
ge

nc
e

tim
e

ε= cout/cin

εc

q=4, c=16

N=10k
N=100k

FIG. 2. (color online): The number of iterations needed for convergence of the BP algorithm for two different sizes. The
convergence time diverges at the critical point ϵc. The equilibration time of Gibbs sampling (MCMC) has qualitatively the
same behavior, but BP obtains the marginals much more quickly.

so let us first investigate the influence of the perturbation of a single leaf kd, which is connected to k0 by a path
kd, kd−1, . . . , k1, k0. We define a kind of transfer matrix

T a
i ≡

∂ψki
a

∂ψki+1

b

∣

∣

∣

ψt=nt

=

[

ψki
a cab

∑

r carψ
ki+1
r

− ψki
a

∑

s

ψki
s csb

∑

r carψ
ki+1
r

]

∣

∣

∣

ψt=nt

= na

(cab

c
− 1

)

. (40)

where this expression was derived from (26) to leading order in N . The perturbation ϵk0

t0 on the root due to the

perturbation ϵkd
td

on the leaf kd can then be written as

ϵk0

t0 =
∑

{ti}i=1,...,d

[

d−1
∏

i=0

T ti,ti+1

i

]

ϵkd
td

(41)

We observe in (40) that the matrix T ab
i does not depend on the index i. Hence (41) can be written as ϵk0 = T dϵkd .

When d → ∞, T d will be dominated by T ’s largest eigenvalue λ, so ϵk0 ≈ λdϵkd .
Now let us consider the influence from all cd of the leaves. The mean value of the perturbation on the leaves is

zero, so the mean value of the influence on the root is zero. For the variance, however, we have

〈

(

ϵk0

t0

)2
〉

≈

〈

⎛

⎝

cd

∑

k=1

λdϵk
t

⎞

⎠

2
〉

≈ cdλ2d
〈

(

ϵk
t

)2
〉

. (42)

This gives the following stability criterion,

cλ2 = 1 . (43)

For cλ2 < 1 the perturbation on leaves vanishes as we move up the tree and the factorized fixed point is stable. On
the other hand, if cλ2 > 1 the perturbation is amplified exponentially, the factorized fixed point is unstable, and the
communities are easily detectable.

Consider the case with q groups of equal size, where caa = cin for all a and cab = cout for all a ̸= b. This includes the
Newman-Girvan benchmarks, as well as planted (noisy) graph coloring and planted graph partitioning. If there are q
groups, then cin +(q−1)cout = qc. The transfer matrix T ab has only two distinct eigenvalues, λ1 = 0 with eigenvector
(1, 1, . . . , 1), and λ2 = (cin − cout)/(qc) with eigenvectors of the form (0, . . . , 0, 1,−1, 0, . . . , 0) and degeneracy q − 1.
The factorized fixed point is then unstable, and communities are easily detectable, if

|cin − cout| > q
√

c . (44)

The stability condition (43) is known in the literature on spin glasses as the de Almeida-Thouless local stability
condition [39], in information science as the Kesten-Stigum bound on reconstruction on trees [40, 41], or the threshold
for census reconstruction [25], or robust reconstruction threshold [42].

[Decelle, Krzakala, Moore, Zdeborová]

if the link probabilities are different enough (e.g. more links within groups than
between groups) then we can find the communities, efficiently and accurately...

but there is a point beyond which no algorithm can!

[Decelle, Krzakala, Moore, Zdeborová; Mossel, Neeman, Sly]

A phase transition: undetectable communities

13

obeying detailed balance with respect to the Hamiltonian (8), starting with a random initial group assignment {qi}.
We see that Q = 0 for cout/cin > ϵc. In other words, in this region both BP and MCMC converge to the factorized
state, where the marginals contain no information about the original assignment. For cout/cin < ϵc, however, the
overlap is positive and the factorized fixed point is not the one to which BP or MCMC converge.

