
Exploring modularity and hierarchy in the

NK-landscape

Adam Campbell
University of Central Florida

Laura Feeney
Swedish Institute of Computer Science and Uppsala University

Orion Penner
University of Calgary

Meritxell Vinyals
Artificial Intelligence Research Institute(IIIA)

Spanish Scientific Research Council

Draft: 15 August, 2008
Please do not re-distribute.

Abstract

The NK-model is a well-known combinatorial optimization problem,
which can be interpreted as the minimization the total energy of a network
of coupled spins, where the energy contribution of each spin is determined
by the states of its neighbors.

One study[4] of the NK-model on a regular lattice suggests that lower
energy solutions can be obtained using a divide-and-conquer approach,
in which the network is partitioned into patches that are optimized in-
dependently of each other. This result is somewhat surprising, because
couplings between spins in different patches are not taken into account.
We note, however, that improvement is very small, though statistically
significant, and present only in certain parameterizations.

In this work, we reproduce a subset of these results and take advantage
of recent advances in the detection of modularity and community struc-
tures in real-world networks to study the effectiveness of the divide-and-
conquer strategy in non-lattice networks. We look at two cases, the purely
modular approach outlined above and a hierarchical approach, which al-
ternates between modular optimization and optimizing over the network.

In general, our results are not dissimilar to those above: we see small
differences, but find it difficult to argue that they are consistently sta-
tistically significant. This report presents intermediate results obtained
during the authors’ participation at the Santa Fe Institute Complex Sys-
tems Summer School.

1

1 Introduction

Simon[9] proposed the idea of nearly decomposable systems as a model for how
complexity can be addressed in both natural and constructed systems. In such
systems, the interactions between modules are weak and the subsystems behave
nearly independently. This means that some interactions are relatively less im-
portant than others and can be ignored, with minimal effect on the functioning
of the system. This powerful notion has been applied in many fields, including
social sciences, psychology and artificial intelligence and engineering design.

The theory of nearly decomposable systems can also be applied to optimiza-
tion problems. Common optimization procedures are intended to improve per-
formance of the system as a whole. In the case of hard (usually NP-Complete)
optimization problems, this approach is often infeasible due to the large size
and complexity of the solution space. Partitioning or modularization is a way
of exploiting the problem structure to obtain a near-optimal solution at lower
computational cost.

Kauffman and co-authors have studied this approach in the context of opti-
mization on the NK landscape. The NK landscape[3] is an optimization prob-
lem in which the goal is to minimize total system energy for a collection of spin
states, where the contribution of each spin depends on the state of K other
spins1. Kauffman and co-authors have also studied[4] the effect of partitioning
on an NK landscape consisting of a regular lattice, where each spin is coupled
with its K nearest neighbors on the lattice.

This lattice has a natural partitioning into square patches, each of which
can be optimized “selfishly”, minimizing the total energy of the patch, without
regard to the whether the chosen configuration leads to a global minimum. The
surprising result of this work is that, as K increases, there is an intermediate
patch size which obtains a lower energy solution, relative to optimizing directly
over the entire lattice. That is, partitioning the lattice – ignoring some subset
of spin couplings while attempting to find an optimal configuration within each
patch – can obtain a lower total minimum energy! Kauffman and co-authors
further report that the patch size at which this occurs is associated with the
transition to a frozen state, which occurs “at the edge of chaos” (we do not ad-
dress this topic in our work). It should be noted, however, that the performance
difference, though statistically significant, is very small and is present only in
certain configurations.

The partitioning of a lattice into square patches defines a very simple kind of
structure. In the last few years researchers have proposed various algorithms [8]
[7] [1] [5] for finding the modular structures of complex real-world networks. To
the best of our knowledge, these algorithms have never been applied to exploit
the structure in optimization problems. In this work, we take advantage of
recent advances in the study of modularity and community structure in networks
to study the possibility of applying the divide-and-conquer approach described
above to optimization in more complex networks.

