Greetings from Maui to China

The Hawaiian a-wiki-wiki vine

Evolved only in Hawai`i, endangered, and the source behind the term “wiki”.

Goals of my lectures:

- Introduce you to core concepts in **evolutionary computation**, a form of heuristic search:
 - **WHAT**: Representations & operators
 - **HOW**: No Free Lunch theorems
 - Knowledge incorporation
 - **WHY**: Spectral analysis
 - Rapid mixing and rapid first hitting time
 - Higher order phenomena

Evolutionary Computation

Lee Altenberg
University of Hawai`i at Manoa
altenber@hawaii.edu
http://dynamics.org/Altenberg/

- Living things possess functionality that people have sought to reverse-engineer:
 - Intelligence, flight, immunity, mechanical force, defenses, locomotion, vision, etc.
- EC: Reverse-engineer the process that produced complex adaptations in nature: Darwinian Selection.
When is Evolutionary Computation useful?

- When there is a problem where you know what you want, but you just don’t know how to go about getting it. (Hendrix, 1967)

- “We know what we want”, i.e.
 - We have a space $S = \{x\}$ of things to search;
 - and an objective function $y = F(x)$ that says how good each thing $x \in S$ is;
 - “But we just don’t know how to go about getting it.” i.e.
 - We don’t know the optimal x^*
 - We don’t have $x = F^{-1}(y)$ to compute x’s from maximal y’s.
- Known as the “inverse problem”.

Great source of inverse problems: complex systems!

- There can be complex mappings from system components to emergent behaviors
- Inverse problems exist in
 - physical,
 - mathematical, and
 - symbolic systems

For example:

Seismic waveform inversion

- Goal: determine subsurface geological structure.
- Data: Seismic waves traveling through strata are transformed by the strata into a signal.
- Inversion problem:
 - Given the waves and the structure, we can compute the signal.
 - Given the waves and the signal, we cannot compute the structure.
For example:

Neural Network Behavior

- **Goal:** create a neural network to execute a given mapping.
- **Inversion problem:**
 - Given a neural network, we *can* compute the mapping.
 - Given a mapping, it may be arduous or intractable to compute the *network structure* that would produce it.

For example:

Electronic Circuit Design

- **Goal:** create a circuit that behaves according to a specification.
- **Inversion problem:**
 - Given the circuit, we *can* compute the behavior.
 - Given the behavior, there may be no way to compute a circuit that produces it.

For example:

Traveling Salesman Problem

- 16 cities.
- 120 distances.
- 653837184000 circuits.
- Which circuits are shortest?
• Circuit length is an emergent property.
• It is not a property of cities, but of the relationship between cities.
• The number of possible relationships between objects increases vastly faster than the number of objects.

\[|\{\text{cities}\}| = N \]

\[|\{\text{circuits}\}| = (N-1)*(N-2)*(N-3)*\ldots*4*3 \]

For example: Evolved Art
From a long-gone interactive Web site
http://robocop.modmath.cs.cmu.edu:8001/htbin/mjwgenformII

- The evolved code that generates the image:

\[
\text{\begin{verbatim}
(cos (round (atan (invert y)) (+ (bump (+ (round x y) y) #(0.46 0.82 0.65) 0.02 #(0.1 0.06 0.1)) #(0.99 0.06 0.41) 1.47 8.7 3.7) (color-grad (round (+ y y) (log (invert x)) (+ (invert y) (round (+ y x))) (bump (warped-ifs (round y y) y 0.08 0.06 7.4 1.65 6.1 0.54 3.1 0.26 0.73 15.8 5.7 8.9 0.49 7.2 15.6 0.98) #(0.46 0.82 0.65) 0.02 #(0.1 0.06 0.1) #(0.99 0.06 0.41) 0.83 8.7 2.6)))) 3.1 6.8 #(0.95 0.7 0.59) 0.57)))) #(0.17 0.08 0.75) 0.37) (vector y 0.09 (cos (round y y))))
\end{verbatim}}
\]

- contemporary melodies,
- photo-realistic faces,
- jazz music
- architectural designs,
- electronic circuits,
- novel aircraft maneuvers,
- 2- and 3-dimensional art,
- original proteins.
For example:

Virtual Creatures

- Goal: create a virtual physical structure controlled by a program that can locomote in a virtual physics world of water or land.
- Inversion problem:
 - Given the structure and the program, we can compute the locomotion behavior.
 - Given the desired locomotion, we have no idea how to compute a structure and program that generates it.

