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Abstract

The balance between the supply and demand of some kind of resource is critical for the functionality and security of
many complex networks. Local contingencies that break this balance can cause a global collapse. These contingencies are
usually dealt with by spare capacity, which is costly especially when the network capacity (the total amount of the resource
generated/consumed in the network) grows. This paper studies the relationship between the spare capacity and the collapse
probability under separation contingencies when the network capacity grows. Our results are obtained based on the
analysis of the existence probability of balanced partitions, which is a measure of network security when network splitting
is unavoidable. We find that a network with growing capacity will inevitably collapse after a separation contingency if the
spare capacity in each island increases slower than a linear function of the network capacity and there is no suitable global
coordinator.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Complex networks are essential parts of a modern society [1,2]. The resilience of complex network to the
malfunctioning of its components and to external disturbances (simulated as the deletion of nodes or edges)
has been the subject of a great deal of attention since the work of Albert et al. [3]. The question of resilience
has been looked into for a large range of networks, including the Internet [3], metabolic networks [4], food
webs [5,6], email networks [7], electrical power grids [8], infrastructure networks [9], and many model networks
[3,10—-15]. Refs. [13,16] gave good surveys on this issue. Different from previous models, in this paper we study
the resource network, in which the balance between the supply and the demand of some kind of resource (e.g.,
electrical power, oil, and natural gas) is a critical condition for the functionality and security of the network.
Local contingencies that break this balance condition may cause performance degradation and even global
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collapse of the entire network. One example is on the North American power infrastructure, which consists of
14 099 nodes (substations) and 19 657 edges (transmission lines) [8], and is considered by many experts as the
largest and most complex network of the technological age. In such a large power grid, a transmission line
outage due to lightning strike or short-circuit (local contingencies) leads to the overload of parallel and nearby
lines, which then also trip off. Then the power generated by some generators cannot reach distribution
substations and ultimately consumers. The power generation and consumption in the network is not balanced. 1f
the control action (such as using the spinning reserve, backup generators, or load shedding) fails to bring the
power generation and consumption back to balance in time, the lines continue tripping and the power grid is
passively split into several islands. When the balance condition is not satisfied in an island, the splitting
continues, and will cause a large-scale blackout (global collapse). This is what happened in the July 2, 1996
cascading outage of Western USA power network [17] and the August 14, 2003 blackout of the North
American electric power network in the United States and Canada [18]. In the latter case, estimates of total
costs in the United States range between $4 billion and $10 billion (US dollars) [19]. In Canada, gross domestic
product was down 0.7% in August, there was a net loss of 18.9 million work hours, and manufacturing
shipments in Ontario were down $2.3 billion (Canadian dollars) [18].

Another example is on the US petroleum delivery network, which connects the domestic petroleum
industries and imports (generation nodes) and the consumers (consumption nodes) together. In the summer of
2005, Hurricanes Katrina and Rita disrupted a substantial portion of production, refining, transportation and
marketing sectors of the Gulf Coast oil and natural gas industries. These local contingencies broke the balance
between demand and supply of the petroleum production, and greatly contributed to the record prices in the
US oil market [20] and the decline of US petroleum delivery in 2005 (global performance degradation) [21].

Yet another and a most recent example is the pricing dispute between Russia and Ukraine on the natural
gas. Russia supplies 25% of western Europe’s gas. 80% of the supply comes through Ukraine. Central
European nations also rely on Russian gas deliveries via pipelines through Ukraine. Due to a pricing dispute,
Russia shut down some delivery systems and halted the gas delivered to Ukraine (local contingencies). This
caused a shortage in Ukraine and throughout western Europe (global performance degradation). Although
Moscow and Kiev officials praised a deal to end the pricing dispute on January 4, 2006, many European
countries started to realize the vulnerability of their energy systems [22].

These examples show that local contingencies that break the balance between demand and supply can cause
global performance degradation and even collapse. Spare capacity (e.g., the spinning reserve and backup
generators in the electric power grid, the oil and natural gas reserved for the emergent demand) is usually used
to bring the demand and supply back to balance in such emergent situations. However, spare capacity is
costly, especially when it takes a big portion of the network capacity. Nowadays, many complex networks are
with growing capacity, namely, power generation, oil and gas production are continuously being added. It is
crucial to understand the relationship between the spare capacity and the collapse probability. This paper
studies how this relationship changes as the network capacity grows.

