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We study the inner structure of the random walk of stock prices at transaction-
by-transaction level. From our previous works we know the stochastic process un-
derlying the dynamics of stock prices is not a simple random walk: that the signs
and the absolute values of the microscopic returns (i.e. the steps fo the random
walker) are not independent, but rather there is a subtle relationship between them.
We know that this relation cannot be explained in terms of pairwise dependance
between a sign and an absolute return; in this paper we show that it depends in
some measure on sign predictability: each absolute return depends clearly on the
properties of the past sequence of sign. The price stochastic process is a kind of
adaptive random walk. This means that the response of price to trade depends on
the past history of trading activity. When the trading pressure tries to move the
price in a given direction, the response of the price is significantly asymmetric. The
response of price to trade is significantly smaller in the direction toward which the
forcing trading activity tries to move the price. We analyze the highly capitalized
stock Astrazeneca (AZN) traded at the London Stock Exchange in the period May
2000–December 2002.

I. INTRODUCTION

The returns of a financial product are un-
predictable. This empirical evidence is con-
sistent with the efficient market hypothesis
(EMH) in its weak form. A financial market
is said (informationally) efficient if market
prices reflect all available information about
value. In the weak form of the EMH “all
the available information” is the past prices.
Roughly speaking, in the weak form EMH
states that there is no way of making a profit
on an asset by simply using the recorded his-
tory of its price fluctuations. That is, the
returns of a given financial asset are (i) zero
on average and (ii) unpredictable from their
historical time series. It’s well-known that
unpredictable time series and stochastic pro-
cesses are not synonymous, but a widely ac-
cepted belief in financial theory is that asset
price dynamics can be modeled as a stochas-
tic process. The random walk (RW) was
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the first stochastic process proposed to model
price dynamics. Its first formalization was
proposed in the doctoral thesis of the French
mathematician Louis Bacheliér [1], five years
before the famous paper written by Einstein
on brownian motion (BM) and the determi-
nation of the Avogadro number in 1905. This
process assumes that the steps of the random
walker are independent identically distributed
(IID).

From many years it’s well known that the
stochastic process underlying price changes is
not a pure BM. Many empirical studies have
shown that financial returns have fat tails [6,
10, 11, 15–18, 20] and some non-linear func-
tions of returns are strongly correlated (clus-
tered volatility) [3–5, 13, 14, 19]. Then, the
steps of the random walker are not gaussian
distributed, neither independent. Moreover,
our recent works suggest that there is also
a subtle correlation between the sign of the
steps and their magnitude. This result is con-
firmed by a recent work of Weber [21].

In this paper we study the relation be-
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tween the signs of the returns and the sizes
of the returns at ‘transaction-by-transaction’
level1. We distinguish between transaction-
to-transaction returns – price changes driven
by one single transaction and the market re-
sponse – and impacts – price changes driven
by one single transaction only. We study
both cases. In our previous results we argue
that the absolute returns are affected in some
way by sign predictability. I.e., if signs are in
some measure predictable this affects in some
way (to reduce volatility) the magnitude of
the returns. To test this insight we build
a predictor of the signs and we study the
behavior of the absolute returns as the pre-
dictability increases. First, we observe that
the next absolute return increases as the pre-
dictability increases. Second (and this is the
central point), for impacts the next absolute
return increases more when the prediction is
wrong. This is reasonable, because it means
that the liquidity in the book order moves de-
pending on the flow of supply and demand.

We also study the effect of runs of same-
sign returns on the first opposite-sign abso-
lute return. We observe that the longer is
the run of equal signs the larger is the price
change in the opposite direction. This result
confirms that liquidity moves with the flow
of supply and demand in order to rebalance
the price. Longer is the run of price changes
toward a direction, stronger is the response
of the market to reduce this imbalance (the
opposite price change is larger).

