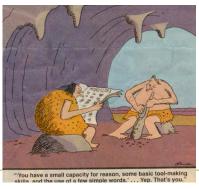
Cultural Evolution at the Group Level

Dan Hruschka Santa Fe Institute dhrusch@santafe.edu

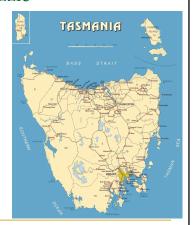
Questions

- How does social demography influence the spread and maintenance of cultural traits?
- Are extant patterns of cultural diversity a result of branching with isolation or long-term mixing between groups?
- Is the cultural history of human groups adequately represented by trees?


Recap

- Lecture 1. Models of cultural diversity
 - Human communities vary greatly in social organization, behaviors, and knowledge
 - Many theories to explain diversity
 - Darwinian processes
 - Neutral theory
- Lecture 2. Simple models of social learning
 - Use of mathematical models to hone intuitions
 - Comparing predictions of models against real observational data
 - Experimental evidence for how people learn from others

Overview


- Part 1. How does social demography and community structure influence the spread and maintenance of cultural traits?
- Part 2. How can we test competing theories of linguistic and/or cultural history?

Part 1. Does social demography influence the creation, maintenance and spread of skills, behaviors, ideas?

The Tasmanian Puzzle

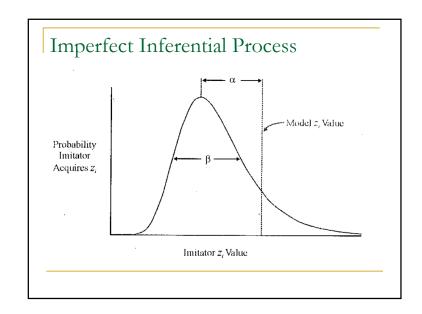
- Europeans arrived 1642:
 - 4000 Tasmanians on island
 2/3 the size of Ireland
 - Simplest technology of any people ever encountered
 - Simple stone tools
 - Clubs and one-piece spears.
 - No bone tools
 - No fishing technology
 - Clothing--1-piece wallaby skill
 - Some groups could not make fire
 - Stark contrast to Victorian Aboriginals 150km north

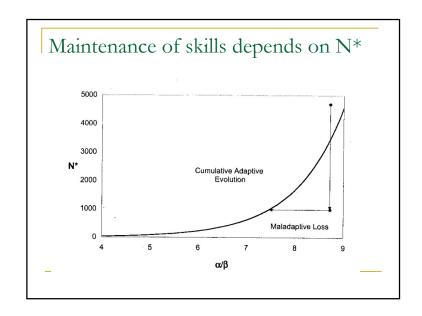
Henrich (2004). American Antiquity.

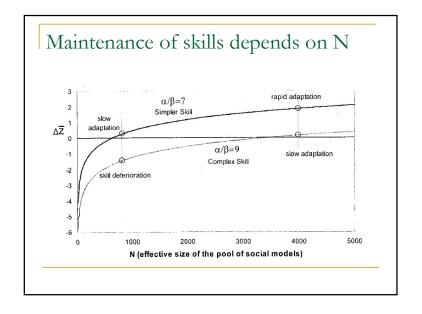
Archaeology: The Puzzle deepens

- In last 10,000 years, Tasmanians lost a series of skills and technologies. These likely include bone tools, cold-weather clothing, hafted tools, nets, fishing spears, barbed spears, spear-thrower, boomerangs and the ability to make fire (?).
- In all, the entire Tasmanian toolkit comprised about 24 items
- Contrast this with aboriginal Australians across the Bass Strait who
 possessed almost the entire Tasmanian toolkit plus <u>hundreds</u> of
 additional specialized tools including...
- multi-pronged fishing spears, spear throwers, boomerangs, mounted adzes, composite tools, a variety of nets for birds, fish and wallabies, sewn bark canoes, string bags, ground edge axes and wooden bowls for drinking

Sudden Separation

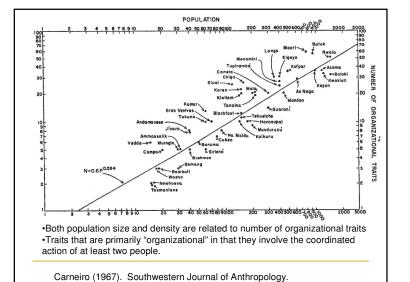

- 10,000 years ago was the end of the last glacial epoch.
- The ice melted, glaciers retreated, and the oceans rose.
- The "Bass Bridge" become "Bass Straight"
- Tasmanians were suddenly cut off mainland Australia, for at least 8000 years.




Why lose something when its useful?