In particular the right-hand side of Fig. 1 shows the case of q = 4 groups with average degree c = 16, corresponding
to the benchmark of Newman and Girvan [9]. We show the large N results and also the overlap computed with
MCMC for size N = 128 which is the commonly used size for this benchmark. Again, up to symmetry breaking,
marginalization achieves the best possible overlap that can be inferred from the graph by any algorithm. Therefore,
when algorithms are tested for performance, their results should be compared to Fig. 1 instead of to the common but
wrong expectation that the four groups are detectable for any ϵ < 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ov
er

la
p

!= cout/cin

undetectable

q=2, c=3

N=500k, BP
N=70k, MCMC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ov
er

la
p

!= cout/cin

undetectable

q=4, c=16

N=100k, BP
N=70k, MC
N=128, MC

N=128, full BP

FIG. 1: (color online): The overlap (5) between the original assignment and its best estimate given the structure of the graph,
computed by the marginalization (13). Graphs were generated using N nodes, q groups of the same size, average degree c, and
different ratios ϵ = cout/cin. Thus ϵ = 1 gives an Erdős-Rényi random graph, and ϵ = 0 gives completely separated groups.
Results from belief propagation (26) for large graphs (red line) are compared to Gibbs sampling, i.e., Monte Carlo Markov
chain (MCMC) simulations (data points). The agreement is good, with differences in the low-overlap regime that we attribute
to finite size fluctuations. On the right we also compare to results from the full BP (22) and MCMC for smaller graphs with
N = 128, averaged over 400 samples. The finite size effects are not very strong in this case, and BP is reasonably close to the
exact (MCMC) result even on small graphs that contain many short loops. For N → ∞ and ϵ > ϵc = (c−

√
c)/[c+

√
c(q−1)] it

is impossible to find an assignment correlated with the original one based purely on the structure of the graph. For two groups
and average degree c = 3 this means that the density of connections must be ϵ−1

c (q = 2, c = 3) = 3.73 greater within groups
than between groups to obtain a positive overlap. For Newman and Girvan’s benchmark networks with four groups (right),
this ratio must exceed 2.33.

Let us now investigate the stability of the factorized fixed point under random perturbations to the messages when
we iterate the BP equations. In the sparse case where cab = O(1), graphs generated by the block model are locally
treelike in the sense that almost all nodes have a neighborhood which is a tree up to distance O(log N), where the
constant hidden in the O depends on the matrix cab. Equivalently, for almost all nodes i, the shortest loop that i
belongs to has length O(log N). Consider such a tree with d levels, in the limit d → ∞. Assume that on the leaves
the factorized fixed point is perturbed as

ψk
t = nt + ϵk

t , (39)

and let us investigate the influence of this perturbation on the message on the root of the tree, which we denote k0.
There are, on average, cd leaves in the tree where c is the average degree. The influence of each leaf is independent,
so let us first investigate the influence of the perturbation of a single leaf kd, which is connected to k0 by a path
kd, kd−1, . . . , k1, k0. We define a kind of transfer matrix

T a
i ≡

∂ψki
a

∂ψki+1

b

∣

∣

∣

ψt=nt

=

[

ψki
a cab

∑

r carψ
ki+1
r

− ψki
a

∑

s

ψki
s csb

∑

r carψ
ki+1
r

]

∣

∣

∣

ψt=nt

= na

(cab

c
− 1

)

. (40)

where this expression was derived from (26) to leading order in N . The perturbation ϵk0

t0 on the root due to the

[Zhang, Moore, Zdeborová]

suppose we are initially given the correct types for a fraction α of the nodes.
can we use this information to label the rest of the nodes?

when α crosses a threshold, knowledge percolates throughout the network,
causing a discontinuous jump in the accuracy

Another phase transition:
Generalizing from known nodes to unknown ones

The Karate Club: two factions

The Karate Club: leaders vs. followers

Two local optima in free energy

21

Depending on the initial parameters {na}, {cab}, it converges to one of two attractive fixed points in parameter space:

n(i) =

(

0.525
0.475

)