The remainder of the paper is organized
as follows. In section II we describe the con-
tinuous double auction mechanism, which is
at the basis of most of the modern stock mar-
kets, and our data set. In section III we
deal with the “random walk” of stock prices.
First, we introduce the notion of general-
ized random walk and we present a simple
model with signs independent of sizes, and

1 Some of this work is based on research done in col-
laboration with Doyne Farmer and Fabrizio Lillo,
and will be published at a future date.

vice versa. Then, we show briefly our pre-
liminary results about the overestimation of
the expected volatility and the likely relation
between step signs and step sizes. In section
III we illustrate the core of our project, ana-
lyzing directly the relationship between step
signs and step sizes. First, we show our result
about the key-role of sign predictability and
its effect on the next absolute returns. Sec-
ond, we also study the relationship between
long sequences of equal signs and the follow-
ing absolute returns. Finally, in section IV
we conclude with a discussion of our results.

II. BACKGROUND: THE
CONTINUOUS DOUBLE AUCTION

MECHANISM

The continuous double auction is the stan-
dard mechanism for price formation in most
of the modern financial markets. Agents can
place different types of orders, which can be
grouped into two categories: market orders,
andlimit orders or quotes.

Market orders, usually submitted by im-
patient traders, are requests to buy or sell a
given number of stock shares immediately at
the best available price. More patient traders
submit limit orders (quotes), which in addi-
tion to the number of shares to sell or to buy
also state a limit price π, corresponding to
the worst allowable price for the transaction.
It’s important to note that the word “quote”
can be used to refer either to the limit price
or to the limit order itself.

Limit orders often fail to result in an im-
mediate transaction and are stored in a queue
with priority called the limit order book. Buy
limit orders are called bids and sell limit or-
ders are called offers or asks. At any given
time t there is a best (lowest) offer to sell
with a price a(t) and a best (highest) bid to
buy with the price b(t). These are also called
the inside quotes or the best prices. The price
gap between them is called the bid-ask spread
or simply the spread : s(t) = a(t)− b(t)

It’s important to be clear: prices are not
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continuous, but rather change in discrete
quanta called ticks whose size is ∆p. The
number of shares in an order is called either
its size or its volume. In Fig. 1 we illustrate
schematically the limit order book and the
order placement mechanism.

FIG. 1: Limit order book. Schematic illustra-
tion of limit order placement and market orders
matching. Limit orders are stored in the limit
order book; as market orders arrive in the mar-
ket they are matched against limit orders . We
adopt the arbitrary convention that buy orders
are represented by negative share requests and
sell orders by positive share requests.

As market orders arrive they are matched
against limit orders of the opposite sign in
order of first price and then arrival time. Be-
cause orders are placed for varying numbers
of shares matching is not necessarily one-to-
one. For example, suppose the best offer is
for 200 shares at e60 and the next best is for
300 shares at e60.25; a buy market order for
150 shares will buy all the shares requested
at the best price, “leaving” 50 shares at the
best ask a(t) = e60, while a buy market or-
der for 250 shares will buy 200 shares at e60
and 50 shares at e60.25, moving the best ask
a(t) from e60 to e60.25.

It makes sense to argue that transactions
are driven only by matching between market
orders and limit orders, but this is not strictly
true. In fact, it could happen that a limit

order to buy is placed at the same price as the
best (lowest) limit order to sell, generating in
this way a transaction.

Any given order can always be decom-
posed into two types: we can call any com-
ponent of an order that results in immediate
execution an effective market order and any
component that is not executed immediately,
but stored in the limit order book, an effec-
tive limit order. Thus, resuming the previous
example, consider the limit order to buy at a
price π = a(t). Suppose the volume at a(t) is
1,000 shares and the volume of the new limit
order is 3,000. Then this limit order is equiv-
alent to an effective market order for 1,000
shares, followed by an effective limit order of
2,000 shares with the same limit price a(t). In
either case the same transactions take place
and the best prices move to b(t+1) = a(t) and
a(t+ 1) = a(t) + g(t), where g(t) is the price
interval to the next highest price level to sell2.
In the following we will simply call an effec-
tive limit order a ‘limit order’ and similarly
an effective market order a ‘market order’.

There is no unique notion of price in a
real market. Usually it is convenient to use
the so called “mid-point price” or “mid-quote
price” defined by the best quotes: m(t) =
[a(t) + b(t)] /2. This price definition is widely
used in literature. Another possibility could
be the transaction price, but for our work
mid-price is a better choice. First, there is
very little difference between the two, given
that they differ by less than half the spread.
Secondly, the mid-price is more convenient
because it avoids problems associated with
the tendency of transaction prices to bounce
back and forth between the best bid and ask.