Test the logic of an idea by constructing a mathematical model

- Everyone attempts to acquire skills/knowledge from the individual with highest z value (z_h)
- b) Inferential process is fraught with mistakes & errors, because observations supply only a fraction of underlying information.
- On-average, copiers will fall far short of most skill individual (z_h) , but some errors or individual learning will (statistically) make some individuals more proficient or knowledgeable.



Tasmanian Puzzle

- Rising seas cut Tasmania off
- This drastically reduced the effective size of the social network for cultural learning
- Gradually, over 1000's of years, useful technologies and knowledge was lost.
- This did not happen in Victoria, as they were connect with larger networks of Australia.
- Point: cultural evolution is a social process that depends on the demographic and network details.

Points

- Human psychological capacity is not enough to support large cultural complexes.
- Rather it must be united with sufficient population or social density.
- Sometimes cultures become less complex

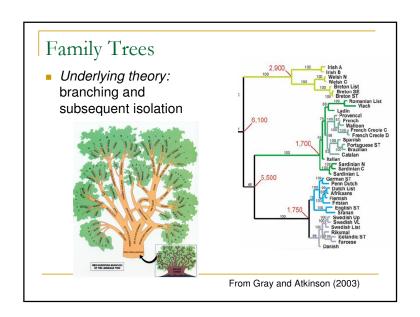
Encyclopedia Britannica

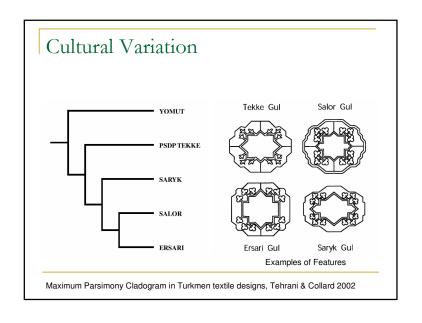
Definition of "Cultural Evolution": the development of a culture from simpler to more complex forms, by a continuous process. The subject may be viewed unilinearly, tracing the evolution of humankind as a whole; or it may be viewed multilinearly, treating the evolution of each culture or society (or of given parts of a culture or society) individually...

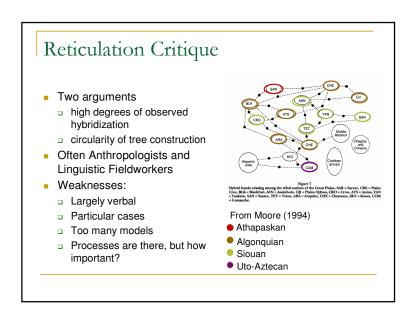
Further Reading

- Van Schaik et al. (2003). Science.
- Shennan (2001). Cambridge Archeological Journal.

Part 3. Testing models of cultural history


- Given the extant pattern of cultural variation among populations, how can we assess different theories of their history?
- Here, I make no assumptions about whether evolution or change is Darwinian.

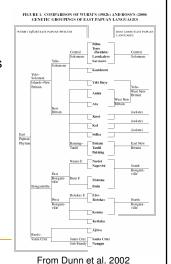

Aims


- Review current models of long-term cultural and linguistic history
- Introduce East Papuan case
- Describe likelihood framework to compare competing models
- Apply approach to data on syntactic features of East Papuan languages

Problem

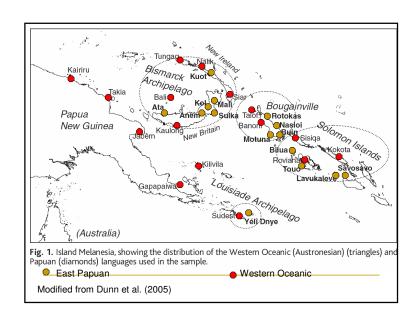
- What processes have lead to extant patterns of variation in cultural or linguistic features across populations?
- Culture:
 - Practices (i.e. basket-making, tapestry-weaving)
 - Beliefs (i.e. food taboos)
 - Institutions (i.e. kinship and marriage patterns)
- Language:
 - Word lists
 - Syntactic features

	Trees	Reticulation
Data	N-group comparison, Quantitative	Case studies
Analysis	Search within space of trees, Exclude cases of hybridization	Particular examples of hybridization


Aims

- Review current models of long-term cultural and linguistic evolution
- Introduce East Papuan case
- Describe likelihood framework to compare competing models
- Apply approach to data on syntactic features of East Papuan languages

