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Stability criteria for complex ecosystems
Stefano Allesina1,2 & Si Tang1

Forty years ago, May proved1,2 that sufficiently large or complex
ecological networks have a probability of persisting that is close to
zero, contrary to previous expectations3–5. May analysed large
networks in which species interact at random1,2,6. However, in
natural systems pairs of species have well-defined interactions
(for example predator–prey, mutualistic or competitive). Here
we extend May’s results to these relationships and find remarkable
differences between predator–prey interactions, which are stabil-
izing, and mutualistic and competitive interactions, which are
destabilizing. We provide analytic stability criteria for all cases.
We use the criteria to prove that, counterintuitively, the probability
of stability for predator–prey networks decreases when a realistic
food web structure is imposed7,8 or if there is a large preponderance
of weak interactions9,10. Similarly, stability is negatively affected by
nestedness11–14 in bipartite mutualistic networks. These results are
found by separating the contribution of network structure and
interaction strengths to stability. Stable predator–prey networks
can be arbitrarily large and complex, provided that predator–prey
pairs are tightly coupled. The stability criteria are widely applicable,
because they hold for any system of differential equations.

May’s theorem deals with community matrices1,2,6 M, of size S 3 S,
where S is the number of species. Mij describes the effect that species j
has on i around a feasible equilibrium point (that is, species have
positive densities) of an unspecified dynamical system describing the
species’ densities through time.

In May’s work1,2, the diagonal coefficients are 21, and the off-
diagonal coefficients are drawn from a distribution with mean 0 and
variance s2 with probability C and are 0 otherwise. For these matrices,
the probability of stability is close to 0 whenever the ‘complexity’
s
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w1. Local stability measures the tendency of the system to
return to equilibrium after perturbations. In unstable systems, even
infinitesimal perturbations cause the system to move away from
equilibrium, potentially leading to the loss of species. Thus, it should
be extremely improbable to observe rich (large S) or highly connected
(large C) persistent ecosystems1,2. Mathematically, an equilibrium
point is stable if all the eigenvalues of the community matrix have
negative real parts1,2,6.

Local stability can only describe the behaviour of the system around
an equilibrium point, whereas natural systems are believed to operate
far from a steady state5,15. However, methods based on local stability are
well suited to the study of large systems1,16,17, whose empirical para-
meterization would be unfeasible. Moreover, the methods are general,
so that they can be applied to any system of differential equations.

May’s matrices have random structure: each pair of species interacts
with the same probability. However, this randomness translates, for
large S, into fixed interaction frequencies, so that these matrices follow
a precise mixture of interaction types. For example, in May’s matrices
predator–prey interactions are twice as frequent as mutualistic ones
(Supplementary Table 1). Here we extend May’s work to different
types of interaction, starting from the random case.

Suppose that two species j and i interact with probability C, and that
the interaction strength is drawn from a distribution: Mij takes the
value of a random variable X with mean E Xð Þ~0 and variance

Var(X) 5 s2. The diagonal elements of the community matrix, repre-
senting self-regulation, are set to 2d. For large systems, the eigenvalues
are contained in a circle18 in the complex plane (Fig. 1 and Supplemen-
tary Information). The circle is centred at (2d, 0) and the radius is
s
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. In stable systems, the whole circle is contained in the left half-
plane (that is, all eigenvalues have negative real parts). Thus, the
system is stable when the radius is smaller than d:
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In predator–prey networks, interactions come in pairs with opposite

signs: whenever Mij . 0, then Mji , 0. With probability C, we sample one
interaction strength from the distribution of jXj and the other from 2jXj,
whereas with probability (1 2 C) both are zero. The eigenvalues of large
predator–prey matrices are contained in a vertically stretched ellipse19,
centred at (2d, 0), with horizontal radius s
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and
thus the stability criterion is
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(Fig. 1 and

Supplementary Information).
When we constrain Mij and Mji to have the same sign, and thus

impose a mixture of competition and mutualism with equal probability,
the eigenvalues are enclosed in a horizontally stretched ellipse19 and
the criterion becomes
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(Fig. 1 and Sup-
plementary Information).