Given this definition of stock price we can
try to explain what causes price changes.
Price changes are typically characterized as
returns : rτ (t) = log [m(t)]−log [m(t− τ)] At
the microstructural level, the arrival of three
kinds of events can cause the mid-price to

2 Note that time counter t advances with events oc-
curring.
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change:

• Market orders A market order bigger
than the opposite best quote widens the
spread by increasing the best ask if it is
a buy order or decreasing the best bid
if it is a sell order.

• Limit order placements A limit order
placed inside the spread narrows it by
increasing the best bid if it is a buy
order or decreasing the best ask if it is
a sell order.

• Limit order cancellations A cancella-
tion of (all) limit order(s) at the best
price widens the spread either increas-
ing the best ask or decreasing the best
bid.

The price change of each single transac-
tion will be due to (effective) market order
execution and this particular price change is
called market impact or price impact or even
simply impact. Looking at what happens be-
tween two consecutive transactions we will
see also the effect of quote placements and
cancellations. Then, the cumulative effect of
these three kinds of events is what happens at
the stock price from a transaction to the next
one. We refer to this kind of price change as
transaction-to-transaction return. To sum-
marize, there can be two different definition
of price changes :

� Impacts: an impact is defined as the
difference between the log mid-price
just after the transaction and the log
mid-price just before.

� Transaction-to-transaction re-
turns: a trade to trade price change
is defined as the difference between
the log mid-price just before the next
transaction and the log mid-price just
before the current one.

The first definition takes into account only
effective market orders and the price changes

they caused in the market. Thus, the aggrega-
tion of many impacts on a real time interval
is not the total price change on that inter-
val, because for each transaction it doesn’t
take into account the response of the mar-
ket, i.e. the placement and the cancellation
of limit orders, that can cause other price
changes. Otherwise, the aggregation of many
transaction-to-transaction returns on a real
time interval is by definition the total price
change on that interval.

III. THE “RANDOM WALK” OF
STOCK PRICES

A. The notion of generalized random
walk

Let the series of price changes be a time
series rt = stwt, where rt is the tth midpoint
price change (or return), st is its sign, and
wt is its magnitude. We make the coarsest
possible interval of time be the interval be-
tween transactions. For convenience we only
advance the time counter t for transaction-
to-transaction intervals with nonzero price
changes, i.e. we ignore any intervals where
there are no prices changes. Let us assume:
(i) both st and wt wide sense stationary
(WSS), (ii) st and wt mutually independent.
We will call such a stochastic process a gen-
eralized random walk (GRW). This process
does not specify the probability density func-
tion (PDF) of the steps, neither the auto-
correlation function (ACF) of st and wt. Un-
der the assumption that signs are equally dis-
tributed, i.e. P(st = +1) = P(st = −1) (un-
biased GRW), it’s easy to get the variance of
the process

V ar(Rn) = n
[
Ks,w(n)σ2

w +Ks(n)µ2
w

]
(1)

where n is the number of microscopic nonzero
price changes (steps of the walker), µw and
σ2
w are respectively the mean and the vari-

ance of the absolute returns, Ks,w(n) = 1 +
2
∑n

l=1

(
1− l

n

)
cs(l)cw(l) and Ks(n) = 1 +
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2
∑n

l=1

(
1− l

n

)
cs(l) are two factors that de-

pend on the temporal ACFs of signs and
sizes, respectively cs(l) and cw(l).

To test this model we divide the series into
realtime intervals of length T which we will
label with index i. Each real time interval
will in general contain a different number of
nonzero price changes, and the size of the
changes may vary within each interval. We
can thus rewrite this equation in the form

Vi = ni
[
Ks,w(ni)σ

2
w,i +Ks(ni)µ

2
w,i

]
. (2)

Now Vi = V ar(Rn)i is the measured sample
variance in interval i, which we can also sim-
ply call the volatility in that interval. Note
that all the variables are labeled with i be-
cause they can fluctuate very much from one
interval to the other (especially ni).