, c(i) =

(

8.96 1.29
1.29 7.87

)

,

n(ii) =

(

0.854
0.146

)

, c(ii) =

(

16.97 12.7
12.7 1.615

)

. (50)

For comparison, we also performed learning using MCMC for the expectation step; this network is small enough,
with such a small equilibration time, that MCMC is essentially exact. We again found two attractive fixed points in
parameter space, very close to those in (50):

n(i)
MC =

(

0.52
0.48

)

, c(i)
MC =

(

8.85 1.26
1.26 7.97

)

,

n(ii)
MC =

(

0.85
0.15

)

, c(ii)
MC =

(

16.58 12.52
12.52 1.584

)

. (51)

A first observation is that even though Zachary’s karate club is both small and “loopy,” rather than being locally
treelike, the BP algorithm converges to fixed points that are nearly the same as the (in this case exact) MCMC. This
is despite the fact that our analysis of the BP algorithm assumes that there are no small loops in the graph, and
focuses on the thermodynamic limit N → ∞. This suggests that our BP learning algorithm is a useful and robust
heuristic even for real-world networks that have many loops.

 1.5

 2

 2.5

 3

 3.5

 4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

- f
re

e
en

er
gy

interpolation parameter t

(b)

(i) (ii)

q=2, interpolation
q=3
q=4

FIG. 7. (color online): (a) The partitioning of Zachary’s karate club found by our inference algorithm using the first fixed point,
(i) in (50). The colors indicate the two groups found by starting with an assortative initial condition, i.e., where c11, c22 > c12.
The shades represent the marginal probabilities: a white node belongs to both groups with equal probability, whereas a node
that is solid red or solid blue belongs to the corresponding group with probability 1. Most of the nodes are strongly biased.
The ×s show the five nodes that are grouped together by the second fixed point, (ii) in (50), which divides the nodes into
high-degree and low-degree groups rather than into the two factions. (b) The negative free energy for parameters interpolating
between the two fixed points, with (i) at t = 0 and (ii) at t = 1. The two fixed points are local maxima, and each one has a
basin of attraction in the learning algorithm. As noted in [8], the high-degree/low-degree fixed point actually has lower free
energy, and hence a higher likelihood, in the space of block models with q = 2. The horizontal lines show the largest values of
the likelihood that we obtained from using more than two groups. Unlike in Fig. 6, the likelihood continues to increase when
more groups are allowed. This is due both to finite-size effects and to the fact that the network is not, in fact, generated by
the block model: in particular, the nodes in each faction have a highly inhomogeneous degree distribution.

Fig. 7 shows the marginalized group assignments for the division into two groups corresponding to these two fixed

points. Fixed point (i) corresponds to the actual division into two factions, and c(i)
ab has assortative structure, with

larger affinities on the diagonal. In contrast, fixed point (ii) divides the nodes according to their degree, placing
high-degree nodes in one group, including both the president and the instructor, and the low-degree nodes in the
other group. Of course, this second division is not wrong; rather, it focuses on a different kind of classification, into
“leaders” on the one hand and “students/followers” on the other. In Fig. 7(b) we plot the negative free energy (32)

achieved by interpolating between the two fixed points according to a parameter t, with cab(t) = (1− t)c(i)
ab + tc(ii)

ab and
similarly for na. We see that the two fixed points correspond to two local maxima, the second (ii) being the global

high/lowleft/right

[Decelle, Krzakala, Moore, Zdeborová]

What kind of structure do you want to find?

different models give different answers for the communities

we can compare each one to “ground truth” and judge its accuracy...