1In this work, we interpret the model in terms of minimizing energy.

2

Specifically, we apply the community detection algorithm defined in [5] to
partition a variety of non-lattice NK-landscapes and to study the effect on the
optimization process. We also test a hierarchical approach, where patches are
selfishly optimized, then combined into larger patches and re-optimized, using
the result of the previous optimization as the initial state. We continue to use
the NK-models presented above as a framework for or experiments.

This paper is structured as follows. The next four sections describe the NK
model and combinatorial optimization problem, the Glauber dynamics-based
solver, the partitioning algorithms, and some details about our implementation.
Our experimental results follow and are divided into three main categories:
replicating the results of [4]; modular and hierarchical optimization of NK-
landscapes for the case of “highly modular” and random networks; and the
complete solution of two small and computationally tractable NK models.

2 NK-landscapes

The NK-model proposed by Kauffman[3] defines a rugged energy/cost surface
or fitness landscape, where the number of interacting elements elements is con-
trolled by a parameter K. The model is very general because the elements can
be interpreted in many ways: in the biological context, as adaptation in a fit-
ness landscape; in a physical system, as the minimization of energy; or in an
economic context as the minimization of cost or maximization of gains. In this
work, we use the language associated with minimizing the energy associated
with an network of coupled spins.

More specifically, an NK-landscape is composed of N elements, each of which
can be in one of S states; typically they are modeled as binary states or spins.
Each element takes on an energy value that depends on the state of that element
and of K other elements. The energy function is a random function that maps
each of S(K +1) combinations of states to a fixed value. The value of K, which
can range from 0 to N − 1, determines the level of cross-coupling in the system.
For any given configuration, the energy of the system is defined as the average
of the energy of its elements. The optimization problem is to determine a set
of N states that minimizes the energy of the system.

Formally, in a NK-model each element i ∈ N defines an energy function:

Ei(si; si1 . . . sik) : SK+1 → < (1)

Where si is the state of the element i and si1 . . . sik are the states of K
elements, neighbors of i. Values of the energy function are drawn from a uniform
distribution on [0,1)..

The energy system for any given configuration of elements is defined as:

E(s1, . . . , sN) =
1
N

N∑
i=1

Ei(si; si1..sik) (2)

which is the average energy per element.

3

3 Optimization solvers

In this section we discuss the complexity of a solver that minimizes the energy
of systems as NK-landscape defined in section above.

Notice that an optimal solver has to find the system configuration that min-
imizes the system equation. Formally:

s∗ = mins∈S1×...×SN
E(s) (3)

Where S1 × . . . × SN are all possible system configurations. Notice that this
solver has the problem that it is exponential to the number of elements of the
system. This is because it has to explore SN possible solutions in order to get
the optimal one.

Therefore in order to avoid this combinatorial explosion different procedures
have been proposed in order to get a good solution for the system reducing the
complexity of the search.

One of this procedures is the Glauber dynamics procedure [6] that consists of
picking an initial configuration and flipping at each iteration a single spin if and
only if it minimizes the total energy of the system. Notice that this procedure
reduces the combinatorial explosion of an optimal solver by considering the
effect of flipping each element independently of other elements. However it may
not give the optimal solution. Imagine a system composed of two elements e1

and e2. The optimal state for the system is e1 = 1, e2 = 1 and the initial state
is e1 = 0, e2 = 0. Then if states e1 = 0, e1 = 1 and e1 = 1, e0 = 0 are both
lower than the initial state this procedure will find the solution. For all these
algorithms is necessary in order to find a solution that exists a sequence of states
such that:

• The first step is the initial state and the final state is the optimal system
state

• In all the sequence the state n+1 has a Hamming distance of 1 with respect
to the state n.

• The system energy lowers through all the states

This is equivalent to find a path that lowers the system energy in the N-bit
binary hypercube.

In what follows we introduce the solver used through all the experiments, a
random version of the Glauber dynamics procedure.