Example from East Papuan MAPI. THE EAST PAPUAN LANGUAGES MAPI. T

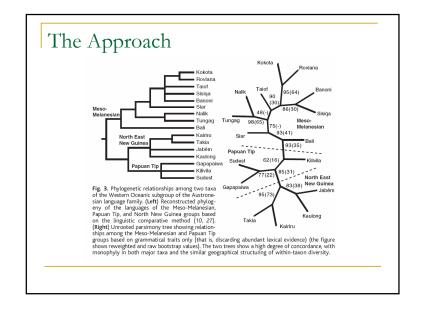

Debated Histories

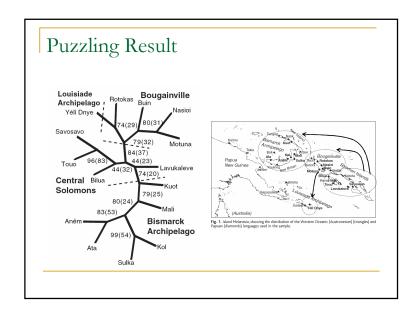
- Wurm (1975), lexicostatistics and typological classification
- Ross (2005), pronouns
- Dunn et al. (2005), syntactic features, maximum parsimony
- Terrell et al. (1997), process argument

Recent approach to the problem

- Dunn et al. (Science 2005)
- 15 "East Papuan" languages
- 16 "Austronesian" languages
- Problem: very few plausible cognates (< 3%)
- 11 sound system & 114 syntactic features
- Dichotomous (presence/absence)
- Concerns
 - Missing data (141 out of 1875)
 - Non-independence of features?
 - Forms versus features

Data Layout T4 T5 T8 Т9 T10 T11 T12 Group Rotokas 0 0 0 0 Buin Nalik Bilua Kuot Mali Sulka Yeli Dnye


What counts as a syntactic feature?


Example: Presence of copula

"I am a person" vs. "Ya chelovek"

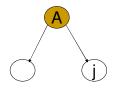
- Others are not so straightforward
- Data: 125-element vector of 0s and 1s

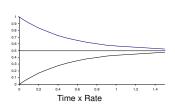
*According to Dunn et al.

Also, Competing Theories

- Long-range divergence (Dunn et al. 2005).
 "Most plausible...divergence of Papuan languages from a common ancestral stock, as part of late Pleistocene dispersals."
- Recent contact (Terrell et al. 1997)
 - Recent West Oceanic dispersal
 - □ Region of endemic bilingualism (Ross)
 - Between-language transfer of syntactic features (case studies: Sulka, Kuot)
- Within-island group descent (or convergence)

How do we compare these claims?


Aims

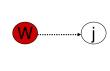

- Review current models of long-term cultural and linguistic evolution
- Introduce East Papuan case
- Describe likelihood framework to compare competing models
- Apply approach to data on syntactic features of East Papuan languages

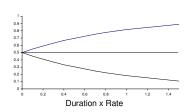
A likelihood framework

- Specify models of process (divergence and convergence)
- Construct related likelihood functions
- Maximize likelihood function for each model
- Compare models using some criteria (e.g., AIC, BIC)

Event 1: Descent

$$p(t_{jk} = 1 \mid A_k = 1, T_j r_k) = p(t_{ik} = 0 \mid A_k = 0, T_j r_k) = 0.5(1 + e^{-2T_j r_k})$$
$$p(t_{jk} = 1 \mid A_k = 0, T_j r_k) = p(t_{jk} = 0 \mid A_k = 1, T_j r_k) = 0.5(1 - e^{-2T_j r_k})$$


tik= value of trait k in group j

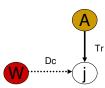

A_k= value of trait k in ancestor (perhaps unobserved)

T_ir_k=time since j's divergence from A x rate of change in trait k

(Major assumption: $0 \rightarrow 1$ equally likely as $1 \rightarrow 0$)

Event 2: Contact

$$p(t_{jk} = 1 \mid W_k = 1, D_j c_k) = p(t_{jk} = 0 \mid W_k = 0, D_j c_k) = 1 - 0.5e^{-D_j c_k}$$
$$p(t_{jk} = 1 \mid W_k = 0, D_j c_k) = p(t_{jk} = 0 \mid W_k = 1, D_j c_k) = 0.5e^{-D_j c_k}$$

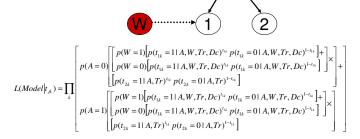

tik= value of trait k in group j

W_k= value of trait k in donor (in this case Western Oceanic)

D_iC_k=duration of j's contact from W x rate of transmission of trait k

(Major assumption: $0 \rightarrow 1$ equally likely as $1 \rightarrow 0$)