Evolved Creatures by Karl Sims

- Sims simulated a virtual physical world and the behavior of block structures run by programs, “virtual creatures”.
- Starting with randomly generated block structures and controllers, he produced offspring using genetic operators, and selected for desired movement.
- Iteration in the Connection Machine evolved successful (and surprising!) locomotion behaviors

Representation of the creatures

![Figure 4a](image1.png) The phenotype morphology generated from the evolved genotype shown in figure 3.

![Figure 4b](image2.png) The phenotype “brain” generated from the evolved genotype shown in figure 3. The effector outputs of this control system cause paddling motions in the four flippers of the morphology above.

Elements of Darwinian Systems:
• As stated in the classical literature:
 • Heritable
 • Variation
 • In Fitness
• Stated as forces:
 • Selection and
 • Transformation

Heritable:
• 龙生龙,
• 凤生凤,
• 老鼠的儿子
• 会打洞.

Variation:
• 龙生凤,
• 凤生龙,
• 老鼠的儿子...

In Fitness:
• 跑得比风还快.
Selection & Transformation

- **SELECTION** is a *concentrating operator*
- **TRANSFORMATION** is a *diffusing operator*

Operating alone, neither selection nor transformation produce significant adaptation. Together, they can combine to create very powerful search dynamics.
Transformation alone:

The Darwinian Heuristic:

• When \(g_1 \) produces a variant \(g_2 \), there is a significant chance that
 1. \(g_2 \) is better than \(g_1 \), and
 2. \(g_2 \) can produce a still-better variant, \(g_3 \).

• The better the parent, \(g_1 \), the better the chance of producing an even better \(g_2 \).

• i.e. there is \textit{evolvability}.

• Thus iteration can continue the process.

Elements of Evolutionary Computation

1. Search Space — candidate solutions
2. Representation of the search space
3. Variation operators: transform elements of the search space into other elements
4. Objective function on elements of the search space
5. Selection operators: use the objective function to choose which elements to transform
6. Population: \(N \) individuals to be selected among and used as parents

Search spaces:

• Neural networks
• Function arguments
• Combinatorial spaces
• DNA sequence reconstructions
• Protein & DNA structure alignments
• Peptide structures
• Image recognition systems

• Cellular automata
• Seismic wave forms
• Process parameters
• Circuit designs
• Jet engine designs
• Scheduling sequences
• Computer programs
• Routing
• etc. etc.
2. **Representations:**

The actual data structures that represent the search space

Examples:
- The real numbers, \(R \), or vectors in \(R^L \)
- Binary strings, \(\{0,1\}^L \)
- Permutations, combinations
- Trees and weights (for neural networks)
- Generative grammars or algorithms
- Parse trees

3. **Variation Operators:**

i.e. “Genetic Operators”

Examples:
- Bit-flip mutation
- Gaussian, Cauchy, Scale-free, etc. random perturbations of real numbers
- Recombination
- Subtree exchange
- Permutations
4. **Objective functions**

Examples:

- Length of a Hamiltonian path in a graph
- Distance between a function and a desired function
- Energy efficiency of an engine
- Folding energy of an RNA strand configuration
- Score from playing a game with other individuals

5. **Selection**

Examples:

- Fitness proportional to objective function
- Tournament matches
- Ranking by objective function
- Truncation below a certain objective function value
- Fertility differences for pairs of parents
- Frequency-dependent selection based on population composition

6. **Populations**

- Collection of multiple individuals:
 - Between which selection acts
 - From which pairs are chosen if there is biparental transmission
 - That may interact with each other or other populations if there are game interactions
 - Which may be subdivided with migration between subpopulations
Basic Evolutionary Algorithm:

```plaintext
population := RandomTypes();
while (stopping_criteria == unmet)
    { population_xo := Recombine(population); 
    population_mut := Mutate(population_xo);
    population := Select(population_mut);  
    Update(stopping_criteria);}
```

Recombination

One-point crossover:

Recombination rate = r

- For every individual:
 - with probability 1 - r, offspring = parent;
 - with probability r, offspring is recombinant.