3.1 Random solver

The random solver is an implementation of the Glauber dynamics procedure
that chooses at each iteration one spin at random to update. Hence elements
are updated independently in a random order and flipped if they satisfy the
criterion. This solver updates the system, using update equations that depend
on a single element:

st+1
i = argmaxsi∈SE(si; st) (4)

4

At each time only one element is updated.

4 Partitioning algorithms

Imagine we partition the system into P non-overlapping partitions, where each
partition p is composed of a subset of elements, formally p1 ∪ . . . ∪ p|P | = N .
Then the energy of this system, formulated in Eq.2 , can be rewritten as the
sum of the energy over partitions:

E(s1, . . . , sN) =
1
N

∑
p∈P

N∑
i∈P

Ei(si; si1..sik) (5)

When the random solver, introduced in section above, is applied over a
partitioned system it updates at each iteration one patch, choosing randomly
one spin in such patch. There are different ways of partitioning a problem.
In what follows we introduce the techniques used in our experiments: regular
partitioning, fast community algorithm and random partitioning.

4.1 Regular partitioning

Regular partitioning divides the NK-landscape in regular patches, thus are
patches of the same size. It is the only partitioning algorithm used in the exper-
iments of Kauffman et al. in [4]. However this type of partitioning was defined
only over a lattice NK-landscape, where square regular patches gives a result
patches that maximize the number of intra-dependencies, thus are dependencies
among elements in the same patch.

4.2 Modular partitioning

Using square patches is a very natural way to partition a network where spins
are coupled spatially in a regular lattice. Inevitably, any partition will lead to
a structure in which many spin couplings are ignored, due to all the couplings
associated with spins on (or near) the edge of each patch.

To further explore the effect of modularity on the solution of NK-landscapes,
we would also like to consider cases where the network has a more a more
modular structure and it is possible to decompose the network into a structure
where few couplings are broken by the partition, reflecting Simon’s notion of
nearly decomposable systems.

There has been considerable work in the area of finding community struc-
tures in networks, whether they are biological, communication or social net-
works. In this work, we use a community finding algorithm due to Newman[5];
which has been efficiently implemented in the freely available igraph library [2].
The idea behind this mechanism is to divide the network such that the modular-
ity value, or difference between the number of inter and intra-partition edges,
is greater than can be expected by chance. One advantage of this approach

5

is that the size of partitions need not be set a priori, another advantage is its
computational efficiency. We have however, noted that the algorithm sometimes
struggles in k-regular regular graphs, producing results that do not correspond
to intuitive partitioning.

4.3 Random partitioning

The random patch generator generates patches at random and it is used to com-
pare if how we partition the problem matters or we can partition the problem
randomly in different patches of certain size and we get the same performance.to
the previously mentioned patching algorithms to determine if patching the prob-
lem using a more complex approach matters, or can patches be generated at
random and get the same performance.

When the model is spatial we generate random partitions of the problem
but consider the problem structure. We do this by using an spatial random
partition solver that starts with all elements in one partition. At each iteration
this algorithm creates a new partition by choosing at random one element of
an existing partition and tracing a line in that point with a random gradient.
Since the model is spatial, this line divides the existing patch in two new patches.
Notice that with this method elements in the same patch have always an spatial
relationship in the space. This algorithm also allows to specify the number of
desired partitions.

5 Implementation

5.1 Implementation of the NK-landscape

In this section we explain some details of our implementation of the NK-landscape.
The NK-Landscapes used throughout some of these experiments have up-

wards of 14400 spins (N=120), with each spin having up to a maximum of 24
neighbors (k=24). Each of the 224+1 possible neighborhood configurations for
each spin is assigned a random value, and to store all of these values in a lookup
table would require 14400 ∗ 225 entries. To remove the need for storing all of
these values, the implementation used throughout this paper does not store a
lookup table, rather it queries a pseudo-random number generator (RNG) for
the energy value of a particular configuration for a spin.

To be more precise, each of the 144000 ∗ 225 entries can be obtained by
mapping these values to an integer and then using that integer to seed a RNG.
After the RNG has been seeded we simply query it for the next floating point
number between zero and one.