Descent & Contact


$$p(t_{jk} = 1 \mid A_k = 1, W_k = 1, Tr, Dc) = 1 - 0.5(1 - e^{-2Tr})e^{-Dc}$$

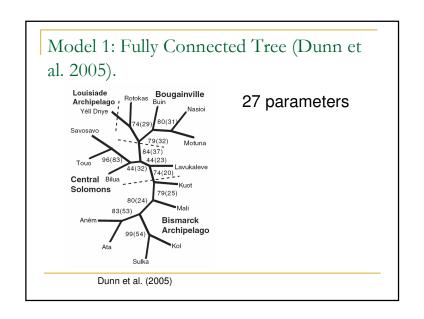
$$p(t_{jk} = 1 \mid A_k = 0, W_k = 1, Tr, Dc) = 1 - 0.5(1 + e^{-2Tr})e^{-Dc}$$

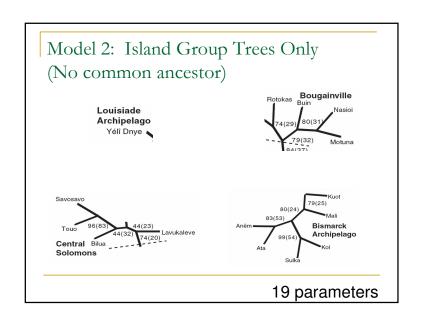
$$p(t_{jk} = 1 \mid A_k = 1, W_k = 0, Tr, Dc) = 0.5(1 + e^{-2Tr})e^{-Dc}$$

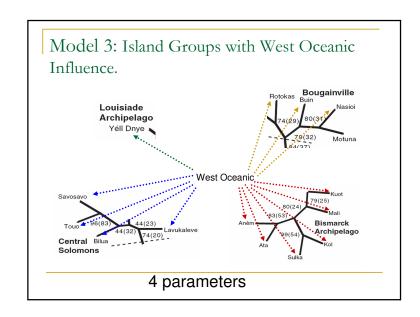
$$p(t_{jk} = 1 \mid A_k = 0, W_k = 0, Tr, Dc) = 0.5(1 - e^{-2Tr})e^{-Dc}$$

Putting it together

Assumptions (for now)


- Rate of change and rate of transmission are the same across all traits
- Traits are statistically independent


Aims


- Review current models of cultural and linguistic history
- Introduce East Papuan case
- Describe a likelihood framework
- Apply the approach to compare models of East Papuan linguistic diversity

Three Models

- 1. Fully connected tree (Dunn et al. 2005)
- 2. Within-island group descent
- 3. Recent Western Oceanic influence

Model	params	Lnlikelihood	AIC	BIC
Random	0	-1201.22	2402.4	2402.4
Tree	27	-1046.09	2148.2	2289.3
4 islands	3	-1097.22	2200.4	2236.4
4 island + Western Oceanic	7	-1047.38	2108.8	2145.9

Tentative Conclusions

- Among the proposed models, within-island similarity and West Oceanic influence best account for the data.
- There is little support for ancestral East Papuan (given this data and the models considered)
- A "tree structure" can arise from a combination of processes

Model 3: Island Groups with West Oceanic Influence. Louisiade Archipelago Yéli Dnye West Oceanic West Oceanic West Oceanic Anèm Bougainville Buin Nasioi 74(29) 80(31 Motuna Bismarck Archipelago Archipelago Kol Anèm Solomons 4 parameters

Lessons

- Time depths of the historical processes may be much more shallow than originally expected
- The importance of using external data (historical, archeological, linguistic) to develop testable models.

Recap

- Lecture 1. Models of cultural diversity
 - Human communities vary greatly in social organization, behaviors, and knowledge
 - Many theories to explain diversity (Darwinian processes, Neutral theory, Ecological and Biological determinism)
- Lecture 2. Simple models of social learning
 - Use of mathematical models to hone intuitions
 - Comparing predictions of models against real observational data
 - Experimental evidence for how people learn from others
- Today. Cultural evolution at the group level
 - How social demography effects the maintenance of skills
 - How to compare competing theories of cultural history

Wrapping up

- Diversity in human communities leaves many open questions.
- We have reviewed some tools available to devise and test and compare theories of cultural change and diversity
- Data, data, data
- Careful case studies of change

Data

- Cross-cultural datasets
 - Human Relations Area Files (Yale University)
 - Ethnography
 - Archeology
 - Standard Cross-cultural sample (Murdock and White 1966)
 - Western North American Indians (Jorgensen 1981)
- Linguistic datasets
 - University of Auckland (Austronesian, Bantu languages)
 - Language corpuses (British National Corpus)
- Forager Toolkits (Collard, U. of British Colombia)
- Greek City-States

Data

- Texts
 - Drout's work on monastery texts
 - Pocklington and Best
- Sampling riffs
 - Pacey Foster

THANK YOU