- If recombinant, pick a mate, pick a crossover point
- Offspring alleles are drawn from the parent up to crossover point, otherwise drawn from the mate.

Recombination code

One-point crossover:

```plaintext
• Recombine(population){
    for (i=1 to PopSize)
       if (RandomReal(0,1) < recombination_rate)
          offspring = population[i];
       else {
           parent1 = population[i];
           parent2 = population[RandomInt(1,PopSize)];
           XO_pt = RandomInt(0,L);
           for (locus=1 to L)
              offspring[locus] = If(locus <= XO_pt,
                                       parent1[locus], parent2[locus]);
           population_xo[i] = offspring; }
```  

Mutation

Mutation rate = m

- For every individual:
 - with probability 1 - m, offspring = parent;
 - with probability m, offspring is mutant.

- If mutant, pick a locus, randomly choose a replacement allele at this locus
Mutation code

One way to do it:

- `Mutate(population_xo){`
 - `for (i=1 to PopSize)`
 - `if (RandomReal(0,1) < mutation_rate)`
 - `offspring = population_xo[i];`
 - `else {`
 - `locus = RandomInt(1, L);`
 - `offspring[locus] = alphabet[Random(1, AlphabetSize)];`
 - `}`
 - `population_mut[i] = offspring; }`

Selection

For example, Proportional Selection:

- Compute mean objective function for the population
 \[\overline{w} = \sum_{i=1}^{N} w_i \]
- Sample N individuals from the weighted distribution:
 \[\text{Prob}(i) = \frac{w_i}{\overline{w}} \]

Selection code:

- `Select(population_sel){`
 - `for (i=1 to PopSize) {`
 - `fitness[i] = objective_function(population[i]);`
 - `fitness_sum += fitness[i];`
 - `for (i=1 to PopSize) {`
 - `sampleProb[i] = fitness[i] / fitness_sum;`
 - `CDF[i] += sampleProb[i];`
 - `for (i=1 to PopSize)`
 - `for (k=1 to PopSize)`
 - `if (RandomReal(0,1) > CDF[k]) {`
 - `population_sel[i] = population[k];`
 - `break;`
 - `}`
 - `}`

Example: “Hill Climbing”

- the “(1+1)” Evolution Strategy:
 - Population size = 1.
 1. Generate a variant from the parent
 2. Evaluate the objective function of the variant.
 3. If it is better than the parent, it replaces the parent. If not, return to 1.
Why is this called “hill climbing”?

- The variation generating operator defines the types that are “neighbors”—a topology.*
- Objective function values on this topology define a topography.
- The Hill Climber climbs a hill in this topography.

*or pre-topology (Stadler et al 2000)

Simulated Annealing

With one modification, hill climbing becomes SIMULATED ANNEALING

1. Generate a variant x' from the parent x.
2. Evaluate the objective function of the variant, $F(x')$.
3. If $F(x') > F(x)$, x' replaces the parent x. If not, x' replaces the parent with probability: $e^{(F(x') - F(x))/T}$
4. Gradually lower T, the “temperature” (annealing).
“Local Search”

• Evolutionary algorithms are often described as examples of “local” search.
• But what does “local” really mean?
 • It means that new points are sampled “nearby” points that have already been sampled.
 • But what defines “nearby”?

“Nearby”

• Extrinsic definition:
 • “nearby” means close with respect to some metric, like Euclidean distance or Hamming distance.
• Intrinsic definition:
 • “nearby” is whatever the variation operator picks as a variant.

Q. What matters to the search algorithm?
A. The intrinsic definition.

The Adaptive Landscape metaphor

• There is often a “natural” topology with which to geometrize the search space.
• Addition of the objective function to the topology generates a “topography” – the adaptive landscape
• Rugged landscapes are seen to be difficult for “local” search.
• But what if the search operator generates a different topology from the “natural” topology?

“Massive Multimodality”

\[F(x, y) = 21.5 + x \sin(4\pi x) + y \sin(20\pi y) \]

Mutation:

\((x, y) \rightarrow (x + \varepsilon, y + \xi) \)

where mutation is produced by random variables distributed as:

\[f(\varepsilon) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{\varepsilon^2}{2\sigma^2}} \]
\[f(\xi) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{\xi^2}{2\sigma^2}} \]
• There is no reason the representation has to be the “natural” one.