To ensure that all of the entries are represented by a unique integer, a 64-bit
bitmask is used as the RNG’s seed. The dNe least significant bits hold the
spin’s id (the id of a spin is a unique number in the range [0, N − 1]), and
the next K least significant bits are used to keep track of the states of that

6

spin’s neighbors. The remaining bits can be used to hold a run number so that
different NK-Landscapes can be explored.

This method has two pitfalls. First of all, seeding the RNG each time we
need to obtain the energy for a particular state is very slow. For efficiency,
once the RNG has been seeded and the energy value has been obtained, it is
entered into a hash table. The hash table is then queried with the bitmask
before the RNG is seeded in order to reduce the number of RNG seedings. For
large values of K, the hash table can get large, and so a limit must be put on
its size. Another drawback of this method is that although most standard RNG
classes (such as Java’s) use a 64-bit seed, not all 64 bits are actually used. One
must ensure that the bitmask they are using is working as intended by either
using smaller values of N and K or by using a third-party RNG that uses all
64 bits of its seed.

6 Experimental results

We performed three major groups of experiments using this implementation of
the NK-model. These results include:

• Validating our implementation by replicating the results reported in [4].

• Optimization in high-modularity NK models using two approaches: the
purely modular approach of [4], in which each patch is optimized indepen-
dently, over n iterations; and the hierarchical approach, which uses the
modular approach for n/2 generations, followed by optimization over the
whole network for n/2 partitions.

• Study of two small (15 and 16 element) instances of an NK model. For
these models, it is possible to enumerate and compute all possible solu-
tions.

6.1 Replicating previous results

To verify our implementation, we begin by reproducing the results reported in
[4].

Specifically, the experiment compares the performance of regular partition-
ing when varying patch size on a toroidal spatial (lattice) NK-landscape with
N = 120 × 120 elements. The experiment is executed varying parameter K
(K = {4, 8, 12, 24}), thus varying the level of coupling of the 120x120 lattice
NK-landscape. The k neighbors of a particle i are chosen as the k closest par-
ticles in the lattice.

Figure 1 and Table 1 shows the final energy of the solution given by the ran-
dom solver when varying the patch size. Results are the averages of 3 different
instantiations of each 120x120 landscape for the same K. Error bars refer to the
standard deviation over the 3 different runs. We run the random solver for 10
generations (a generation is an update of N*N spins).

7

Figure 1: Reproducing the results reported in [4]. Energy vs patch size for
different K.

Although we note that our current experimental results are on a more limited
scale than [4], representing both fewer runs and fewer iterations, the results are
very close to those reported in the original experiment.

6.2 Highly modular networks: pure modular

An obvious network in which to study the impact of a modular structure on the
solution of an NK landscape is one that is “highly modular”, that is, it can be
partitioned such that the patches are nearly independent.

In order represent an NK landscape, such graphs must also be k-regular.
The graph structure that we use is shown in figure 2: The values n and k are
chosen such that n spins are evenly partitioned into patches of size k + 1. In
each patch, every spin is coupled with to each of the k other spins in the patch.
A small example of such a graph is shown in figure 2, for n = 25 and k = 4.
Here, three of the five spins in each patch have no external spin couplings and
two spins have three internal and one external. (Note that this pattern could
also be used to generate networks with 2, 3, or more extra-module links, giving

8

Patch
size
K

1 5 10 20 24 30 40 60 120

4 0.4094(0.0034) 0.2878(0.0008) 0.2856(0.0019) 0.2863(0.0011) 0.2858(0.0018) 0.2856(0.0002) 0.2867(0.0012) 0.2858(0.0017) 0.2854(0.0013)

8 0.4560(0.0024) 0.3013(0.0016) 0.3021(0.0010) 0.3011(0.0009) 0.3013(0.0021) 0.3016(0.0012) 0.3016(0.0010) 0.3030(0.0031) 0.3023(0.0002)

