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Absrrael- The multi-agent Village simulation was initially 
developed to examine the settlement and farming practicer of 
prehisppnic Pueblo Indians of the Central Mesa Verde region 
of Southwest Colorado [1,21. The original model of Kohler 
was used to examine whether drought alone was responsible 
for the departure of the prehispnnic Puebloan people from the 
Four Corners region after 700 years of occupation. The 
results suggested that other factors besides precipitation were 
important. We then proceeded to add economic factors into 
the simulation, first allowing agents to engage in reciprocal 
exchanges between kin. This resulted in larger populations, 
more complex social networks, and more resilient systems. 
However, the exchange was done randomly and individuals 
did not remember the transactions. I n  this paper we explicitly 
embed the reciprocal exchange process within a Culturnl 
Algorithm, where individual agents can remember individuals 
that they have cooperated with. Also, in the cultural space the 
group can learn generalizations about what kind of relative i s  
likely to successfully respond to a request. Thew 
generalizations are used to drive changes in requestor 
behavior. The results of this approach produced an even 
larger and more complex system exhibiting greater 
dependence cm huh nodes that are sensitive to precipitation. 

1. INTROOUCTION 

A. The !Wage Simulation Project 

The multi-agent Village simulation was initially 
developed to examine the settlement and farming 
practices of the Pueblo Indians of the Central Mesa Verde 
region of Southwest Colorado [1,2]. "he simulation uses 
data from archeological site, soil data, and tree-ring data, 
among others [3,4]. The model is used to explore and 
enrich our understanding of the region's inhabitants 
between the years A.D. 900 and 1300. In the original 
simulation Kohler and his colleagues suggested that 
something other than precipitation changes had a role in 
the demographic history of the Mesa Verde Region since 
the model did not generate the expected depopulation of 
the region. In follow-up to Kohler's research, initial work 
by Reynolds and Kobti [5,6,7,8] focused on introducing 

social networks based upon kinship in order to update the 
simulation within a cultural framework. In a previous 
version individuals could exchange resources randomly 
throughout the kin network. In this version reciprocity is 
embedded within a Cultural Algorithm [9,lO]. Within this 
framework the individuals can learn from whom to best 
request resources in the population space. In the belief 
space the group can ieam generalizations about classes of 
kin that are most likely to be donors within the network. 
We then examine how the learning improves the 
performance of the network in this environment. 

B. The Culfural Framework 

Figure I .  Cultural Algorithm Framework 

Cultural Algorithms consist of a social population and 
a belief space [9] as shown in figure 1. Selected 
individuals from the population space contribute to 
cultural knowledge by means of the acceptance function. 
The cultural knowledge resides in the belief space where 
it is stored and updated based on individual experiences 
and their successes or failures. In turn, the cultural 
knowledge controls the evolution of the population by 
means of an influence function. A Cultural Algorithm 
thereby provides a framework in which to accumulate and 
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communicate knowledge so as to allow self-adaptation in 
both the population and the belief space [ I  1-15], 

There are at least five basic categories of cultural 
knowledge that are important in the belief space of any 
cultural evolution model: situational, normative, 
topographic, historical or temporal, and domain 
knowledge [6]. In our cultural model all of these 
knowledge sources can be represented. For example, in 
our current model we assume that agents will have access 
to knowledge about the distribution of agricultural land 
(topographic knowledge), the distribution of rainfall as it 
occurs over time to the extent that it affects agricultural 
production (history or temporal knowledge), and 
conceming agricultural planting and harvesting techniques 
(domain knowledge). These three knowledge sources are 
fixed at this time. However, situational and normative 
knowledge can be learned by the group. 

C. The Social Network 

In previous work [5,6,7,8] we introduced a kinship 
network into Kohler’s model that linked agents with one 
another. In the model, the basic relationship is based on 
kinship and the strength of the relationship is impacted by 
the distance between agents that share a kinship 
relationship between them. Each agent is a household 
composed of a husband, a wife and their children. 
Household members live together in the same location, 
share their agricultural production, and are affected by the 
same environmental conditions. Children can grow up, 
marry, and move out to form their own households. Their 
connections to their parent households and siblings are 
maintained in our model. Similarly, the parents maintain 
ties to their children. When one of the parents in a 
household dies, the other can form a new household with 
an available single agent. The initial slructure of the social 
network here supports the notions of parents, siblings, and 
grandparents on both sides of the family. 

The layout of the social network from the perspective 
of a household is described in table 1. 

TABLE I: CONNECTED NODES IDENTIFIED BY THE 
KINSHIP SOCIAL NETWORK. 

