An evolutionary view of technological progress

Complex systems summer school July 2, 2014

J. Doyne Farmer

Institute for New Economic Thinking at the Oxford Martin School and Mathematical Institute External Professor, Santa Fe Institute

Outline of talk

- Motivation
 - technology as evolutionary process
 - understanding economic growth
 - economic mitigation of global warming
- Empirical study of rates of technological change
- Empirical laws for technological improvement
 - Wright's law
 - Moore's law
- Recipe model for Wright's law
- Analogy to autocatalytic networks
- Evolutionary extension of Leontief model
- Patent history as fossil record

Technology is an evolutionary process

Technology co-evolved with genus homo First tool use, homo habilus, 2.3M yrs ago.

Darwin among the machines (Samuel Butler, 1863)

- Evolution in the Darwinian sense:
 - descent with modification and selection

Erewhon (1872)

Butler imagined technology competing with humanity: "In the course of the ages we shall find ourselves the inferior race"

The noosphere

Pierre Teilhard de Chardin

de Chardin envisioned biology, technology and culture co-evolving to form a greater whole, the "noosphere".

Biological vs. technological evolution (see Sole et al., Complexity, 2012)

- Similarities
 - -Both driven by selection
 - -Both result in diversity
 - -Incremental variation
 - -Temporal progression
 - -Purposeful function of units
- Differences
 - -Self-reproduction vs. artificial manufacture
 - -Random variation vs. conscious design
 - -Microscopic vs. macroscopic scale of organization
 - -Innovation in technology analogous to horizontal gene transfer (like bacteria)
 - -Developmental process of technology is highly distributed

What drives economic growth?

- Solow (1956): Investment can't explain it technological progress is dominant cause
 - technology is just a scalar "A(t)".
- Rosenberg: Must get inside the black box.
- Arthur: Emphasizes role of combination

Need a predictive theory

Technologies improve at very different rates

Distribution of technological progress rates

Consequences for public investment

It is essential that we take the dramatic differences in rates of technological evolution into account when we consider public investment in technology R&D.

Price trends of coal, photovoltaic and nuclear electricity

Empirical laws for technological improvement

WRIGHT'S LAW (1936)

Cost vs. cumulative production = power law $y = x^{-\alpha}$

Wright

Total cumulative production (# of units)

FORD'S MODEL T

Exhibit I Price of Model T, 1909-1923 (Average list price in 1958 dollars)

Wright's law only works when reducing cost is main objective

Models	ABCNRSK	т	A	Annual model changes
Engines (H.P.)	2 (15 & 50)	1 (20)	1 (24)	2 or more (50 & more)
Wheel bases	2	1	1	2 or more
Weights	Up to 1800	1100-1820	2312 (average)	2335 and up (average)

MOORE'S LAW (1965)

Originally a statement about density of transistors We will use to refer to the hypothesis that technological performance improves exponentially with time

Gordon Moore

CPU Transistor Counts 1971-2008 & Moore's Law

Date of introduction

Moore

Time (years)

Wright

Total cumulative production (# of units)

PRODUCTION VS. TIME

 For technologies in this sample, also reasonable to postulate that production increases exponentially with time

Production volume

(Nagy, Farmer, Bui, Trancik, PlosOne, 2013)

COMPATIBILITY OF WRIGHT AND MOORE (SAHAL, 1987)

If production expands exponentially and costs drop exponentially, Wright's law will hold.

$$\begin{aligned} x(t) &= & \exp(at) \\ y(t) &= & \exp(-bt) \\ y(x) &= & x^{-b/a} \end{aligned}$$

(Nagy, Farmer, Bui, Trancik, PlosOne, 2013)