To test the reliability of the GRW pro-
posed above we have to compare the expected
volatility to an empirical proxy. For any real
time interval i we choose the square absolute
return overall that T -interval, |Rn|2, which is
a robust widely used proxy for the volatility.
Then, for any real time T -interval we have to
compute ni, µ

2
w,i, σ

2
w,i, Ks,w(ni), Ks(ni), Rni

.

B. Overestimation of volatility

From our previous works we know that
the GRW assuming signs and sizes to be in-
dependent WSS stochastic processes is not
a good approximation of what really hap-
pens. It causes a systematic and significant
overestimation of expected volatility w.r.t.
empirical volatility. This result is coher-
ent with a previous work by Gillemot et al.
(2006) [9], in which authors investigated the
inner causes of volatility. We observed the
overestimation effect on four highly capital-
ized stocks traded at LSE in the period May
2000–December 2002: Astrazeneca (AZN),
Lloyds Tsb Group (LLOY), Shell Transport
& Trading Co. (SHEL) and Vodafone Group
(VOD). We report some results in Fig. 2. To
investigate the likely causes of such an overes-
timation we study the single contribution of
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FIG. 2: Overestimation of volatility Top:
simulation. Bottom: real data. On
the x-axis we have the expected volatil-
ity. On the y-axis we have the ratio
empirical volatility/expected volatility. Data
are binned on the x-axis using quantiles. Simu-
lation: virtual log-normal absolute returns long
ranged correlated (Hurst exponent H ∼ 0.7);
original series of transaction-to-transaction signs
from the AZN data file; 1-hour sub-intervals;
original number of non-zero returns for each in-
terval. Real data: AZN, 1 hour sub-intervals.
We see that for the simulation the weighted
mean value of the data points is close to one,
confirming the reliability of our analytical for-
mulas and our experimental procedure. Instead,
for real data: we see that the expected volatil-
ity is systematically greater than the empirical
volatility.
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each autocorrelation structure to the volatil-
ity. To this aim we perform a set of shuf-
fling experiments on the original time series.
These experiments ensured that the cause
of such overestimation are not the autocor-
relation functions of signs or sizes, neither
an equal-time dependence between signs and
sizes, but rather a non-synchronous and non-
pairwise relationship between signs and sizes.
We report our results only for AZN and, for
the sake of brevity, we do not report all the
results, but only the most important.

IV. SIGN-SIZE DEPENDENCE:
A DIRECT APPROACH

A. Sign predictability

In view of our previous results we ar-
gue that the absolute returns are affected
in some way by sign predictability. This in-
tuition is also supported by other previous
works [2, 8, 12] focused on the long-memory
of supply and demand (high predictability of
impact sign) and its relationship with the lin-
ear efficiency of price returns. The point is:
if signs are in some measure predictable this
affects in some way (to reduce volatility) the
magnitude of the returns. To test this in-
sight we build a predictor of the signs and we
study the behavior of the absolute returns as
the predictability increases.

We use a simple predictor: the sum of
the signs. For each sequence of signs of
length L we compute the sum and we con-
sider the next absolute returns; that is, if the
sequence is si, si+1, . . . , si+L−1, we compute
Si,L =

∑i+L−1
k=i sk and take wnext = wi+L.

For each sequence the absolute value of the
predictor can range in the discrete subset
{0, 2, 4, . . . , L}. A large value of the abso-
lute sum means a large number of returns
with same sign, that we interpret as high
predictability. A small value of the absolute
sum means approximately an equal number
of positive and negative signs, that we inter-
pret as low predictability. We consider the
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FIG. 3: Sign-size dependence. Shuf-
fling blocks of returns vs. shuffling blocks
of absolute returns and signs separately.
AZN, transaction-to-transaction returns. On
the x-axis we have the expected volatil-
ity. On the y-axis we have the ratio
empirical volatility/expected volatility. Data
are binned on the x-axis. Blue circles repre-
sent when we shuffle blocks of returns, while or-
ange triangles represent when we shuffle signs
and absolute values separately. The blue and
orange solid lines are the weighted mean values.
In the first case we preserve any correlation be-
tween sequences of signs and sequences of abso-
lute returns, while in the second one we destroy
it. The size of each block is 100 returns in both
the experiments. We see that orange triangles
are much closer to the black line at y = 1 con-
firming that a subtle correlation between abso-
lute returns and signs is the cause of the over-
estimation for real data. We perform the same
experiment with impacts instead of transaction-
to-transaction returns and we find the same re-
sult.