ParentHHTagA I a link ta the parent from the mother’s side 
ParentHHTaEB 1 a link to the parent from the father’s side 
ChildHHTag I one link to each child that moves away 

I 

I from this household 
RelativcHHTag I onc link to each extendcd family member 

When an agent requires food, it is allowed to 
select and request food fmm within its kinship 

The household (agent) rules for marriage and kinship 
The dynamics were described in earlier work [5,9-61. 

social network is defined as the set of all kinship links. 

D. Cooperation Framework 

Initially, three strategies for reciprocal aid were 
explored and compared along with the control case in 
which no goods are exchanged between agents. Table I1 

lists the methods of exchange used and gives a brief 
description of each. Reciprocal exchange is defined here 
as exchange of maize between agents related through 
kinship. Unlike trade between agents, the model of 
symmetrical reciprocal exchange used does not keep a 
record of debts owed by particular agents. Modeled at?er 
the compassionate and human response of social beings, 
agents may seek to ask their relatives for food in a time of 
need, while others donate their surplus to their relatives 
during prosperous times. In other words the exchange is 
activated by the requestor, the donor, or both. Each 
version is potentially reciprocal; the only difference is in 
terms of who provides the information that triggers the 
exchange. The current approach to exchange implements 
a more refined version of Sahlins’ (1972) “generalized 
reciprocity” than that represented previously by Kohler 
and Yap [16], since the exchanges here are indeed limited 
to kin, and present as possibilities both asymmetric and 
symmetric exchanges. Our use of these terms focuses on 
whether an exchange can be initiated only by the donor or 
alternatively only by the receiver (“asymmetric”) or by 
either (“symmetric”); symmetric exchange does not 
imply, here, that the exchanges are balanced in quantity 
over time. 

TABLE I t  DESCRIPTION OF THE DIFFERENT 
COOPERATION METHODS AT THE KINSHIP LEVEL. 

Coouemtion I Dercriulion 

network in order to survive. 
When an agent has excess food. above a 
determined threshold amount, it is allowed to 
select an individual(s) from its kinship network 
and donate some of its exccss. r Both methods I and 2 are enabled to ether. 

A finite state machine was used to specify the intemal 
states of the cooperating agents. Figure 2 and 3 describe 
the state model and the transitions between the states. 

The states are as follows: Satisfied - An agent is in a 
“satisfied” state when it has sufficient food in storage to 
feed the entire household. Philanthropic - An agent 
becomes a philanthropist when it has a surplus of food in 
storage, defined in terms of stored maize in excess of a 
given threshold. For instance, an agent stocking 90% or 
more of its storage capacity would be able to donate its 
surplus food. Hungry - A buffer state is implemented at 
the level just above critical need so that the agent can try 
to prevent the starvation associated with critical need. 
When the agent is lei? with its last food ration then it 
enters a “hungry” state that triggers precautionary requests 
for food to avoid starvation. Critical - An agent that has 
insufficient or no food to eat has no choice but to ask for 
food or face starvation and imminent death. If the 
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household does not receive its ration to feed the entire 
family it will die. Death - An agent is marked for 
immediate removal from the system. 

Figurc 3: Agent Statc Transition Diagram. NOIC that additional 
states transitions arc possible dircctly bctwecn F, P, S, H and C 
states. but thc ones shown are Ihc most frcqucnt. 

11. COOPERATION LEARNMG STRATEGIES 

In previous work [5,6-81 we introduced the cooperation 
model for reciprocal food exchange across the kinship 
network. The agent's actions were specified according to 
a finite state model. In the simulation we can control the 
agent's capability to cooperate and to what extent. In 
particular, three cooperative parameters can be specified 
in addition to no cooperation. 

TABLE Ill: LIST OF THE IMPLEMENTED SELECTION 
METHODS. 

initial whccl portion) from the kinship network, 
rhcn reward or Dcnalize the Drobabilihi of 
sclecting this agent depending on whethcr thc 
agents cooperatcd with or declined the request. 

In the initial experiments described in a previous paper 
151 the agent used random selection to choose a kin tu 
cooperate (Table 111). The constraints were that the 
cooperating agent has to be directly linked to the initiating 
agent and within a given radius; we used 4 km. Whether 
the selected agent actually chooses to cooperate or not 
was based on that agent's current state and its ability to 

cooperate with a designated probability. Furthermore, the 
capability of buffering was added to demonstrate some 
planning on the part of the individual agent in its shuggle 
to survive. An agent in its hungry state would for instance 
trigger a request for extra food from its kin as a way to 
avoid starvation. In a way, we can say the agent preserves 
its last ration of food for the year in an effort to prevent 
itself from reaching a critical starvation stage. 