Bela Nagy

Key hypothesis

All technologies obey same random process

parameters vary across technologies

Time series models

Moore's law as a random walk with drift

$$y_{t+1} - y_t = \mu + Kn_t$$

Change in log(cost) Drift Noise

Wright's law as random walk with drift dependent on cumulative production

$$y_{t+1} - y_t = \omega \log\left(\frac{x_{t+1}}{x_t}\right) + Sn_t$$

TESTING FOR PREDICTABILITY THROUGH HIND CASTING

(WITH AIMEE BAILEY, JAN BAKKER, FRANCOIS LAFOND, PATRICK MCSHARRY, DYLAN REBOIS,

Pretend to be at a given time in the past

- [©]Use given method to forecast each future year
- ©Repeat for all past dates
- Score methods based on forecasting errors
- Make hypothesis that improvement process is the same for all technologies, except for parameters.

Data for 48 different technologies

(Data are normalized by initial value; Learning Window = 6 years)

log₁₀(cumprod)

PhotovoltaicsNav.csv PhotovoltaicsNav.csv 0.0 0.0 \circ -0.2 -0.2 -0 4 0 4 log₁₀(cost) log₁₀(cost) -0.6 -0.6 00 0 °۱ -0 9 -0.8 0 ° ° ° ° ° ° 0 0 ₀ 0 0 -1.0 -1.0 -1.2 -1:2 0 0 0 \circ 1989 1992 1995 1998 2001 2004 2007 2010 3 0 2 1980 1983 1986 1 4

0.0 0.0 \circ \cap -0.2 -0.2 0 -0 4 -0 4 log₁₀(cost) log₁₀(cost) -0.6 -0.6 ⁰0000 00 ò ` ` ` o o _o o o` -0 9 -0.8 ° ° ° ° ° ° -1.0 -1.0 -1.2 -1:2 0 0 0 \circ 2 3 2004 2007 2010 0 1 1980 1983 1986 1989 1992 1995 1998 2001 4

log₁₀(cumprod)

PhotovoltaicsNav.csv

PhotovoltaicsNav.csv

PhotovoltaicsNav.csv PhotovoltaicsNav.csv 0.0 0.0 \circ -0.2 -0.2 0 -0.4 0 4 log₁₀(cost) log₁₀(cost) -0.6 -0.6 00 0 ٩ -0 9 -0.8 0 ° ° ° ° ° ° 0 0 ₀.0 0 -1.0 -1.0 -1.2 -1:2 0 0 0 1989 1992 1995 1998 2001 2004 2007 2010 3 0 2 1980 1983 1986 1

PhotovoltaicsNav.csv PhotovoltaicsNav.csv 0.0 0.0 \circ -0.2 -0.2 0 0 -0.4 0 4 log₁₀(cost) log₁₀(cost) -0.6 -0.6 00 -0 9 -0.8 ° ° ° ° ° ° ° ° ° -1.0 -1.0 -1.2 -1:2 0 o 0 \circ 1989 1992 1995 1998 2001 2004 2007 2010 3 0 2 1980 1983 1986 1

PhotovoltaicsNav.csv

PhotovoltaicsNav.csv

log₁₀(cumprod)

log₁₀(cumprod)

log₁₀(cumprod)

How good are the forecasts?

Forecasts without error bars are not very useful.

Time series models

Moore's law as a random walk with drift

$$y_{t+1} - y_t = \mu + Kn_t$$

Change in log(cost) Drift Noise

Wright's law as random walk with drift dependent on cumulative production

$$y_{t+1} - y_t = \omega \log\left(\frac{x_{t+1}}{x_t}\right) + Sn_t$$

Predicted forecasting error for Moore's law assuming normally distributed IID noise

$$\mathcal{E} = y_{t+\tau} - \hat{y}_{t+\tau}$$
$$\frac{1}{\sqrt{A}} \left(\frac{\mathcal{E}}{\hat{K}}\right) \sim t(m-1)$$

$$A = \tau (1 + \tau/m)$$

 $\hat{y}_{t+\tau} = \text{prediction for time } t + \tau$ $\hat{K} = \text{estimated noise amplitude}$ $m = \text{number of points used to estimate } \mu$ t = Student's "t" distribution