To study the security aspects of resource networks under contingencies, we introduce the following
terminologies. (Some of these terminologies are also defined in a more mathematically rigorous way in
Section 2.) (1) A contingency that requires some nodes to be separated from some others will be called a
separation contingency." (2) The largest difference between the demand and supply that can still be brought
back to balance later will be called the rolerance of the network.” (3) If a network can be partitioned into
smaller sub-networks, which are balanced within a tolerance level, then the network is said to possess the BP

"For example, in a power grid a short circuit in the transmission line may cause the asynchronous among several generators. If the
protection mechanism fails to bring these generators back to synchronous in time, then no protection measures can keep the integrity of
the power grid. Some controlled system separation should be conducted to separate these asynchronous generators from each other, and
keep the customers in each island continuing to be served, so that a blackout can be avoided. The shut down of part of the oil and gas
delivery system may also separate some generation nodes from some others.

Tolerance is a more general concept than spare capacity, which may have special meaning in engineering systems. When a contingency
(e.g., loss of generation or line) happens, if the difference between demand and supply is no greater than the tolerance of the network, then
there is some action (using spare capacity or cut off some unimportant demand) that can bring the difference back to zero. Otherwise, no
action can keep the balance and the network starts passively splitting (some edges are removed continuously). So the tolerance describes
the ability of a network to resist a contingency.
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property or Balanced Partitionable, or simply BP. (4) The term capacity allocation will be used to refer to the
pattern of the resource generation and consumption at all nodes. (5) The ratio of the number of capacity
allocations such that BP holds to the number of ways to allocate the total capacity is called the BP
probability.?

The importance of BP probability is that it provides a measure for the probability of system collapse. The
main result of this paper is a necessary condition on the increasing speed of the spare capacity in the capacity
growing networks to avoid collapse under separation contingencies. Our main assumptions are as follows.

e First, we arbitrarily specify a separation contingency. The existence of BP is studied with respect to (w.r.t.)
this separation contingency when the network capacity increases.

e Second, we consider the BP probability when the load level (the total amount of resource consumption)
equals to the network capacity.

e Third, for a load level, we consider all different capacity allocations.

The model studied in this paper is different from previous models in the following sense. (1) The balance
between the supply and the demand of the resource is a critical condition for the functionality and security of
the network. So far as the authors know, this condition is seldom considered as a critical issue to address in
previous study on other networks. (2) The separation contingency considered in our model directly threatens
the balance between the supply and the demand, which in turn reduces the security of resource network. But as
long as the connectivity of the entire network is sustained, removing nodes and edges (which was the major
concern in previous models) does not bring such threat to the security of resource network, unless the removed
nodes are with big supply or demand. (3) The BP probability measures the probability that a resource network
survives a separation contingency and partitions into sub-networks, in which the local supply and local
demand is balanced (within a tolerance). So we use the BP probability to measure the network resilience. In
previous models, the network resilience is usually measured by the connectivity of the network after removing
some nodes or edges. To summarize, our model captures the critical condition for the security of resource
network, that is the balance between the supply and the demand. This allows us to discover some interesting
relationships between the tolerance and the network security.

The rest of the paper is organized as follows. In Section 2, we describe the node-weighted graph model of a
network which was first introduced by us in Ref. [23] to study the BP problem in the power system context. In
Section 3, we first use the numerical examples to motivate and then theoretically develop the main finding of
the paper: unless the tolerance increases at least linearly with the growing network capacity, the BP probability
of the network decreases to zero. Furthermore, we find that there is a critical value of the linear increasing
speed of the tolerance. If the tolerance increases linearly but slower than the critical value, the BP probability
still decreases to zero. The critical value is discussed in Section 4. In Section 5, we discuss the implications of
this necessary condition. It justifies a common sense in engineering that the tolerance (e.g., spare capacity)
should increase proportional to the total resource consumption. We briefly conclude in Section 6.