A. Kin Selection 

The selection of a particular agent for resource 
exchange was initially random. That, is the agent would 
always opt to make a random selection within the 
constraints previously described without keeping track of 
its past performance. In this paper we now allow agents to 
maintain plans for the interaction with other agents. 
Rather than randomly interacting, agents can decide 
whom they wish to interact with. They now maintain 
plans conceming whom they prefer to interact with at the 
individual level, and can produce generalization in the 
belief space that indicate the 'ype of individuals that are 
best to exchange with. Thus, every agent possesses and 
maintains a local strategy for selecting one of its kin for 
cooperation. These strategies are adapted at the population 
level using a Genetic Algorithm. 

Initially an individual has an equal probability for 
interacting with each of its kin. Agents are selected for 
cooperation randomly. However, as time goes on 
individuals learn to bias the selection process towards 
individuals who are more likely to interact with them 
successfully. The selected kin is asked for food based on 
the requesting agent's need. The selected kin's response is 
noted by the requesting agent. If the response is successful 
the requesting agent will maintain the request plan, if 
unsuccessful it will modify it using the genetic operators. 
The goal is to allow the agent to identify kin who 
exhibited a positive response to their request. From an 
individual's perspective, when it reaches a critical stage 
and is facing death from starvation, selecting the right 
donor for food is essential. In the model we can control 
the number of attempts an agent can make for requests 
before it gives up and die. In the current experiments the 
number of anempts was set to two. 

6. Individual and Global Strategies 

In the previous section we discussed how individuals in 
the population can learn to modify their plan conceming 
whom they will interact with so that their interactions are 
more successful. Leaming can also take place at the 
cultural level in the belief space. In the belief space, 
generalization about classes uf kin who are most likely to 
respond positively to exchange requests can be produced. 
What one individual knows can he communicated by 
others. If an individual discovers that a rich relative is 
always able to provide food upon request, other related 
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individuals may begin to emulate that behavior. The belief 
space keeps track of the likelihood that certain classes of 
kin ate more likely to respond to requests than others. 
This global knowledge is based on the collective 
experience of the top performers, or exemplars, who 
report their positive experiences and improve their 
strategies. When, an individual in the population is about 
to mutate or change its plans about who to request, the 
information in the belief space is used to condition the 
probability of change by making them more likely to 
select previously successful categories of relatives in 
order to mutate its existing plan. 

C. Learning MelhodologieJ 

In the Cultural Algorithm framework, agents learn to 
adjust their plans at the individual level based upon their 
experiences and at the cultural level in the belief space. 
Belief space knowledge is used to condition the changes 
individuals make to their plans as the result of failures to 
interact. First we examined the effect of localized 
learning hy individual agents without the sharing of the 
acquired knowledge with others. Next we introduced 
situational and normative knowledge in the belief space to 
track the best performers and the kin types that are most 
likely to yield successful results in the belief space. 
Next, the general preferences of the population formed in 
the belief space are used to influence changes to 
individual plans in the population space. 

Each agent’s strategy is comprised of a vector of 
probabilities for selecting each of its kin as a possible 
donor (Figure 4). Initially all of its kin have an equal 
chance to be selected, so a random selection starts the 
process. The vector contains the likelihood for selecting 
the mother’s household (M), then the Father’s (F), then 
any of its children (Cl..Cc), and any of its relatives 
(RI.%). 

fin Sdcction S W  

I . 

Figure 4. Individual stratcgy composition for kin selection 

Each individual selects a kin member to interact with 
using a random process based upon roulette wheel 
selection. Each possible kin is assigned an area under the 
wheel that reflects their relative likelihood of selection 
based upon past performance. The wheel is spun and the 
selected agent is asked for a donation. If that request is 
fulfilled successfully by the selected agent then the odds 
for selecting that kin again will increase. If the request 
was unfulfilled, then that kin’s odds will be penalized and 
decrease the likelihood of its future selection (figure 5) .  

Over time, each individual agent will learn to adjust its 
values to reflect its past experiences. 