This works surprisingly well

However, it is possible to do better by taking correlations into account

Random process with correlated noise

$$y_{t+1} - y_t = \mu + v_t + \theta v_{t-1}$$

 $v_t = \text{noise at time } t$

 $\theta =$ parameter describing correlation

$$\frac{1}{\sqrt{A^*}} \left(\frac{\mathcal{E}}{\hat{K}}\right) \sim t(m-1)$$

 $A^* = 2^{nd}$ degree polynomial in τ whose coefficients depend on θ and m

Comparison to empirical data for 48 different technologies

5,973 annual forecasts, all τ with $\tau < 20$

Cumulative distributions for positive and negative errors plotted separately

Comparison to empirical distribution for 48 technologies

Errors vs. forecast horizon

Forecast horizon τ

Comparison of errors vs forecast horizon

Innovation noise amplitude vs. improvement rate

Distributional forecast of solar PV assuming business as usual

What is the probability that solar PV will be cheaper than nuclear power?

\$/kWh

probability densities

probability densities

probability densities

Probability that solar is cheaper than nuclear

Comparison of Wright's law and Moore's law

Errors with Power Fits

Correlation of Moores and Wrights errors at Horizon12

SUMMARY OF RESULTS: WRIGHT'S LAW VS. MOORE'S LAW

- Wright's law forecasts based on production better than Moore's law based on time at long horizons
- Production history more useful than time.
- Suggestion: Costs can be driven down by stimulating production (feed-in tariffs).
- Seed "artificial experiments", such as WWII, to test properly (correlation v.s causation).
 - -Does production drive cost down, or does cost drive production up? Or both?

Liberty Ships

unit cost

LOCAL MINIMA IMPLIED BY WRIGHT

Question: Do new technologies enter with lower y intercept or steeper slope? (for moment assume lower y intercept)

> What influences rate at which new technologies enter?

> > production

Generality of Wright's law

- Holds at the level of products, firms, industries, or best technology performing a given function.
- Explanation must be correspondingly general.

POWER LAW OF PRACTICE

Improvement with practice in time to add two numbers (Blackburn, 1936)

RECIPE MODEL OF TECHNOLOGICAL IMPROVEMENT

Muth (Management Science, 1987)

 Engineers generate new solutions at random, accept them if they are better. Single component: Implies Wright's law with exponent = -1.

Querswald, Kauffman, Lobo and Shell (JEDC, 2000)

Multiple components that depend on each other.
 Accept improvements only if sum score improves.

Design Structure Matrix Map of a Laptop Computer

		х	х			х			х				х															٦
	x	•	х	х	х		x		х		х													х			х	x
Drive	x	х	·	х			x																		х			
System	х	х	х	·	х	x				х	х	х		х									х				х	
	x		х		·	x																						
		X	X	X	X	÷	X	X				X		_	1													
	x		х			x	ŀ			х			х															
			х		х		X	:	х		X												х		х			
Main	L.	х					Č	х	:	х	х	x	~	×	×			~										
Board	×	~	v		~	v	Č.	v	×	ţ		X	x	~				÷.						v			~	
Doard		Ŷ	^		^	^	Ĵ.	^	Ŷ	1	v	•	v	^			(Â)					^			^	۰
		Ŷ		x	x		l^	x	^	Ĵ	Ŷ	×	Ŷ	x			7	+									x	Ŷ
				^	^			^	x	Į	^	^	· x	î		/	/					x					^	^I
						1			x	Ŧ	x		<u></u>	· v		ŧ	x	╪	x	7		~						
									^	Ļ	^	x		Ŷ	1:/	~	x	¥	x				x					
LCD										Į		^	x	^	K.	•	2	Ţ	~				^		x			
Screen									(Ţ	ナ		^	Д	Â.	x	x►	Ĵ.	x	x∥		x			~			
									\langle	Ļ	X	х	\checkmark	x		x	x	x		x			х				х	
										/			/			х		х	х	.				х				
	x						х	х	/			/			х					Ī		х		х	х			х
		х	х						/		/										х		х	х		х	х	
				х				/			/x							х			х	х			х		х	х
Packaging								/	х	/											х	х	х		х		х	
								/	/	x	х	х										х	х			х		х
							/	/	/							х					х		х		х		х	х
							/ .	/									х	х			х			х		х		
						_/	7															х	х		х	х	х	