...or embrace the fact that they are sensitive to different kinds of structure

Blogs: vanilla block model
7

ing corrected and uncorrected blockmodels with K = 2,
we find the results shown in Fig. 1. As pointed out also
by other authors [11, 30], the non-degree-corrected block-
model fails to split the network into the known factions
(indicated by the dashed line in the figure), instead split-
ting it into a group composed of high-degree vertices and
another of low. The degree-corrected model, on the other
hand, splits the vertices according to the known commu-
nities, except for the misidentification of one vertex on
the boundary of the two groups. (The same vertex is also
misplaced by a number of other commonly used commu-
nity detection algorithms.)
The failure of the uncorrected model in this context

is precisely because it does not take the degree sequence
into account. The a priori probability of an edge be-
tween two vertices varies as the product of their degrees,
a variation that can be fit by the uncorrected blockmodel
if we divide the network into high- and low-degree groups.
Given that we have only one set of groups to assign, how-
ever, we are obliged to choose between this fit and the
true community structure. In the present case it turns
out that the division into high and low degrees gives the
higher likelihood and so it is this division that the algo-
rithm returns. In the degree-corrected blockmodel, by
contrast, the variation of edge probability with degree is
already included in the functional form of the likelihood,
which frees up the block structure for fitting to the true
communities.
Moreover it is apparent that this behavior is not lim-

ited to the case K = 2. For K = 3, the ordinary
stochastic blockmodel will, for sufficiently heterogeneous
degrees, be biased towards splitting into three groups by
degree—high, medium, and low—and similarly for higher
values of K. It is of course possible that the true com-
munity structure itself corresponds entirely or mainly to
groups of high and low degree, but we only want our
model to find this structure if it is still statistically sur-
prising once we know about the degree sequence, and this
is precisely what the corrected model does.
As a second real-world example we show in Fig. 2 an

application to a network of political blogs assembled by
Adamic and Glance [31]. This network is composed of
blogs (i.e., personal or group web diaries) about US pol-
itics and the web links between them, as captured on
a single day in 2005. The blogs have known political
leanings and were labeled by Adamic and Glance as ei-
ther liberal or conservative in the data set. We consider
the network in undirected form and examine only the
largest connected component, which has 1222 vertices.
Figure 2 shows that, as with the karate club, the uncor-
rected stochastic blockmodel splits the vertices into high-
and low-degree groups, while the degree-corrected model
finds a split more aligned with the political division of
the network. While not matching the known labeling ex-
actly, the split generated by the degree-corrected model
has a normalized mutual information of 0.72 with the la-
beling of Adamic and Glance, compared with 0.0001 for
the uncorrected model.

(a) Without degree-correction

(b) With degree-correction

FIG. 2: Divisions of the political blog network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The division in (b) corresponds
roughly to the division between liberal and conservative blogs
given in [31].

(To make sure that these results were not due to a fail-
ure of the heuristic optimization scheme, we also checked
that the group assignments found by the heuristic have a
higher objective score than the known group assignments,
and that using the known assignments as the initial con-
dition for the optimization recovers the same group as-
signments as found with random initial conditions.)

B. Generation of synthetic networks

We turn now to synthetic networks. The networks we
use are themselves generated from the degree-corrected

[Karrer & Newman]

Blogs: degree-corrected block model

7

ing corrected and uncorrected blockmodels with K = 2,
we find the results shown in Fig. 1. As pointed out also
by other authors [11, 30], the non-degree-corrected block-
model fails to split the network into the known factions
(indicated by the dashed line in the figure), instead split-
ting it into a group composed of high-degree vertices and
another of low. The degree-corrected model, on the other
hand, splits the vertices according to the known commu-
nities, except for the misidentification of one vertex on
the boundary of the two groups. (The same vertex is also
misplaced by a number of other commonly used commu-
nity detection algorithms.)
The failure of the uncorrected model in this context

is precisely because it does not take the degree sequence
into account. The a priori probability of an edge be-
tween two vertices varies as the product of their degrees,
a variation that can be fit by the uncorrected blockmodel
if we divide the network into high- and low-degree groups.
Given that we have only one set of groups to assign, how-
ever, we are obliged to choose between this fit and the
true community structure. In the present case it turns
out that the division into high and low degrees gives the
higher likelihood and so it is this division that the algo-
rithm returns. In the degree-corrected blockmodel, by
contrast, the variation of edge probability with degree is
already included in the functional form of the likelihood,
which frees up the block structure for fitting to the true
communities.
Moreover it is apparent that this behavior is not lim-