Take C 5 0.1, X , N(0, 1/4) (that is, X follows a normal distribution
with mean 0 and variance 1/4), and d 5 1. The criterion becomesffiffiffiffiffiffi
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v2 for random matrices, and is violated whenever S $ 41. For
predator–prey we find
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v2p= p{2ð Þ (violated for S $ 303) and
for the mixture of competition and mutualism
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(violated for S $ 15). Since E Xj jð Þ=sw0 for any distribution of X,
the stability criteria form a strict hierarchy in which the mixture matrices
are the least likely to be stable, the random matrices are intermediate,
and the predator–prey matrices are the most likely to be stable (Fig. 2
and Table 1). Considerations based on qualitative stability2 and
numerical simulations16 are consistent with this hierarchy.

In the three cases above, the mean interaction strength is zero, and
the coefficients come from the same distribution. In fact we can shuffle
the interaction strengths, thereby transforming a network of one type
into another: the difference in stability is driven exclusively by the
arrangement of the coefficients in pairs with random, opposite and
same signs, respectively. This feature allows us to further derive the
stability criteria for all intermediate cases by using linear combinations
of the three cases above (Supplementary Information).

Two ecologically important cases, however, cannot produce a mean
interaction strength of zero. In mutualistic networks all interactions
are positive, whereas in competitive networks they are negative. In
these cases, for large systems, all the eigenvalues except one (equal to
the row sum) are contained in an ellipse (Fig. 3 and Supplementary
Figs 1 and 2). In mutualistic networks in which all interaction pairs are
positive and drawn from the distribution of jXj independently with
probability C, the stability criterion becomes S{1ð ÞCE Xj jð Þ=svh
(that is, row sum , 0; Supplementary Information). For competitive
matrices, in which interaction pairs are drawn from the distribution of
2jXj with probability C, the criterion is
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(Supplementary Information). In both cases, stability decreases rapidly
with higher complexity, and mutualistic matrices are less likely to be
stable than their competitive counterpart (Fig. 2 and Table 1).

Having derived the stability criteria, we want to assess the effect of
imposing realistic food web structure within the predator–prey case. It is
believed that realistic food web structures should improve stability7,8,17.
In community matrices of food webs, producers have positive columns
and negative rows, with the opposite for top predators. To test whether
these variations affect stability, we plotted the eigenvalues for predator–
prey webs in which interactions are arranged, following the cascade20

and niche21 models. Imposing realistic structures results in eigenvalues
with larger real parts than the corresponding unstructured predator–
prey case (Supplementary Information and Supplementary Fig. 3).
Thus, the cascade and niche models produce networks that are less likely
to be stable than their unstructured predator–prey counterpart, with the
niche model having a larger discrepancy: imposing realistic food web
structure hampers stability.

Similarly, we measured the effect of realistic structures on mutualistic
networks. Several published mutualistic networks are bipartite11–14:
there are two types of node (for example plants and pollinators), and
interactions occur exclusively between different types. In addition,
bipartite mutualistic networks tend to be nested11: the interactions of
the specialists form a subset of those of the generalists. Nestedness is
believed to beget stability12–14. We plotted the eigenvalues for these two
types of structure and compared the results with those obtained for the
unstructured mutualistic case (Fig. 3, Supplementary Information and
Supplementary Fig. 4). As stated above, stability in mutualistic networks
is determined by the row sum. The bipartite case yields row sums that,
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Figure 1 | Distributions of the eigenvalues and corresponding stability
profiles. a, For X , N(0, s2), S 5 250, C 5 0.25 and s 5 1, we plot the
eigenvalues of 10 matrices (colours) with 2d 5 21 on the diagonal and off-
diagonal elements, following the random, predator–prey or mixture
prescriptions. The black ellipses are derived analytically in the text.
b, Numerical simulations for the corresponding stability profiles. For the
random case, starting from S 5 250, C 5 0.5, s 5 0.1 and d 5 1, we