RECIPE MODEL (CONTINUED)

McNerney, Farmer, Redner, Trancik (PNAS, 2011)

-simplified and solved recipe model

generates power law with exponent -(1/d), where d = "design complexity", which depends on DSM. For homogeneous networks d is in-degree of DSM.

-for heterogeneous networks there are typically bottleneck components, d is more complicated to compute, and progress typically occurs via a sequence of punctuated equilibria

COST VS. TIME FOR RECIPE MODEL

Need to go beyond recipe model

- Nice start, but only part of story
- Anecdotally: Innovations in one industry often drive innovations in others
 - solar PV, laser printers, digital cameras, ...
- Interactions between technologies are key
 - must model evolution of entire technological ecology to understand a single technology

LEONTIEF: INPUT-OUTPUT MODEL OF AN ECONOMY

Nodes are industries, (weighted) directed links are inputs to each industry.

- Can be based on physical flows or on monetary flows.
- Precise analogy to equilibrium chemical kinetics (allowing non-integer stoichiometric parameters)
 Conservation laws lead to linear system of equations
 Used in national accounting, central planning.

U.S. industry network, 1997

McNerney, Fath, Silverberg (2013)

OUR APPROACH EVOLUTIONARY EXTENSION OF LEONTIEF FORMALISM

with James McNerney, Francesco Caravelli

- Design improvement happens through
 - Input tuning
 - Substitution of cheaper or better inputs
 - Creation of new goods: Network growth
 - Improved social technologies of production, distribution, ... invisible to Leontief network
- Increase in combinatorial possibilities -palette gets larger and more powerful

Input fluctuations of I/O matrix for USA

"Deductive tinkering"
Simplest model: Efficiency improvements

 The net result of a design improvement is an overall decrease in material inputs to perform same function

$$\phi_{ij} \to \alpha \phi_{ij}$$

 Leads to conclusion that technologies have a trophic structure, like food webs

TECHNOLOGIES CAN BE ARRANGED IN TROPHIC LEVELS

with James McNerney and Francesco Caravelli

Hypothesis: All else equal, technologies with high trophic level improve faster than technologies with low trophic level.

Reason: Improvements are amplified multiplicatively.

Provides alternate explanation for super-exponential population growth

- Paul Romer's theory: population and technology co-evolved.
- Our theory: Trophic structure accellerates growth, graphic structure has grown.

Physics matters to economics

- Evolutionary search finds physical processes capable of rapid improvement
- Interaction between physics, which determines what is possible, and economics, which determines what is wanted
- Physics is key determinant of technological improvement (Funk and Magee)
- Migration toward "good physics" can result in dramatic improvements

Analogy: Evolution of autocatalytic networks

 Autocatalytic metabolism: Set of chemical species that jointly produce each other via catalyzed chemical reactions involving only other members of the set.

METADYNAMICS (WITH NORMAN PACKARD)

- A *metadynamics* model is a dynamical systems model on a dynamic network. The dynamics induce changes in the network, which in turn induces changes in the dynamical system.
- For example, consider modeling a potentially infinite set of possible chemical reactions.
 - Chemical kinetics are solved on a network of dominant reactions. This network is defined by the set of existing chemical species, which can themselves change through time. As they change, they change the network.
- Key idea: Evolution toward the adjacent possible (Kauffman).