In the next phase, we introduce the cultural belief space 
as the repository for collecting and using cultural 
knowledge to guide agent change. In particular two types 
of knowledge are adjusted dynamically here: Situational 
and Normative (figure 6).  In terms of situational 
knowledge, exemplars are maintained in the global space 
to represent individual agents who have been most 
successful at requesting donations when in need. 
Everytime an agent completes a request, it updates its 
local strategy and is evaluated for its maize productivity 
based on the results of that strategy. In terms of the 
acceptance of the Cultural Algorithm, the local strategy 
fitness is then compared to the exemplars currently in the 
belief space. If the individual’s strategy is found to 
outperform any of the exemplars then it is inserted into 
the exemplar list. If the maximum number of exemplars in 
the list is exceeded, the one with the lowest performance 
score is dropped. 

1.eamSd lacat SUaISgy , ............................. 4 I 

Paritivs or 
Negative 

Adjunmsnt 

V& Sslsetim and 
Exchange across the 

kinship network 

Figure 5 .  Selection mechanism for an individual agent. 

In the belief space Normative knowledge is also used to 
accumulate information on the frequency with which 
various kinship types have been successfully selected by 
exemplars in the population. The ranges reflect the 
Probabilities maintained by the currently selected 
exemplars. Thus, both normative and situational 
knowledge can be used to influence the choice of donors 
by the population. Specifically, if  an individual in the 
population has not been successful in attempting to secure 
a donor, the knowledge in the belief space can be used to 
bias its next selection. Using Normative knowledge causes 
the individual to shift its own probability values closer to 
the range specified. 

Knowledge in the belief space can also be used to 
influence individual memories as described in figure 7. 
Each agent, in addition to its local set of probabilities, 
maintains a local memory that stores the last successful 
cooperating kin. This list can expand to store additional 
positive experiences. Currently it is set to one. The 
method used is to allow the agent to keep the last positive 
experience in memory so as to be able to use it as the first 
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choice next time it needs to request food. If that agent 
fails to deliver in subsequent attempts then it is removed 
from the memory. The individual then selects a new kin to 
cooperate with from its local strategy conditioned hy the 
culture's Normative knowledge. 

Belief Space 
1 

I I 
Figure 6. Sihlational and Normative knowledge in CA. 

Global Strategy 

Local Stategy 

I I 

Figure 7. Cooperation learning with memory of last positive 
cooperating kin. 

On a global scale, positive experiences are tracked as 
exemplars and accumulated in a generalized strategy 
expressed as normative knowledge. This global strategy 
can be used to influence the local ones and act as a 
tracking technique to identify the kins with the ability to 
provide a positive response when requested for food. 

111. RESULTS 

In the experiments described here we investigate the 
impact that learning at the individual and cultural level 
has on both the system's structural complexity and its 
resilience. We start with agents making requests to 
random kin when in need. Next, learning at the individual 

level is allowed to adjust the probabilities of selecting 
various individuals. Then knowledge about exemplars and 
range of probabilities used to select donors is applied to 
direct changes in individual selection probabilities. 

Each of the strategies described above can be used with 
a different move radius, where the move radius restricts 
the extent to which agents can relocate and also look for 
resources. It is viewed as an index of the importance that 
their current location, or central place, has on their 
behavior. Move radii in the experiment are set at IO,  20, 
and 30 pixels (2, 4, and 6 km), respectively. All of the 
runs shown in figures 8-13 are using a radius of 10. 

Figure 8 gives the results 'of the simulation when there 
is no cooperation between the agents in the model. It also 
shows the minimum, maximum and average social links 
over time for agents (upper graph in the figure) and the 
social network volume, the product of the out-degree over 
the total number of the nodes in the kinship network 
(lower graph in the figure) for this situation. The results 
are produced between A.D. 900 and 1281 (the horizontal 
axis in both graphs). Notice that the average number of 
links for an agent is around 6,  and constant over the 
simulation as is the network volume which is an index of 
network complexity. Also, there are some nodes with a 
much higher number of links. We call these hub nodes. 
These statistics characterize what is often called a small 
world network, where most nodes have a small number of 
local links and a few nodes, the hub nodes, have many 
more general links. These hub nodes sewe as the glue that 
holds the network together. 

The scenario distilled in figure 9 allows agents to 
cooperate, but both potential donon and those in need can 
request to interact randomly with no memory of past 
interactions and no leaming. However, just the ability to 
move resources through the network to those in need has 
an impact on network complexity and variability. For 
example, even though the average number of links is the 
same and the maximum size of the number of links is 
about the same as before, the variability in the maximum 
size of hub nodes is reduced over that without 
cooperation. If the variability is in response to 
environmental perturbations then cooperation ameliorates 
some of that variation. In addition, the overall network 
volume is substantially larger, meaning that a larger more 
complex network can be sustained with cooperation. 

