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319 data needs big algorithms

We’re swimming in data: the challenge is doing something with it

Finding simple trends isn’t enough: we need to find structures and patterns in
this data, that let us

understand it
predict it
generalize from what we know to what we don’t
We need algorithms that do this automatically (often with a human in the loop)

Algorithms need to be scalable: n? or n3 time on a data set of size n is too slow
If n=1 million

Not just computing power! Moore’s law isn’'t enough—we need mathematical
insight to avoid/simplify the search



What is structure?

Structure is that which...

makes data different from noise: makes a network different from a
random graph, from a background “null model”

helps us compress the data: describe the network succinctly, giving a
human-readable summary of important structures

helps us generalize from data we’ve seen from data we haven’t seen:
e.g. predict missing links from the links we know about

helps us understand what multiple networks have in common:
e.g. structure of food webs, from the Cambrian to today

helps us coarse-grain the dynamics, reducing the number of variables:
e.g. compartmentalized models in epidemiology



Statistical inference

Imagine that the network is created by a generative model, and fit the
parameters of this model to the data

Use whatever (partial, noisy) information we have to constrain the search...
attributes of some nodes are known, or known with some confidence
some links are known, others not observed yet (e.g. food webs)

some links might be false positives (e.g. gene regulatory networks,
protein interactions)

...and make good guesses about the information we don’t have:
label unknown nodes
predict missing links

identify anomalies



The stochastic block model

k types of nodes
we know the links between the nodes, but not their types
assumption: probability that two nodes are linked depends only on their types
assortativity / homophily: nodes connect more to others of the same type
disassortativity / heterophily: links between types instead of within
directed: links from i—] but not j—1
given a network, we want to simultaneously...
label the nodes with their types

learn how the types affect the probability of a link



Assortative and disassortative

functional groups, not just clumps

food webs: predators and prey

economics: suppliers and customers
word adjacencies: adjectives and nouns

social: leaders and followers
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A little statistical physics

each labeling of the nodes is a “state”, like orientations of atoms in a magnet
If there are k types, there are k" possible states

If a state has energy E, then its probabillity is proportional to

Pxe E

so the “energy” of a state in the block model is

E=—logP

most likely labeling = “ground state” with lowest energy.
“free energy” = log of total likelihood of the model

entropy = how uncertain we are about the labeling



What'’s the best labeling”

the most likely group assignment, or MAP (maximum a posteriori) estimate,
is the ground state: it maximizes P(Glt)

but there are good-looking ground states even when there no real communities!

e.g. random 3-regular graphs have bisections with only 11% of the edges
crossing the cut [Zdeborova & Boettcher]

indeed, there are many such bisections, and they have nothing in common!




Statistical significance

we don’t just want the best fit!
random graphs have illusory communities, that only exist because of noise

sometimes the patterns we find aren’t really there:

we want to understand the coin, not the coin flips



What's the best labeling, redux

a better approach: for each vertex, compute its marginal distribution, i.e., the
probability that it is of each type

assign each node to its most-likely label

this achieves a higher “overlap” with the true labeling than the ground state:
it maximizes the expected fraction of nodes labeled correctly
(as opposed to the probability that they are all correct)

if communities are really there, marginals represent clusters of many solutions
that agree on most nodes...

If they’re not really there, likely labelings are uncorrelated with each other,
and the marginals are uniform (or they fail to converge, a la spin glasses)

the consensus of many likely solutions is better than the most-likely one



Optimization vs. robust fits

Modularity is a popular measure of
community structure... but don’t
optimize it!

The consensus of many good
solutions is better than the
“best” single solution
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If no consensus exists, O\

there’s nothing really there  §&
Reveals substructure in a X
network of political blogs

[Zhang and Moore, 2014]
Image by Tiago de Paula Peixoto



Method #1:
Markov Chain Monte Carlo

update the labels one node at a time

choose a random node v

fix types of all other nodes

update v’s type according to its neighbors and the link probabillities
can speed up by introducing a temperature parameter:

simulated annealing

parallel tempering

but to obtain free energies or soft labels requires many independent samples:
too slow!



Method #2:
Belief propagation (a.k.a. the cavity method)

each node / sends a “message” to each of its neighbors j, giving i’s probability
distribution of types based on its other neighbors k

avoids the “echo chamber”
update messages, assuming that /’s neighbors are independent of each other...
each update takes O(n+m) time: iterate until we reach a fixed point

how long does it take to converge? does it give us good info when it does?