systematically varied C (crosses) or s (plus signs) to obtain s
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spanning
[0.5, …, 1.0, …, 1.5] of the critical value for stability (indicated in red, 1 in the
case of random matrices). The profiles were obtained by computing the
probability of stability out of 1,000 matrices. The predator–prey case is as the
random but with s 5 0.5 and critical value p/(p2 2). The mixture case is as the
random but with critical value p/(p1 2). In all cases, the phase transition
between stability and instability is accurately predicted by our derivation.
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Figure 2 | Stability criteria for different types of interaction. We fixed
h 5 d/s 5 4, and for a given connectance C we solved for the largest integer S
that satisfies the stability criterion for each type of interactions. Combinations
of S and C below each curve lead to stable matrices with a probability close to 1.
The interaction types form a strict hierarchy from mutualism (most unlikely to
be stable) to predator–prey (most likely to be stable).
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for large S, are equal to the unstructured case. Accordingly, we did not
find a discrepancy in stability for the bipartite case. However, in nested
structures some rows and columns have sums that are larger than
average (generalist plants and animals). Consequently, nested matrices
are inherently less likely to be stable than unstructured ones. These
findings are confirmed by numerical simulations. Using the same
method, we found that asymmetric coupling of interaction strengths
(where each large Mij is coupled with a small Mji), contrary to current
expectations22, does not influence stability in mutualistic networks
(Supplementary Information and Supplementary Fig. 5).

We have considered how the arrangement of the interactions affects
stability, and have found several counterintuitive results. These results
can be accounted for by the fact that we provide a very conservative test
for the effects of structure on stability (Supplementary Information).
We now assess the role of the magnitude of interaction strengths. In
fact, our findings extend to any distribution of coefficient strengths
(Supplementary Information).

Typically, ecologists have regarded s as the ‘average interaction
strength’1,2. However, s does not provide information on weak inter-
actions9,10,17: we can have the same s for two distributions with distinct
shapes, and thus different proportions of weak and strong interactions
(Supplementary Information). We analyse how the shape of the dis-
tribution affects stability for fixed S, C, d and s. If the distribution
contains many weak interactions, the expected magnitude E Xj jð Þ<0.
In contrast, if weak interactions are rare, E Xj jð Þ<s. In the predator–
prey systems, lowering E Xj jð Þ decreases h

�
1{E2 Xj jð Þ=s2
� �

and thus

hampers stability. We conclude that weak interactions, contrary to
current beliefs9,10,17, can destabilize predator–prey systems. Weakening
the interactions shifts E Xj jð Þ closer to zero and therefore makes
predator–prey systems closer to their random counterpart. With the
same argument, weak interactions can stabilize the mixture of competi-
tion and mutualism case and have no effect on random networks.
Variability in interaction strengths was previously found to be
detrimental for stability in large food webs23 and competitive networks17.

For example, consider a uniform distribution X , U {s
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3
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,s
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and contrast it with the normal case X , N(0, s2). Both parameteriza-
tions lead to E Xð Þ~0 and Var(X) 5 s2. In the uniform case,
E Xj jð Þ~s
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2<0:866 s, whereas in the normal case E Xj jð Þ~
s
ffiffiffiffiffiffiffiffi
2=p

p
<0:798 s. This means that the uniform distribution, on

average, leads to stronger interactions than the corresponding normal
case. In turn, this has a large effect on stability: the criterion for the
predator–prey case becomes
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v4 h for the uniform distri-
bution, whereas it is
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vp= p{2ð Þh<2:75 h for the normal case.
The random case is unaffected by the choice of the distribution
(
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vh), whereas in the mixture of competition and mutualism
we have
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vph= pz2ð Þ<0:61 h for the normal case. These considerations
extend to any choice of distribution for the interaction strengths
(Supplementary Information and Supplementary Figs 6 and 7): weak
interactions, all other things being equal, are destabilizing for food
webs, stabilizing for mutualistic and competitive networks (and their
mixture), and have no effect on random networks.