12 0.4721(0.0005) 0.3273(0.0014) 0.3071(0.0013) 0.3115(0.0009) 0.3115(0.0011) 0.3125(0.0009) 0.3128(0.0010) 0.3146(0.0011) 0.3152(0.0008)

24 0.4848(0.0021) 0.4099(0.0018) 0.3570(0.0030) 0.3391(0.0018) 0.3403(0.0005) 0.3415(0.0014) 0.3392(0.0020) 0.3429(0.0013) 0.3444(0.0002)

Table 1: Reproducing the results reported in [4]. Energy vs patch size for
different K (standard deviation in parenthesis).

Figure 2: A “highly modular” NK-landscape: N=25, K=4.

us progressive increase in modularity.)
Note that as k increases, each patch has only two external couplings. In other

words, the proportion of extra-modular spin couplings decreases with increasing
k. For these graphs, the structure of the graph is very clear and we do not need
to determine the partitioning algorithmically.

Results shown in Figures 3 (a)(b) and 4(a)(b) are the total energy that each
partition get after running 50 generations for different initial configurations of
one NK-landscape (a generation refers to an update of all elements of the system,
thus a total of N updates). The high-modular NK-landscape used has a N=900
and a parameter K that we vary between K = {3, 8, 14, 24}.

As we observe with small K the single partition has always better results but
as K increases this is not longer true. For K=24 for example we get better aver-
age results with the fast algorithm partitioning than with the non partitioning.

9

6.3 Highly modular networks: hierarchical

How to partition the problem is only the first approach in using partitions. We
can also define a hierarchy of partitions, a dendogram that defines after a number
of generations which partitions we recombine in order to get another one. In
this section we introduce experiments to test this hierarchy with recombination
at each level.

This experiment compares the performance of using the fast community al-
gorithm partitions with a single level of hierarchy. Thereafter, we run one half
of generations with the partitions defined by the fast community algorithm in-
troduced in section 4 and the other half of iterations with no partitioning (these
all partitions are recombined in the same level). Hence the best configuration
obtained using fast community algorithm algorithm partitioning is the initial
condition set when recombining them.

Results shown in Figures 5 (a)(b) and 6(a)(b) are the total energy that each
partition get after running 50 generations for different initial configurations of
one NK-landscape (a generation refers to an update of all elements of the system,
thus a total of N updates). The high-modular NK-landscape used has a N=900
and a parameter K that we vary between K = {3, 8, 14, 24}.

We can observe that with recombination the fast community algorithm get
better results also with small K (K = 4).

6.4 Experiments with small examples

When N is small, all of the possible spin configurations can be enumerated.
From each configuration we can do a minimization. The following experiments
do this for a four-by-four toroidal grid and a modular network containing fifteen
spins. For each of the two topologies, ten landscapes will be used, and with each
of the landscapes, thirty minimizations will be conducted. The experiments will
be used to investigate how minimizing with small patches and then combining
those patches and minimizing again affects the overall minimization of the sys-
tem.
Four-by-four example
With a four-by-four toroidal landscape, there are 216 = 65536 possible state con-
figurations. Each spin only looks at its immediate neighbors when calculating
its current energy.

The patches can be two-by-two squares, or two-by-four rectangles, or the full
four-by-four grid. The experiments show six different ways to do patching on
a four-by-four landscape: one four-by-four patch, four two-by-two patches, two
two-by-four patches, two-by-two then one patch, two-by-four then one patch,
two-by-two then two-by-four then one patch. For the last three experiments, the
landscape is minimized using Kauffman’s technique with the smaller patches.
After that minimization is complete, the patch sizes are increased, and the
minimization occurs again.