In figure IO we allow learning at the population level, 
where individuals can adjust their vector of kin selection 
probabilities based upon experience. Thus, they can 
remember successful and unsuccessful attempts and use 
them to adjust the probabilities by random increments 
accordingly. This results in a slight reduction in variation 
for maximum hub size, and a slight increase in network 
volume, although as in previous cases network volume 
variability increases later in the simulation as a result of 
periodic drought conditions. Adding learning at the belief 
level using situational and normative knowledge is shown 
in figure I I .  There the range of probabilities for the 
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selection of each kin type is kept in the belief space. This 
constrains the adjustment of the individual probabilities in 
the population space. If for example, an individual is 
going to increment one of its probabilities but the new 
value will exceed the upper bound for that kin type in the 
belief space, the update is constrained to the upper bound. 

-.".,.~*.nl*u*lpl-n.""rlu*l) 
, * . U I " - . . 4 L I D ~ I ,  

~ - I  I 

:,{-I .- 
:,{=I . .- 

FLgurc 8. Hub sizes and network volume without cooperation. 

The addition of learning in the belief space led to a slight 
increase in network size overall, and produced an increase 
in maximum hub size, However, the maximum hub node 
size exhibited a much steeper decline during the drought 
phases at the end of the simulation. This trend continues 
in figure 12 where we show the results of adding the 
second type of belief space learning to the system. In this 
case, the belief space knowledge can be used to explicitly 
select a new exchange partner by replacing the agent's 
memory when an unsuccessful exchange has taken place. 
It represents a second way in which mutation can change 
the plan of the agents in the population. The addition of 
this type of learning increases the overall network size 
even more along with the maximum hub size to over 40. 
Again, this system's network size dips in response to the 
initial drought phase but recovers to a higher level than 
with just the one type of belief space learning. As a new 
learning type is added to the system, the network size 
increases as well as the maximum hub size. Thus, 
increased levels of learning produce a more resilient 
system able to make better recoveries from drought but at 
the cost of greater dependence on hub node connectivity. 

Figure 9. Coapcration with Random sclectian, no learning. 

".*U 

Figure 10. Cooperation with individual roulene learning. 
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Figurc 12. Coopcration with last posilivc memory 

Figure 13. Coopcration with Sit. and Nom. CA, RAD 20. 

I w". 

Figure 14. Trend of request fulfillment Over various move radii. 

Figure 13 demonstrates how important the notion of 
centrality is to the social organization. If we double the 
search radius while allowing all three learning activities, 
the social network is spread out over a larger area and the 
network size plateaus early at about a quarter of the size 
when the radius is 10. In figure 14 the number of 
successful requests are reduced as population density 
decreases and there are fewer people nearby. This 
suggests the importance that B social principle of "central 
place" can have on the social organization. Figure 15 
reports on the results of the global memory strategy. Each 
kin is associated with a frequency accumulated overtime 
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based on the positive requests it fulfilled. The kin with the 
highest frequency implies that this kin type was the most 
successful in responding to the needs of others. Notice an 
almost Poisson distribution with respect to the parent- 
child relation where the first born has the most links with 
the parents and it decreases with later children. The 
second plateau reflects the agent relations with relatives 
other than its children. They are less intense and of 
generally equal strength. 

?l"".~*Fnq"."=YDLYlbVUo" em. Po.llr Il.Pl*. 
h. n (l"Cc..*l Y&I c4 WEE.." F"" hr I#" TIP 
ca.u..d *.d On .(I WE..'* la PA611 IO, *I .M lo 

Figure 15. Frcquency of kin yielding posilive responscs 

IV. CONCLUSIONS AND FUTURE WORK 

In summary, adding layers of learning to the cultural 
system allows increase in the system's size and resilience 
with respect to drought conditions. It bounces back from 
drought better than when no learning takes place. 
However, there is a cost that there is more reliance on the 
hub nodes to "glue"the network together. As long as the 
hub nodes work in that direction things are okay. But if 
the hub nodes decide to move as a result of drought 
conditions how will their movement affect that of the 
network? In particular, if there is a strong tendency for 
individuals to aggregate (in other words, if the move 
radius is small) then if a highly connected individual 
moves that might cause others in the network to follow. 
Our results clearly show that individuals could reduce 
system stress by spreading out over the landscape as an 
alternative to moving. Thus, a dialectic is presented to the 
system as to what to do next. Should it reshape to  preserve 
a strong central tendency or spread out instead? In future 
studies we will look at the impact that resettlement of hub 
nodes within the landscape will have on the restructuring 
of the network and the idea of a "central place". 
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