

Moral: numerical methods can run amok in "interesting" ways...

- can cause distortions, bifurcations, etc.
- and these look a lot like real, physical dynamics...
- source: algorithms, arithmetic system, timestep, etc.
- Q: what could you do to diagnose whether your results included spurious numerical dynamics?

Moral: numerical methods can run amok in "interesting" ways...

- can cause distortions, bifurcations, etc.
- and these look a lot like real, physical dynamics...
- source: algorithms, arithmetic system, timestep, etc.
- Q: what could you do to diagnose whether your results included spurious numerical dynamics?
 - change the timestep
 - change the method

But beware machine ϵ ...

• change the arithmetic

So ODE solvers make mistakes.

...and chaotic systems are sensitively dependent on initial conditions....

...??!?

Shadowing lemma

Every* noise-added trajectory on a chaotic attractor is *shadowed* by a true trajectory.

Important: this is for *state* noise, not *parameter* noise.

(*) Caveat: not if the noise bumps the trajectory out of the

Section Trajectory

Time-slice sections of periodic orbits: some thought experiments

- pendulum rotating @ 1 Hz and strobe @ 1 Hz?
- pendulum rotating @ 1 Hz and strobe @ 2 Hz?
- pendulum rotating @ 1 Hz and strobe @ 3 Hz?
- pendulum rotating @ 1 Hz and strobe @ 1/2 Hz?
- \bullet pendulum rotating @ 1 Hz and strobe @ π Hz? (or some other irrational)

Computing sections

- If you're slicing in state space: use the "insideoutside" function
- If you're slicing in *time*: use modulo on the timestamp
- See Parker & Chua for more details

Aside: finding those un/stable manifolds

- Linearize the system
- \bullet Find the eigenvectors $\,E^s$ and E^u
- Take a step along Es; run time forwards
- Take a step along E^u; run time backwards
- See Osinga & Krauskopf paper for more details

These λ_i & manifolds play a critical role in the control of chaos...

Local-linear control* of a hyperbolic point

* e.g., via pole placement

Lyapunov exponents, revisited:

- *n*-dim system has $n \lambda_i$; $\Sigma \lambda_i < 0$ for dissipative systems
- λ_i are same for all ICs in one basin
- negative λ_i compress state space along *stable manifolds*
- positive λ_i stretch it along unstable manifolds
- biggest one (λ_1) dominates as $t \to \infty$
- positive λ_1 is a signature of chaos
- calculating them:
 - <u>From equations:</u> eigenvalues of the variational matrix (see variational system notes on CSCI5446 course webpage, which you can access from Liz's homepage.)
 - From data: various creative algorithms...

Calculating λ (& other invariants) from data

- The bible: H. Kantz & T. Schreiber, *Nonlinear Time Series Analysis*
- Associated software: TISEAN www.mpipks-dresden.mpg.de/~tisean
- A recent review article: EB & H. Kantz, "Nonlinear Time Series Analysis Revisited," CHAOS 25:097610 (2015)

Description of the program: lyap_k The program estimates the largest Lyapunov exponent of a given scalar data set using the algorithm of Kantz. Usage: lyap_k [Options]

Kantz's algorithm:

- 1. Choose point K •
- 2. Look at the points around it (ε neighborhood)
- 3. Measure how far they are from K
- 4. Average those distances
 5. Watch how that average grows with time (Δn)
- 6. Take the log, normalize over time \rightarrow S(Δn)
- 7. Repeat for lots of points K and average the $S(\Delta n)$

Option	Description	Default
-1# r	number of data to be used	whole file
-x# I	number of lines to be ignored	0
-c#	column to be read	1
-M# I	maximal embedding dimension to use	2
-m# r	minimal embedding dimension to use	2
-d# c	delay to use	1
-r# I	minimal length scale to search neighbors	(data interval)/1000
-R# 1	maximal length scale to search neighbors	(data interval)/100
-## 1	number of length scales to use	5
-n# r	number of reference points to use	all
-s# I	number of iterations in time	50
-t#	theiler window'	0
-o# (output file name	without file name: 'datafile'.lyap (or stdin.lyap if the data were read from stdin)
	verbosity level 0: only panic messages 1: add input/output messages 2: add statistics for each iteration	3
-h	show these options	none
r of the iter	Description of ion and each length scale the file contain ration tretching factor (the slope is the Lyapun for which a neighborhood with enough p	s a block of data consisting of 3 columns ov exponent if it is a straight line)

Calculating λ (& other invariants) from data

- Be careful! TISEAN has lots of knobs and its results are incredibly sensitive to their values!
- \bullet Use your dynamics knowledge to understand & use those knobs intelligently
- *Look* at the results plots. For example, do not blindly fit a regression line to something that has no scaling region (this is a good idea in general, of course)

Fractal dimension:

- Capacity
- · Box counting
- Correlation (d2 in TISEAN)
- Lots of others:
 - Kth nearest neighbor
 - Similarity
 - Information
 - Lyapunov
 - ...
- See Chapter 6 and §11.3 of Kantz & Schreiber

We've been assuming that we can measure all the state variables...

Delay-coordinate embedding "reinflate" that squashed data to get a topologically identical copy of the original thing.

Takens* theorem For the right τ and enough dimensions, the embedded dynamics are diffeomorphic to (and thus have same topology as) the original state-space dynamics. * Whitney, Mane, ... Note: the measured quantity must be a smooth, generic function of at least one state variable, and must be uniformly sampled in time.

Diffeomorphic: mapping from the one to the other is differentiable and has a differentiable inverse.

What that means:

- qualitatively the same shape (topology)
- have same dynamical invariants (e.g., λ)

Choosing m

m > 2d: sufficient to ensure no crossings in reconstruction space (Takens et al.)...

...but that may be overkill, and you rarely know \boldsymbol{d} anyway.

"Embedology" paper: $m > 2 \text{ d}_{\text{box}}$ (box-counting dimension)

TISEAN contains tools that help you do this (e.g., false_nearest)