Table 2 shows the average amount of minimization that was done for each
landscape and patching scheme. (The standard deviations of those averages

10

4x4 2x2 2x4 2x2,4x4 2x4,4x4 2x2,2x4,4x4
1 0.191594 0.144709 0.168021 0.199145 0.201846 0.203826
2 0.192644 0.130890 0.165889 0.198108 0.200267 0.203162
3 0.185488 0.142352 0.173000 0.201660 0.200295 0.210427
4 0.207870 0.138629 0.184448 0.216184 0.222096 0.224965
5 0.192797 0.132923 0.171504 0.200215 0.204660 0.208792
6 0.188941 0.139611 0.170073 0.201766 0.200341 0.208864
7 0.190952 0.133361 0.170914 0.203251 0.208663 0.213565
8 0.195765 0.141773 0.176415 0.205496 0.211436 0.215508
9 0.176311 0.116055 0.157238 0.179297 0.187249 0.186483
10 0.187584 0.124285 0.167068 0.194806 0.198512 0.202516
avg. 0.190995 0.134459 0.170457 0.199993 0.203537 0.207811

Table 2: Ten different landscapes on a four-by-four toroidal grid. The top
row shows the types of patches used. The values indicate the average difference
between the initial configuration and configuration obtained after minimization.
These averages are obtained over all 65536 initial configurations and 30 different
minimizations. The bottom row gives the average of each column.

are shown in Table 3.) To obtain a value in this table, all 65536 spin-state
configurations of the grid are used as initial starting points for the minimization.
The difference between the initial configuration and the configuration after the
minimization are obtained for all 65536 starting points. The minimization for
each initial configuration was done thirty times. These values are then averaged
to obtain a single data point in Table 2. The values on the bottom row show
the average for each column. Note, larger values indicate better performance as
this implies the average minimization was larger.

The results indicate that the patching does increase the amount of mini-
mization. Also, a larger decrease in energy is noticed when the patching is done
multiple times.
Modular graph with 15 spins
A modular 15 spin network is used to examine the effects of patching on highly
modular networks. This network consists of three, five spin graphs. Each of
these three networks is fully connected, except for one link. The two spins that
are not connected are each connected to one of the other two graphs. Each
spin has an equal number of neighbors. The three patches consist of each of
the three clusters in the network. Table 4 shows the data obtained using this
network topology. The data is aggregated in the same way the data from Tables
2 and 3 were. When only three three-by-five patches are used, the minimization
does not get as low as when no patches are used. When the three-by-five patches
are used, and then minimization is done on the full network, the total energy is
always less than when no patches are used. Recall that the data is showing the
amount of minimization that occurred, so larger numbers are better.

11

4x4 2x2 2x4 2x2,4x4 2x4,4x4 2x2,2x4,4x4
1 0.000133 0.000211 0.000170 0.000127 0.000103 0.000099
2 0.000123 0.000221 0.000197 0.000136 0.000123 0.000131
3 0.000191 0.000298 0.000188 0.000116 0.000135 0.000128
4 0.000134 0.000203 0.000233 0.000147 0.000153 0.000145
5 0.000119 0.000165 0.000166 0.000162 0.000154 0.000124
6 0.000141 0.000231 0.000176 0.000146 0.000157 0.000140
7 0.000136 0.000315 0.000184 0.000161 0.000169 0.000203
8 0.000173 0.000332 0.000260 0.000205 0.000187 0.000185
9 0.000159 0.000220 0.000181 0.000141 0.000123 0.000123
10 0.000137 0.000266 0.000117 0.000117 0.000095 0.000105
avg. 0.007998 0.008965 0.007088 0.009241 0.009184 0.010088

Table 3: The standard deviations of the values given in Table 2.