2. Balanced partition problem based on node-weighted graph

As aforementioned, the BP property of a network depends on many factors. To describe how these factors
affect the BP property, a node-weighted (sometimes also called vertex-weighted) undirected graph G(V, E, W)
[24] is an appropriate model. Let V' = {vy,...,v,} be a set of nodes; E be a set of edges, each of which ¢;;(i #)
stands for an undirected line between node i and j; W = {wy,...,w,} be a set of weights of the nodes. To
simplify the discussion, we consider only nonzero integer weights. Since the load level is assumed to be equal
to the network capacity, the network capacity can be calculated by the sum of all the positive weights. The
nodes with positive weights are contained in the set V4, which will be called generators. The other nodes are
with negative weights and are contained in the set V;, which will be called loads. We assume that the

31t is evident that the number of BP is affected by many factors, including the separation contingency, the network topology (i.e., how
the nodes are connected to each other), the capacity allocation, the tolerance in each island after the partition, and the transmission
capacity limits of the edges.
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generation and load are exactly balanced before the contingency, that is, > 1" ;w; = 0. We specify separation
contingencies as contingencies that force the generators (and thus the network) to be separated into several
isolated islands. A separation contingency C then can be identified by m (>1) subsets of generators,
Vg Vgysoos V), with size ng,ng,,...,n, , respectively. Note that n, ="' n,. And we have the
following balanced partition problem which was first proposed in the power system context [23].

Balanced partition problem (BP problem): Given an undirected, connected, and node-weighted graph
G(V,E, W) and a separation contingency C = (V,, Vy,,..., V,, ) of Vsuch that >°7_ w; = 0, is there a cut set
E. C E to separate the graph G into m sub-graphs G,(V, E,, W,)(u = 1,...,m) such that V', C V,, and the
resource balance conditions are satisfied? i.e.,

E Wi

vieVy

<d, u=1,...,m, (1)

where d >0 is a small positive constant called the tolerance. Any such cut set E, is called a BP.

It is usually nontrivial to solve the BP problem. Actually the BP problem in a complete graph (i.e., there is
an edge between any two nodes in the graph) has been shown to be NP-complete [23].

We define network BP property as follows.

Definition of network BP property: Given a separation contingency, if the answer to the BP problem is yes,
the network is called BP w.r.t. this contingency.

Whether a network has BP property is affected by many factors, including network topology, network
capacity, tolerance level, and very importantly the way the generation is dispatched among generators and the
load is allocated among load nodes. Networks in equal scale (i.e., the same number of nodes) and with equal
capacity may have different BP property after an identical contingency. To see this, let us look at two five-
node networks in Fig. 1. Generator nodes are shown as black or grey nodes and load nodes are shown as white
nodes. Network (a) has weights {1, 1,1, —1, —2}. Network (b) has the same weights except that the weights on
node 4 and 5 exchange. The two networks have the equal capacity. Suppose that after a contingency the
generator v; has to be separated from generators v, and v;. Exact balance is required after the partition, i.e.,
d = 0. Then network (a) has a BP, i.e., to cut edges e, €24, and e4s5. But network (b) has no BP. So network (a)
is BP w.r.t. this contingency, but network (b) is not. If the tolerance increases to 1, then both networks are BP
w.r.t. this contingency.

To study how the capacity and tolerance affects the existence of BP, we fix the network scale and
contingency, that is we assume that V', V;, and V, ,u=1,...,m in C are known and fixed, but W and the
tolerance d are variables. Denote the network capacity, total generation ZvieV[ w;, by P. Given a network
capacity P, let A(P) be the set of all capacity allocations. For example, in the five-node network in Fig. 1,
ng =1V, =3,nm =1V, =2, P=3. Note that we assume that all weights are nonzero integers. The set of all
capacity allocations is A(3) = {{1,1,1,—1,-2},{1,1,1,—2,—1}}, corresponding to network (a) and (b) in
Fig. 1, respectively. Under separation contingency C, denote the set of capacity allocations that permit a
BP by As(P,C,d) C A(P), i.e., capacity allocations such that the answer to the BP problem is yes when
the tolerance in each island is d (a nonnegative integer). Consider for example, a separation contingency

vi(l) vy(1) vy wd) vyl vs(1)
) )

N

(-1 vs(-2) vy(-2) vs(-1)
Network (a) Network (b)

Fig. 1. The effect of capacity allocation on the existence of balanced partition. Network (a) has one balanced partition, but network (b)
has no balanced partition.
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Fig. 2. The eight-node complete graph. Dark nodes and grey nodes are generators. White nodes are loads. A separation contingency
requires the dark nodes and grey nodes to be separated from each other.