SP convergence: nearly size-independent,
but with critical slowing down at a phase transition
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[Decelle, Krzakala, Moore, Zdeborova]



A phase transition: undetectable communities
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if the link probabilities are different enough (e.g. more links within groups than
between groups) then we can find the communities, efficiently and accurately...

but there is a point beyond which no algorithm can!

[Decelle, Krzakala, Moore, Zdeborova; Mossel, Neeman, Sly]



Another phase transition:
Generalizing from known nodes to unknown ones
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suppose we are initially given the correct types for a fraction o of the nodes.
can we use this information to label the rest of the nodes?

when a crosses a threshold, knowledge percolates throughout the network,

causing a discontinuous jump in the accuracy )
[Zhang, Moore, Zdeborova]



The Karate Club: two factions




The Karate Club: leaders vs. followers
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What kind of structure do you want to find”?

different models give different answers for the communities

we can compare each one to “ground truth” and judge its accuracy...

...or embrace the fact that they are sensitive to different kinds of structure
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vanilla block model

3l0gs




Blogs: degree-corrected block model
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[Karrer & Newman]



Overlapping communities

mixed-membership block model: each node has a mix of types, and can act

like different types on different edges

Guam

American Samoa
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[Ball, Karrer, Newman]



Hierarchy
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[Clauset, Moore, Newman]



Hierarchy

[Clauset, Moore, Newman]



Functional roles in a food web




Dealing with uncertainty #1:
dentifying groups of technologies

patents are documents, and have links (citations) between them

how can we identify groups of technologies, and understand how they depend
on each other?

test case: 1,000 microprocessor patents

testing power
: : debuggin reset rotection :
arithmetic J9Lng : b branching
: emulator frequencies transparent . :
multiplexer ; prediction
error pulses security
buses . : concurrence
. : : traces voltages multi-tasking .
microinstructions : . : speculation
. embedding sensing encryption .
microprograms . ey . . reordering
jumps driving restricting
halting oscillators

using both text and links does better than using either one alone

[Zhu, Moore, Valverde]



Dealing with uncertainty #2:
Predicting missing links

for many networks, links are discovered one at a time, using difficult work and
limited resources in the field or laboratory

given the links observed so far, can we predict missing links?
if there are spurious edges (false positives), can we identify them?

test the algorithm by hiding a random subset of edges from it, and ask it to rank
possible missing links according to their probability



Predicting missing links:
comparison with simple heuristics

AUC: probably a random true positive is ranked above a random true negative

Grassland species network
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Predicting missing links:
comparison with simple heuristics

AUC: probably a random true positive is ranked above a random true negative

T. pallidum metabolic network
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Predicting missing links:
comparison with simple heuristics

AUC: probably a random true positive is ranked above a random true negative

Terrorist association network
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Dealing with uncertainty #3:
Active exploration of networks

suppose we can learn a node’s attributes, but at a cost: interviews, surveys,
Incentives, warrants

we want to make good guesses about most of the nodes, after querying just a
few of them — but which which ones?

query the node with the largest mutual information between it and the others:

I(v,G—v)=H(v)—-H(v|G—-7v)
=—HG—-v)—-H(G—-v|v)

average amount of information we learn about G-v we learn by querying v
high when we’re uncertain about v, and when v is highly correlated with others

[Moore, Yan, Zhu, Rouquier, Lane]



Learning factions in the Karate Club
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How does the algorithm explore the network”?




An antarctic food web
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The story so far

statistical inference, powered by ideas from physics, and carried out with highly
scalable algorithms, lets us

detect communities
label nodes
predict missing links

these models and algorithms reveal phase transitions where communities
become detectable, or where knowledge suddenly spreads across the network

we can elaborate these models by adding discrete or continuous attributes:
degree distributions, edge types, social status, overlapping communities,
hierarchy, signed edges, document content...

but a cautionary note!



Everything is arsetaasgegine



A real cascade of line and generator failures

Sequence of outages in Western blackout, July 2 1996
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from NERC 1996 blackout report




Shameless Plug

THE NATURE of
COMPUTATION

To put it bluntly: this book rocks!
It somehow manages to combine
the fun of a popular book with
the intellectual heft of a textbook.
Scott Aaronson, MIT

Cristopher Moore ¢ Stephan Mertens

www.nature-of-computation.org
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