1x15 3x5 3x5,1x15 1x15 3x5 3x5,1x15
1 0.170101 0.160546 0.174780 0.000178 0.000160 0.000125
2 0.178729 0.163231 0.182775 0.000164 0.000128 0.000160
3 0.182321 0.171179 0.187398 0.000263 0.000218 0.000210
4 0.209254 0.187871 0.212562 0.000284 0.000382 0.000303
5 0.168167 0.163774 0.179939 0.000193 0.000249 0.000144
6 0.191955 0.183375 0.199777 0.000229 0.000234 0.000199
7 0.158233 0.152263 0.165279 0.000118 0.000182 0.000170
8 0.203789 0.180371 0.207699 0.000245 0.000270 0.000216
9 0.184925 0.185193 0.200719 0.000238 0.000288 0.000242
10 0.184904 0.168550 0.189469 0.000189 0.000186 0.000197
avg. 0.183238 0.171635 0.190040 0.015730 0.012028 0.015041

Table 4: Ten different landscapes on a modular, 15 spin, network. The top
row shows the types of patches used. The values indicate the average difference
between the initial configuration and configuration obtained after minimiza-
tion. These averages are obtained over all initial configurations and 30 different
minimizations. The left columns show the averages, and the three right-most
columns show the standard deviations of those averages. The bottom row gives
the average of each column (or the standard deviation of that average in the
three right-most columns).

12

7 Conclusions

We have studied the effectiveness of modularization and hierarchy in solving the
combinatorial problem of minimizing energy on an NK landscape, extending the
results of [4] to the case of non-lattice networks. Our results are similar to previ-
ous results: while modularization and hierarchy can find lower energy solutions,
the differences are small and are not necessarily statistically significant.

Acknowledgments

This work was partially supported by the Santa Fe Institute whose research and
education programs are supported by core funding from the National Science
Foundation and by gifts and grants from individuals, corporations, other foun-
dations, and members of the Institute’s Business Network for Complex Systems
Research.

References

[1] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure
in very large networks. Physical Review E, 70:066111, 2004.

[2] G. Csardi and T. Nepusz. The igraph library for complex network research,
2008. version 0.5.

[3] S. Kauffman and S. Levin. Towards a general theory of adaptive walks on
rugged landscapes. J Theor Biol, 128:11–15, 1987.

[4] S. Kauffman, W. Macready, and E. Dickinson. Divide to coordinate: Co-
evolutionary problem solving. Working Paper No. 94-06-031, The Santa Fe
Institute, 1994.

[5] M. E. J. Newman. Finding community structure in networks using the
eigenvectors of matrices. Physical Review E (Statistical, Nonlinear, and Soft
Matter Physics), 74(3), 2006.

[6] R.Glauber, 1963.

[7] M. Rosvall and C. T. Bergstrom. An information-theoretic framework for
resolving community structure in complex networks. PNAS, 104(18):7327–
7331, May 2007.

[8] M. Rosvall and C. T. Bergstrom. Maps of random walks on complex net-
works reveal community structure. Proceedings of the National Academy of
Sciences, pages 0706851105+, January 2008.

[9] H. A. Simon. The Sciences of the Artificial - 3rd Edition. The MIT Press,
October 1996.

13

(a) Comparison of performance using different partitions in high-modularity graphs with
N = 900 and K = 3

(b)
Com-
par-
i-
son
of
per-
for-
mance
us-
ing
dif-
fer-
ent
par-
ti-
tions
in
high-
modularity
graphs
with
N =
900
and
K =
8

Figure 3: Partitioning experiment in high-modular graph with K=3 and K=8

14

(a) Comparison of performance using different partitions in high-modularity graphs with
N = 900 and K = 14

(b) Comparison of performance using different partitions in high-modularity graphs with
N = 900 and K = 24

Figure 4: Partitioning experiment in high-modular graph with K=14 and K=24

15

(a) Comparison of performance using fast community algorithm with recombination in
high-modularity graphs with N = 900 and K = 3

(b) Comparison of performance using fast community algorithm with recombination in
high-modularity graphs with N = 900 and K = 8

Figure 5: Hierarchical experiment in high-modular graph with K=3 and K=8
16

(a) Comparison of performance using fast community algorithm with recombination in
high-modularity graphs with N = 900 and K = 14

(b) Comparison of performance using fast community algorithm with recombination in
high-modularity graphs with N = 900 and K = 24

Figure 6: Hierarchical experiment in high-modular graph with K=14 and K=24
17