ited to the case K = 2. For K = 3, the ordinary
stochastic blockmodel will, for sufficiently heterogeneous
degrees, be biased towards splitting into three groups by
degree—high, medium, and low—and similarly for higher
values of K. It is of course possible that the true com-
munity structure itself corresponds entirely or mainly to
groups of high and low degree, but we only want our
model to find this structure if it is still statistically sur-
prising once we know about the degree sequence, and this
is precisely what the corrected model does.
As a second real-world example we show in Fig. 2 an

application to a network of political blogs assembled by
Adamic and Glance [31]. This network is composed of
blogs (i.e., personal or group web diaries) about US pol-
itics and the web links between them, as captured on
a single day in 2005. The blogs have known political
leanings and were labeled by Adamic and Glance as ei-
ther liberal or conservative in the data set. We consider
the network in undirected form and examine only the
largest connected component, which has 1222 vertices.
Figure 2 shows that, as with the karate club, the uncor-
rected stochastic blockmodel splits the vertices into high-
and low-degree groups, while the degree-corrected model
finds a split more aligned with the political division of
the network. While not matching the known labeling ex-
actly, the split generated by the degree-corrected model
has a normalized mutual information of 0.72 with the la-
beling of Adamic and Glance, compared with 0.0001 for
the uncorrected model.

(a) Without degree-correction

(b) With degree-correction

FIG. 2: Divisions of the political blog network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The division in (b) corresponds
roughly to the division between liberal and conservative blogs
given in [31].

(To make sure that these results were not due to a fail-
ure of the heuristic optimization scheme, we also checked
that the group assignments found by the heuristic have a
higher objective score than the known group assignments,
and that using the known assignments as the initial con-
dition for the optimization recovers the same group as-
signments as found with random initial conditions.)

B. Generation of synthetic networks

We turn now to synthetic networks. The networks we
use are themselves generated from the degree-corrected

[Karrer & Newman]

7

In this network two characters are connected by an edge
if they appear in the same chapter of the book. Fig-
ure 2b shows our algorithm’s partition of the network
into six overlapping communities and the partition ac-
cords roughly with social divisions and subplots in the
plot-line of the novel. But what is particularly interesting
in this case is the role played by the hubs in the network—
the major characters who are represented by vertices of
especially high degree. It is common to find high-degree
hubs in networks of many kinds, vertices with so many
connections that they have links to every part of the
network, and their presence causes problems for tradi-
tional, nonoverlapping community detection schemes be-
cause they do not fit comfortably in any community: no
matter where we place a hub it is going to have many con-
nections to vertices in other communities. Overlapping
communities provide an elegant solution to this problem
because we can place the hubs in the overlaps. As Fig. 2b
shows, our algorithm does exactly this, placing many of
the hubs in the network in two or more communities.
Such an assignment is in this case also realistic in terms
of the plot of the novel: the major characters represented
by the hubs are precisely those that appear in more than
one of the book’s subplots.
A similar behavior can be seen in our third exam-

ple, which is a transportation network, the network of
passenger airline flights between airports in the United
States. In this network, based on data for flights in
2004, the vertices represent airports and an edge be-
tween airports indicates a regular scheduled direct flight.
Spatial networks, those in which, as here, the vertices
have well-defined positions in geographic space, are of-
ten found to have higher probability of connection for
vertex pairs located closer together [26, 27], which sug-
gests that communities, if they exist, should be regional,
consisting principally of blocks of nearby vertices. The
communities detected by our algorithm in the airline net-
work follow this pattern, as shown in Fig. 3. The three-
way split shown divides the network into east and west
coast groups and a group for Alaska. The overlaps are
composed partly of vertices that lie along the geographic
boundaries between the groups, but again include hubs
as well, which tend to be placed in the overlaps even
when they don’t lie on boundaries. As with the previous
example, this placement gives the algorithm a solution
to the otherwise difficult problem of assigning to any one
group a hub that has connections to all parts of the net-
work, but it also makes intuitive sense. Hubs are the
“brokers” of the airline network, the vertices that con-
nect different communities together, since they are pre-
cisely the airports that one passes through in traveling
between distant locations. Thus it is appropriate that
they be considered members of more than one group. In
most cases the hubs belong most strongly to the commu-
nity in which they are geographically located, and less
strongly to other communities.