C = ({n1}, {va, v3}) with m =2, ny, =1, ny, = 2 in Fig. 1. We have 45(3,C,0) = {{1,1,1,—-1,-2}}, 45(3,C, 1)
={{1,1,1,—1,-2},{1,1,1,—2, —1}}.The problem we are interested in now can be stated as:

What is the BP probability of a network with growing capacity, i.e., the asymptotic value of
|A3(P, C,d)|/|A(P)| when P goes to infinity?

The term |A3(P, C,d)|/|A(P)| represents the percentage of possible capacity allocations in such a network
that can survive a separation contingency C.

3. A necessary condition for the existence of BP

We first use two numerical examples to motivate, and then theoretically discover a necessary condition for
the existence of BP. The first example is a small network. Consider an eight-node complete graph with five
generators and three loads (Fig. 2). Suppose the separation contingency requires nodes {1,2,3} to separate
from nodes {4,5}. For a given network capacity P, we randomly generate 1000 capacity allocations to estimate
the BP probability after the contingency. Let the tolerance be a special function of the network capacity P,
T(P)=0.5P"|,b=0.1,0.2,...,1.0, where || is the floor function since we consider only integer weights. We
show the numerical results in Fig. 3. We can see that for »< 1.0, the BP probability decreases when P increases.
Only when b = 1.0, the BP probability stays at 1 for all P.

The second example is a large network. Among the 14099 nodes in the North America power
infrastructure, a total of 1633 nodes are power plants; a total of 2179 nodes are distributing substations [8]. So
we consider a complete graph with 1633 generators and 2179 loads. Suppose the separation contingency
requires 1000 generators to separate from the rest 633 generators. Similar to the first example, we can estimate
the BP probability after the contingency by randomly generating 1000 capacity allocations. However, as
aforementioned it is computationally infeasible to rigorously check whether there is a BP for each capacity
allocation. So, we adopt the method used in practice: we randomly generate 1000 partitions for each capacity
allocation. If none of these partitions are BP, we estimate that capacity allocation is not BP. The justification
for this estimation method is that in large-scale practical networks we only have time to test a small number of
partitions before it is too late to take an active partition operation. Let T(P) = 10.05P"|, 5 =0.1,0.2,...,1.0.
We show the numerical results in Fig. 4, which is similar to Fig. 3.

“The only difference is that for » = 0.8 and 0.9, the BP probability in Fig. 4 is still 1.0. As we will show in the following theoretical
analysis, this is because we have not tested large enough P in Fig. 4.
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BP probability

0
102 10° 10*
P

Fig. 3. The effect of the increasing speed of the tolerance T(P) on the BP probability in the small network. T(P) = [0.5P"]. Unless the
tolerance increases no slower than linearly, i.e., 5>1.0, the BP probability converges to zero. All points are averaged over 1000

replications.

b=0.8,0.9, 1.0

b=0.7
0.9

BP probability

0
10* 10° 108
P

Fig. 4. The effect of the increasing speed of the tolerance 7(P) on the BP probability in the large network. T(P) = [0.05P"]. All points are

averaged over 1000 replications.

The above two examples motivate us that unless the tolerance increases no less than a linear function of the
network capacity, the BP probability decreases to zero. This can be shown theoretically. To be specific, we will

show that

Theorem 1 (A necessary condition for the existence of BP). When the tolerance increases slower than a linear
Sfunction of the growing network capacity, i.e., limp_, o, T(P)/P = 0, the network resilience and the BP probability
will decrease to zero, i.e.,
. |43(P, C, T(P))]
lim ————————==0 2
Poe AP @

Note that this necessary condition holds for arbitrary networks.
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e
v-D) T )
Network (c)

Fig. 5. The complete graph for network (a) in Fig. 1.