• Rewrite the representation in terms of phase and wave number: \(x = n_1 L_1 + p_1, \ y = n_2 L_2 + p_2, \)
 where \(L_1 = 1/2, L_2 = 1/10, n_1, n_2 \in \mathbb{Z}, \ p_1, p_2 \in \mathbb{R} \mod 1 \) The adaptive landscape becomes smooth.

...which is equivalent to a change in the mutation operator:

• From: \((x, y) \to (x + \varepsilon, y + \xi) \)

• To: \((x, y) \to (x + \varepsilon + \nu, y + \xi + \mu) \)

where mutation is produced by random variables distributed as:

\[
\begin{align*}
 f(\varepsilon) &= \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{\varepsilon^2}{2\sigma^2}} \\
 f(\xi) &= \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{\xi^2}{2\sigma^2}} \\
 f(\nu) &= f(\mu) = 1/2 \quad \text{for } \nu, \mu \in \{-1, 1\}
\end{align*}
\]

Do Evolutionary Algorithms Work?

• Often, quite well.

Evolving Gas Turbine Combustor Design
“As good as it gets”: the ONEMAX problem

\[F(x) = \sum_{i=1}^{L} x_i, \ x_i \in \{0, 1\} \]

• Global optimum \(x=(111111\ldots111) \) found in \(O(L) = O(\log n) \) samples using bit-flip mutation

Wolpert and MacReady (1995), “No Free Lunch” Theorems for search:

• Every search algorithm has the same average performance of over all permutations of the objective function on a search space.

• Evolutionary algorithms must incorporate knowledge of the search space to perform better than this average.

“As bad as it gets”: random search

\[F(x) = R(x) \]

• where \(R(x) \) is distributed like a random variable i.i.d.

• Global optimum found in exponential time, \(O(\exp^L) = O(n) \) samples using bit-flip mutation

For good EA performance...

Knowledge is necessary

An immediate consequence of this result is that the expected histograms, \(E(\bar{c}|f,m,a) = \sum_{c} P(\bar{c}|f,m,a) \), are on average identical between any two pairs of algorithms. More generally, at the point in their search where they have both created a population of size \(m \), the performance of any two algorithms (measured for example as the depth of the minimum found) is, on average, identical (the average being over all possible cost functions). In particular if \(a_1 \) has better performance than \(a_2 \) over some subset \(\phi \subset \mathcal{F} \) of functions, then \(a_2 \) must perform better on the set of remaining functions \(\mathcal{F} \setminus \phi \). So for example if simulated annealing outperforms genetic algorithms on some set \(\phi \), genetic algorithms must outperform simulated annealing on \(\mathcal{F} \setminus \phi \).
• “How best to convert knowledge concerning \(f \) into an optimal \(a \)?

The goal in its broadest sense is to design a system that can take in such knowledge concerning \(f \) and then solve for the optimal \(a \) given that knowledge.”

---Wolpert and MacReady (1995)

How is knowledge manifest in evolutionary algorithms?

• EAs as stochastic search algorithms
 • first hitting times of optima

• EAs as dynamical systems
 • rate of convergence to attractors containing the optima
 • fraction of the space occupied by these attractors.

Where is the knowledge?

• In the relationship between the fitness function, representation, and genetic operators.

No one or two of these contains the knowledge:

• The genetic operator acting on the representation produce the transmission function

• Knowledge is incorporated implicitly in the relation between the transmission function and the fitness function.
A Framework for Evolutionary Algorithms

- **Operators** (mutation, crossover, inversion, conversion, etc.) acting on the representation of the search space (genotypes, strings, programs, designs, etc.), generate a transmission function—the probability distribution of offspring types from any combination (one, two, etc., sometimes the whole population) of parent types.

- The relationship between the transmission function and the fitness function is where knowledge is stored in the EA, and the main determinant the performance of the evolutionary algorithm.

The problem of knowledge

- We usually have some knowledge about the objective function and the natural representation.
- How do we convert this knowledge into representations and genetic operators that produce rapid discovery of the optima? – an open question.

References