(a)

(b)

FIG. 2: Overlapping communities in (a) the karate club net-
work of [24] and (b) the network of characters from Les
Misérables [25], as calculated using the algorithm described
in this paper. The edge colors correspond to the highest value
of qij(z) for the given edge, while vertex colors indicate the
fraction of incident edges that fall in each community. For
vertices in more than one community the vertices are drawn
larger for clarity and divided into pie charts representing their
division among communities.

VI. NONOVERLAPPING COMMUNITIES

As we have described it, our algorithm is an algo-
rithm for finding overlapping communities in networks,
but it can be used to find nonoverlapping communities
as well. As pointed out by a number of previous au-
thors [22, 28, 29], any algorithm that calculates pro-
portional membership of vertices in communities can be
adapted to the nonoverlapping case by assigning each
vertex to the single community to which it belongs most
strongly. In our case, this means assigning vertices to
the community for which the value of θiz is largest. It
turns out that this procedure can be justified rigorously

8

Guam

American Samoa

Hawaii
Puerto Rico

FIG. 3: Overlapping communities in the network of US passenger air transportation. The three communities produced by the
calculation correspond roughly to the east and west coasts of the country and Alaska.

in our case by regarding the link community model as a
relaxation of a nonoverlapping degree-corrected stochas-
tic blockmodel. The details are given in Appendix C.
Here we give some example applications to show how the
approach works in practice.
As with the overlapping case, we test the method on

both synthetic and real-world networks. For the syn-
thetic case we use a standard test, the LFR benchmark
for unweighted undirected networks with planted com-
munity structure [30, 31]. To make comparisons simple
we use the same parameters as in Ref. [31] with networks
of 1000 and 5000 vertices, average degree 20, maximum
degree 50, degree exponent −2, and community expo-
nent −1. We also use the same two ranges of community
sizes, with communities of 10 to 50 vertices for one set
of tests (labeled S for “small” in our figures) and 20 to
100 vertices for the other set (labeled B for “big”). The
value of K for the detection algorithm was set equal to
the number of communities in the benchmark network
(which, because of the nature of the benchmark, is not a
constant but varies from one network to another).
To quantify our algorithm’s success at detecting the

known communities in the benchmark networks we use
the variant normalized mutual information measure pro-
posed in [31]. We note that this measure is different, and
in general returns different results, from the traditional

normalized mutual information used to evaluate commu-
nity structure [3], but using it allows us to make direct
comparisons with the results for other algorithms given
in [31].
In our benchmark tests we find that the simplistic

rounding method described above for nonoverlapping
communities, just choosing the community with the high-
est value of θiz , returns only average performance when
compared to the other algorithms tested in Ref. [31].
However, a simple modification of the algorithm produces
significantly better results: after generating a candidate
division into communities using the rounding method,
we then apply a further optimization step in which we
move from one community to another the single vertex
that most increases the log-likelihood of the division un-
der the stochastic blockmodel, and repeat this exercise
until no further such moves exist. This process, which is
easy to implement and carries little computational cost
when compared to the calculation of the initial division,
improves our results dramatically.
The results of our tests are shown in Figure 4. The

top panel shows the performance of the algorithm with-
out the additional optimization step and the results fall
in the middle of the pack when compared to previous al-
gorithms, better than some methods but not as good as
others. The bottom panel shows the results with the ad-

Overlapping communities

mixed-membership block model: each node has a mix of types, and can act
like different types on different edges

[Ball, Karrer, Newman]