We prove this necessary condition in the rest of this section. For an arbitrary network, we introduce a
globally connected network, whose node-weighted graph model is a complete graph, where there are direct
edges between any two nodes and all edges have no transmission limit. It can be derived that the BP
probability of a complete graph supplies an upper bound for that of a graph with arbitrary topology.
To see this, for graph G(V, E, W), we introduce a complete graph G°(V, E¢, W). The only difference between
G and G° is that there is an edge between any pair of nodes in G, but not necessarily in G. If a capacity
allocation W in G has a BP E,, by removing all the edges that are in G¢ but not in G (denoted by E\E), the
set of edges E. U (E°\E) is a BP for capacity allocation W in G°. For example, for network (a) in Fig. 1
we introduce a globally connected network (c) in Fig. 5. The set of all the edges that are in network (c) but
not in network (a) is E°\E = {ey3, €15, €25, €34}. Network (a) has a BP E,. = {e2, €24, €45}. Then E. U (E\E) =
{e12, e13, €15, €24, €25, €34, €45} 1s a BP for network (c).

We will show Eq. (2) holds for complete graphs. Then it is straightforward to show that Eq. (2) holds for
arbitrary networks. Our argument is based on counting methods that are familiar in combinatorial
mathematics. Recall that >, n, = n, and A(P) represents all possible capacity allocations, which consist of
the weight allocations among the generators and among the loads. So we have

P—-1 P—1

where (Z) denotes the number of choices of b elements from « distinguished ones,

(a) al _ala=1)---(a=b+1) @)

b}~ bla—b) b! ’
where b! is the factorial of b; (Z) = 0, if a<b. Here we have used the fact that the number of ways to assign a
units of resource (generation or load) to b nodes is (Z:}) > To simplify the notation, we introduce the relation
“x<” which quantifies the rough idea of “two functions increase at the same speed to infinity”. Let k& be an
integer variable which tends to infinity and let x be a continuous variable tending to some limit. Also let ¢(k)
or ¢(x) be a positive function and f(k) or f(x) be any function. Then Ref. [25] defines f =< ¢ to mean
Ki¢p<f<K,¢p for some positive constants K; and K,. It is trivial to show that

a\ _ b a=T1\ _
(b>ﬁa, <b_l>ﬁa . (%)
Then

|A(P)| = PEZLI ”g,1+n/72_ (6)

SWe regard each unit of resource as a “ball”” and put them in a line that should be divided into b groups (each group is corresponding to
a node). Balls are indistinguishable. But nodes are distinguishable from each other. So, a grouping is an allocation, vice versa. And a

grouping can be regarded as inserting b — 1 blocks to the @ — 1 interspaces between the a balls. This is how (Z:}) comes.
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Let C'=(V,,,Ui,V,,) be a separation contingency in which only n,, generators V,, are forced to be
separated from the others, and the rest of the generators need not be further separated from each other. Since
the load and generation is exactly balanced before the contingency, we have the observation on the relation
between C and C’ that

As(P,C, T(P)) C A3(P, C', T(P)),

because every capacity allocation such that m islands (with V', ,u = 1,...,m, as generators) are balanced within
tolerance T'(P) can be regarded as an capacity allocation such that two islands (with V,, and UJ;_, V,, as
generators) are balanced within tolerance 7'(P). Thus we have

|[43(P, C, T(P))| < |43(P, C', T(P))|.

Below is an estimation of |A3(P, C’, T(P))|, which is the number of capacity allocations that lead to BPs
separating generators in the set V', from the other generators. When there are two islands after the partition,
the tolerances in both islands must be equal, i.e., if in one island the generation is d units more than the load,
then in the other island, the generation is d units less than the load. Let z; be the number of capacity
allocations that the differences between generation and load are exactly d in both islands. Then we have

P—ng, nj—1
Py —1\[(P—Py —1
ve 2 2l D) ()
Pagtn "/z—:1 -1 Z”=2 g, = 1
X((Pgl—d—l)(P—Pg,+d—1>+(Pgl+d—1><P—Pgl—d—l)) @
—1 }’l/—l’lll—l n,l—l I’l[-l’l/l—l

P-ng, nj—1 P_1 p_1 P_1
Z Z 2 Stong — 1)\, — 1)\ —ny, — 1 ®)
Plll_”lh ny, =1 u=2""9u I 1 1

= qu 1 gy, tri— ©)

The inequality (7) is obtained by specifying the weight allocated among the generators, P,,, and the number of

nodes in the first island, n;,. We can see from above that there are two cases when the differences between

generation and load in both islands are exactly d: either the generation in island 1 is 4 units more than the load