Table 1 | Stability criteria for different types of interaction and network structure
Smax(C, h)

Interaction Stability criterion (0.1, 2.0) (0.1, 4.0) (0.2, 4.0)

Nested mutualism 9 28 18
Mutualism

S{1ð ÞC
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16 (15) 41 (51) 22 (20)

Bipartite mutualism 17 41 23
Mixture ffiffiffiffiffiffi
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17 (15) 62 (63) 38 (33)

Random
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vh 50 (40) 168 (160) 88 (80)

Niche predator–prey 149 461 245
Cascade predator–prey 298 1,134 535
Predator–prey ffiffiffiffiffiffi
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v

hp

p { 2
314 (302) 1,201 (1,211) 603 (605)

In all cases, the criterion is derived for large S 3 S matrices with X , N(0, s2) (and thus E Xj jð Þ~s
ffiffiffiffiffiffiffiffiffi
2=p

p
), connectance C and h 5 d/s. Numerical simulations report, for a given combination of C and h, the largest S

(Smax) yielding a probability of stability $ 0.5 (computed using 1,000 matrices). In parenthesis are the analytical predictions.
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Figure 3 | Distribution of the eigenvalues for the three types of mutualism.
a, Unstructured mutualism. b, Bipartite mutualism. c, Nested and bipartite
mutualism. In all cases, S 5 250, s 5 0.1, C 5 0.2 and d 5 1. Note that the
bipartite case does produce extreme negative real eigenvalues (green arrow)
coupled with positive ones, but the row sum (and thus the rightmost eigenvalue,

red arrow) is equal to that of the unstructured mutualistic case. The nested
matrices, in which generalist species yield (on average) larger row and column
sums, have larger rightmost eigenvalues. Thus, highly nested matrices are less
likely than the other two cases to be stable.
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We have derived stability criteria for unstructured networks in
which species interact at random, in predator–prey, mutualistic, and
competitive pairs. These results hold for arbitrary diagonal values and
arbitrary distribution of interaction strengths (Supplementary
Information). Our analysis shows that, all other things being equal,
weak interactions can be either stabilizing or destabilizing depending
on the type of interactions between species. In predator–prey systems,
realistic structure and weak interactions are detrimental for stability.
However, in natural food webs, which seem to persist in time, weak
interactions are preponderant24. The persistence of these networks
might be explained by the interplay between their structure and weak
interactions, even though each would be destabilizing if taken in
isolation. For example, as suggested previously2, generalist predators
could have weak interactions with their numerous prey, reducing the
effect of the realistic structure and driving the system closer to the
unstructured case.

Predator–prey systems differ markedly from the other cases studied
here. Suppose that a network is unstable. The system can be stabilized
either by lowering C, S or s (decreasing its complexity), or by increas-
ing the self-regulation d. This is in line with May’s argument: large and
highly interconnected systems are difficult to stabilize. For random
networks, reducing complexity is the only way to stabilize the system.
However, in the other cases, networks can be stabilized by altering the
distribution of interaction strengths; by modifying the parameters of
the system we can typically change the distribution of the off-diagonal
elements without altering the diagonal ones (Supplementary Informa-
tion). For competition, mutualism and their mixture, stability is
achievable by decreasing the average interaction strength E Xj jð Þ,
which is akin to lowering complexity. On the contrary, predator–prey
networks can be stabilized by increasing the strength of interaction
E Xj jð Þ, and thus the coupling between predators and prey. Predator–
prey systems are therefore the only ones that can potentially elude
May’s conclusions1,2 and support an arbitrarily large, complex and
stable ecological network.

Our results show that the ubiquity of consumer–resource relation-
ships in nature could be due to their intrinsic dynamical properties.
These findings are not limited to ecological networks, but instead hold
for any system of differential equations resting at an equilibrium point.
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