METADYNAMICS PAPERS

- Farmer, J.D., S. Kauffman, N. Packard. "Autocatalytic Replication of Polymers." *Physica D* (1986).
- Sarmer, J. D., N. H. Packard, A. Perelson. "The Immune System, Adaptation, and Machine Learning." *Physica D* (1986)
- Bagley, R. J., and J. D. Farmer. "Spontaneous Emergence of a Metabolism." In Artificial Life II (1991).
- Bagley, R. J., J. D. Farmer, and W. Fontana. "Evolution of a Metabolism." In Artificial Life II (1991).

SIMULATION OF AN AUTOCATALYIC METABOLISM

- Start with simple food set (e.g. 5 species)
- Implement kinetics for catalyzed reactions among food set (which defines initial network).
- Define shadow set as species that can be reached by uncatalyzed reactions within network
- Create a new species from shadow set with probability depending on reaction rates.
- If this adds new catalyzed reaction, alter network of catalyzed reactions accordingly.
- ©Repeat.

equilibrium concentration with only uncatalyzed reactions

from: <u>The Functional Self-Organization of Autocatalytic Networks</u> <u>In a Model of the Evolution of Biogenesis</u>, Richard James Bagley, Ph.D. thesis (1991)

from: <u>The Functional Self-Organization of Autocatalytic Networks</u> <u>In a Model of the Evolution of Biogenesis</u>, Richard James Bagley, Ph.D. thesis (1991)

from: <u>The Functional Self-Organization of Autocatalytic Networks</u> <u>In a Model of the Evolution of Biogenesis</u>, Richard James Bagley, Ph.D. thesis (1991)

SPONTANEOUS EMERGENCE OF AN EVOLVING METABOLISM (WITH R. BAGLEY, W. FONTANA)

[©]Set of specific chemical species

- © Capable of "digesting" many possible food sets
- Composition of of species evolves through time under random variation and selection.
- Metadynamic model generates network through dynamics of components of network.

Investigating technological evolution via US patents

- 9M patents
- 1790 to present:
 - I0,000 tech. codes -> 150,000 tech. codes
- Closest thing to a fossil record of tech. change

Co-occurence network

- Can define co-occurence network as the frequency with which two technology codes appear together.
- Defines network with technology codes as nodes and co-occurence frequency as weighted links.
- Provides a way to understand how technologies interact with each other and how this evolves through time.

Evidence for technological epochs

with Ioannis Psorakis

- Inventing activity changes, based on technological, economic, social, even geopolitical trends.
- We investigate the self-organization patterns of technologies across time, given our combination-based communities at each decade.
- Our analysis reveals clusters of self-similarity across time, corresponding to various historical eras (WWI, WWII, Cold War, modern era).
 - Cluster boundaries correspond to technological shifts, that allow us to "sandbox" different models at different time periods.

Community dynamics

Fuzzy early communities, taxonomy stabilizes over time

The PV technology ecosystem

22 PV-specific technologies6198 PV-related technologies20,697 combinationsAggregated across entiretime history

The technological ecosystem is vast

- ~150,000 technologies
- Connected via ~10m patents
- Dynamic and changing through time 1790 to now.
- Temporal changes (through patenting activity) reflect:
 - Creation of new technological capabilities
 - Refinement of existing technologies

Rebooting the economy?

- Suppose all technology were destroyed
 - Library with all explicit knowledge remains
 - All tacit knowledge remains (100M technicians?)
 - Century supply of freeze dried food
- Could we reboot the economy?
- How would we do it?

Economy is strongly autopoetic

Last Sander question

Did being a scientist change your view of the world in general, and in what sense?

OPTIMAL TECHNOLOGY INVESTMENT PORTFOLIOS

How should a decision maker invest in substitutable technologies (e.g. green energy)?

Depends: Is Wright or Moore correct?
If Moore: Don't bother -- investments don't matter
If Wright: Investment can play key role
cost decrease depends on investment

-tradeoff between concentration and diversification

-critical to have error estimates for forecasts.

-compromise between risk and performance

© Expert forecasts vs. time series forecasts?

© R&D vs. production stimulus? Patenting activity?