(then the generation in island 2 is d units less than the load) or d units less than the load (then the generation in

island 2 is d units more than the load). This is how the last summation in Eq. (7) comes. The inequality in

Eq. (8) is due to the fact that (%,")<(§) for i =0,1,2,... . Using Eq. (5), we get Eq. (9) from Eq. (8).
Furthermore, we have

T(P)
|45(P, C', T(P))| = Z ta
T(P)
Z K2t a3 (10)
= (T(P) + 1)KP2ct "3, (11

where K in Eq. (10) is a positive constant. Combining Eqs. (6) and (11), we have
[43(P, C, T(P))l _ i |43(P, C', T(P))|

m < lim
P=oo |A(P)] P00 |A(P)|
< lim (T(P)+ I)KPZu:ln.‘/u+n1_3
= phco |A(P)|
< lim (T(P)+ I)PZu Mg, T3

P—oo PZu | g, T~ 2
TP 1
fim L@+ 1D

P—o0 P - 0’
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where the last equality is due to the assumption that limp_, o, T(P)/P = 0. So far we have shown that Eq. (2)
holds for all complete graphs. As mentioned above, since the BP probability in a complete graph supplies an
upper bound for that in an arbitrary graph, it is straightforward to show that Eq. (2) holds for arbitrary
networks. This completes the proof.

4. The critical value of linear increasing speed

In this section, we explore further on the linear increasing speed and will show that there is a critical value of
the increasing speed to avoid BP probability being less than 1, which will lead to positive system collapse
probability. Before presenting our general analysis, let us use the numerical results on the two networks in
Section 3 for motivation. First let us consider the eight-node globally connected network. (The node-weighted
graph is shown in Fig. 2.) There are five generators and three loads (i.e., n; = 3). After a separation
contingency, three generators are forced to be separated from the other two, i.e., ny,, = 3, ng, = 2. What is the
asymptotic value of the BP probability when the tolerance increases with different linear speed «, i.e.,
T(P) = |aP|? The numerical results are shown in Fig. 6. When 2<0.43, the asymptotical value of the BP
probability is less than 1; for greater o, this asymptotical value is 1. So the value 0.43 here is a critical value.

Second, we consider the globally connected large-scale network, which is as large as the North American
power grid. We also test the asymptotic value of the BP probability when 7'(P) = [«P], and show the results in
Fig. 7. The critical value in this network is 0.003.

Now we focus on the theoretical study of the following questions. Generally is there a critical increasing
speed for o to make the asymptotical value of the BP probability be 1? If yes, what is the critical value?

Since the BP probability in complete graph supplies an upper bound for that in an arbitrary network, we focus
on complete graph in the following discussion. Recall the contingencies C = (Vy,...,V,, ) and
C'= V.U, Vy,). Also please note that As(P, C, T(P)) C A3(P, C', T(P)), because the network is originally
balanced. So we only need to consider the case that the network is partitioned into two islands, i.e., C'. We have

LoP]

[ 43(P, C', |«P])| = Y |43(P, C', d)|
d=0

~ (2laP] + 1)]43(P, C', 0)|

1

0.9

0.8 [

0.7 |

0.6

051

0.4 r

0.3

0.2

the asymptotical value of the BP probability

0.1

0

0 01 02 03 04 05 06 07 08 09 1
o

Fig. 6. Different linearly increasing speed of the tolerance affects the BP probability of the network in Fig. 2. P = 10000. All data are
averages over 1000 replications.
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0.9

0.8

0.7

0.6

05

04

0.3 [

0.2

the asymptotical value of the BP probability

0.1

0 0.005 0.01 0.015 0.02 0.025 0.03
o

Fig. 7. Different linearly increasing speed of the tolerance affects the BP probability of the globally connected network, which is as large as
the North American power grid. P = 10'°. All data are averages over 1000 replications.