Hierarchy

[Clauset, Moore, Newman]

Hierarchy

[Clauset, Moore, Newman]

Functional roles in a food web

Dealing with uncertainty #1:
Identifying groups of technologies

patents are documents, and have links (citations) between them

how can we identify groups of technologies, and understand how they depend
on each other?

test case: 1,000 microprocessor patents

using both text and links does better than using either one alone

[Zhu, Moore, Valverde]

arithmetic!!
multiplexer!
buses!
microinstructions!
microprograms

testing!
debugging!
emulator!
error!
traces!
embedding!
jumps!
halting

power!
reset!
frequencies!
pulses!
voltages!
sensing!
driving!
oscillators

protection!
transparent!
security!
multi-tasking!
encryption!
restricting

branching!
prediction!
concurrence!
speculation!
reordering

Dealing with uncertainty #2:
Predicting missing links

for many networks, links are discovered one at a time, using difficult work and
limited resources in the field or laboratory

given the links observed so far, can we predict missing links?

if there are spurious edges (false positives), can we identify them?

test the algorithm by hiding a random subset of edges from it, and ask it to rank
possible missing links according to their probability

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

Fraction of edges observed

Grassland species networkc

Pure chance

Common neighbors

Jaccard coefficient
Degree product

Shortest paths

Hierarchical structure

Predicting missing links:
comparison with simple heuristics

AUC: probably a random true positive is ranked above a random true negative

Predicting missing links:
comparison with simple heuristics

AUC: probably a random true positive is ranked above a random true negative

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

Fraction of edges observed

T. pallidum metabolic networkb

Pure chance

Common neighbors

Jaccard coefficient
Degree product

Shortest paths

Hierarchical structure

Predicting missing links:
comparison with simple heuristics

AUC: probably a random true positive is ranked above a random true negative

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

Fraction of edges observed

Terrorist association networka

Pure chance

Common neighbors

Jaccard coefficient
Degree product

Shortest paths

Hierarchical structure

Dealing with uncertainty #3:
Active exploration of networks

suppose we can learn a node’s attributes, but at a cost: interviews, surveys,
incentives, warrants

we want to make good guesses about most of the nodes, after querying just a
few of them — but which which ones?

query the node with the largest mutual information between it and the others:

!

average amount of information we learn about G–v we learn by querying v

high when we’re uncertain about v, and when v is highly correlated with others

[Moore, Yan, Zhu, Rouquier, Lane]

I (v,G �v) =H (v)�H (v |G �v)
=H (G �v)�H (G �v | v)

 0.1 0.3 0.5 0.7 0.9

0 1 2 3 4 5 6 7 8 9
of nodes queried

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

%
 v

er
tic

es
 a

bo
ve

 th
re

sh
ol

ds
Learning factions in the Karate Club

How does the algorithm explore the network?

An antarctic food web

 0.1 0.3 0.5 0.7 0.9

0 5 0 100 150 200 250 300 350 400 450 500
of nodes queried

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

%
 v

er
tic

es
 a

bo
ve

 th
re

sh
ol

ds

“unknown unknowns”

The story so far

statistical inference, powered by ideas from physics, and carried out with highly
scalable algorithms, lets us

detect communities

label nodes

predict missing links

these models and algorithms reveal phase transitions where communities
become detectable, or where knowledge suddenly spreads across the network

we can elaborate these models by adding discrete or continuous attributes:
degree distributions, edge types, social status, overlapping communities,
hierarchy, signed edges, document content...

but a cautionary note!

Everything is a steam enginea computeran economyan ecologya network

Sequence of outages in Western blackout, July 2 1996"

System Disturbances — 1996

NERC 26

Figure 1

from NERC 1996 blackout report"

A real cascade of line and generator failures

Shameless Plug	

To put it bluntly: this book rocks!
It somehow manages to combine
the fun of a popular book with
the intellectual heft of a textbook.

Scott Aaronson, MIT

www.nature-of-computation.org

http://www.nature-of-computation.org