P—ngy,
P, —1\/P—P, —1
< 2 g1 g1
QLO(PJ - 1) (n.tll - 1) ( ng, — 1 )

Pg,=ng,

-1
< (n;) (P,,] — 1) <P— P, — 1)
X max E ; )
Py, =ng, ,...P—ng, o=\ n, —1 n—ny, — 1
1

P—n nyj—1
£ [Py — 1\ (P—Py — 1\ = [ pr?
<ewrr+n 3 (20" ) 20 == 02
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The second line in Eq. (12) is based on the fact that if the generation in one island is d units greater than the
load, then the generation in the other island is d units less than the load. The third line is obtained from the
fact that in a BP the load of some (say #;,) nodes should be equal to the generation in island 1 (Py,). The last

line is based on the fact that (nf’{ll) <P~ and (P—Pgl—l) <P ~' We also have
1
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The last term in Eq. (13) (f; :11) is the (number of capacity allocations over all the loads. Using Eqgs. (12) and
(13) we have
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n-1 (;/l)(n, 1!

<2a .
22 Gy = Dl — iy = D)

(14)

The last line in Eq. (14) is based on the fact that (Z :11) = P! Only when « is greater than a critical value
1
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(15)



Q.-C. Zhao et al. | Physica A 373 (2007) 861-873 871

100 T T T T T T T
I} A theoretical critical value
T o o ° O experimental critical value
107§
A 5 o
3 o
“— 2
5 10 A
[O)
=)
t_g A
= -3 F
% 10
Q A
5
,—8 104 F A
AN
10% f
A
10»6 L L L L L L L VN
2 3 4 5 6 7 8 9 10

Fig. 8. Critical values of « for different n;. n,, = 3,ny, =2, P =10000. All data are averages over 100 replications.

the asymptotical value of the BP probability may be 1. It is obvious that o, >0 for finite n;, which implies that
the linearly increasing speed of the tolerance should be large enough, otherwise the BP probability still
converges to zero.

We show the numerical results in Fig. 8. The critical values obtained from experiments are always greater
than the value obtained from Eq. (15), which supports that Eq. (15) does supply a lower bound of the least
linearly increasing speed of the tolerance such that the BP probability converges to 1. We also see that the
critical value in Eq. (15) decreases as n; increases. This implies that increasing the number of loads helps to
reduce the increasing speed of the tolerance. This is because when there are more loads the capacity is further
separated into smaller units. And there is a larger chance to find some loads that can balance the generations
in an island.

In practice usually when the number of loads increases, the number of generators also increases. To test how
the critical value changes in this case, we adopt the following experiment. When increasing the total number of
nodes in the network, we fix the portion of the loads (e.g., 0.6, which is the portion of the loads in the North
American power grid). We also consider the separation contingency that requires to separate a fixed portion of
the generators from the rest of the generators. As shown in Fig. 9, except the first point (the smallest case), the
critical values variate among a fixed value. This means when the network scale increases the number of
generators and loads increase at the same speed, the critical value does not change much.

5. Implications

The necessary condition developed in Section 3 has some interesting implications on network security and
resilience.

The impossibilities when improving network resilience: In a network without a global coordinator (who has
accurate global information and has the absolute power to decide the capacity allocation), if we do not
improve the investment on tolerance facilities at least linearly fast, then it is impossible to keep the network
resilience at a high level as the network capacity increases.

Justify the common sense to linearly increasing the tolerance of the network: This is a common sense in
engineering. For example, in a power system the spinning reserve is required to be no smaller than 3-5% of the
maximal total power consumption. In petroleum industries, the spare capacity is about 5% of the total
generation. Eq. (2) justifies this common sense in a quantitative way.

The increasing difficulty for secure generation dispatching in a network with growing capacity: When the
network capacity increases but the tolerance is increased slower than linearly, more and more capacity
allocations will not be BP under a separation contingency. This will run us into an impossible situation for
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large-scale networks because it is extremely difficult (if not impossible) to have a general “global coordinator”
to ensure such a successful yet restrictive way of precisely controlling the resource generation and
consumption of all nodes. Arbitrary and haphazard decisions are not acceptable as they will very likely lead
the network to lose BP property.

6. Conclusion

In this paper, a necessary condition for the existence of a balanced partition for a network with growing
capacity is obtained: unless the tolerance in each island after the partition increases at least linearly as the
capacity grows, the network will eventually collapse with probability 1 when the capacity increases to infinity.
It should be noted that even when this condition is satisfied, the network may still collapse. This necessary
condition justifies a common sense in engineering that the tolerance (e.g., spare capacity) should increase
proportional to the total resource consumption. Some implications on impossibilities and difficulties of the
network security and resilience are presented.
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