entire original time series of signs and ab-
solute returns, from May 2000 to December
2002, and we fix a length L for the sequences.
We perform our tests on both transaction-
to-transaction returns and impacts. For the
two definition of return we choose the same
length: L = 20, even if we know that they
have different autocorrelations. For the im-
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pacts we also used L = 50. We do not
consider longer sequences because it does
not increase the reliability of the predictor.
We have made naive checks of the reliabil-
ity of the “sum predictor”, and we found
that is a quite poor predictor in the case
of transaction-to-transaction returns, while it
works quite well for the impacts. The im-
provement of the sign predictor (e.g. with
autoregressive models and non-linear meth-
ods) is certainly an important point for the
developments of this line of research, but it
is outside the scope of the present work.

We plot the mean value of the next abso-
lute return conditional on the absolute value
of the sum predictor E

[
wi+L

∣∣|Si,L|] (y-axis)
against the absolute value of the sum predic-
tor |Si,L| (x-axis). We perform two analyses:
(i) we compare the result for transaction-to-
transaction return to that one for impacts,
(ii) we distinguish between right and wrong
predictions for both impacts and transaction-
to-transaction returns. We report our re-
sults in Fig. 4, 5, 6 and 7. From the first
analysis we find that for both transaction-to-
transaction returns and impacts the next ab-
solute return increases as the predictability
increases, but it increases much more signifi-
cantly for transaction-to-transaction returns
than for impacts. This evidence can be sum-
marized as follows:

• if the predictability for the next return
sign increases, the return will increase;

• if the predictability for the next impact
sign increases, the impact will increase;

• the transaction-to-transaction return
increases faster than the impact.

These points give us some information about
the reaction of the market to the order flow.
For example, let us suppose that the order
flow is causing a systematic price change in
the upper direction, that is, a long run of
buy market orders is causing positive price
changes. Let us consider for now only the

sell side of the order book. After the execu-
tion of a buy market order, who places the
limit orders on the sell side could be tempted
to place his limit orders at higher prices to
get larger gains (translation). If buy market
orders still arrive in the market – changing
the price even if the sell quotes are getting
higher, this strategy will be profitable. In
this case such a behavior could explain why
the size of transaction-to-transaction returns
increases as the probability of future positive
transaction-to-transaction returns increases
(first item). However, the reaction of the sell
side of the limit book will not be rigid, that
is, the sell side of the limit will not undergo a
rigid translation in the positive direction, but
the sizes of the gaps between the quotes will
also change in time, causing dilatations and
contractions. If the size of the first gap be-
tween the quotes on the sell side increases as
the predictability increases (dilatation), then
the next buy market order (that is expected)
will have a larger impact than the previous
one (second item). The third item could
mean that the translation is faster than the
dilatation.

From the second analysis we obtain two
different results depending on the definition
of returns that we use. For transaction-to-
transaction return there is substantially no
difference between right and wrong predic-
tion. Instead, by comparing the two curves
when analyzing the impacts we find that the
next absolute return increases more when the
prediction is wrong (Fig. 6 and 7). This is
reasonable, because it means that the liquid-
ity in the book order moves depending on the
flow of supply and demand. If there is a long
run of buy market orders changing the price
in the upper direction, we predict to a good
agreement that the next impact will be pos-
itive; in this case the liquidity (volume and
density of limit orders) accumulates on the
sell side of the book order, leaving the buy
side more sparse and with less volume. Then,
if a sell market order instead of the expected
buy order occurs, this unexpected outcome
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prompts a bigger price changes that tends
to revert the price of the asset to its origi-
nal value. We see that this behavior is even
more convincing if we use L = 50, that is a
“longer” predictor3.

The result obtained for transaction-to-
transaction returns is probably affected by
the inaccuracy of the predictor. From the
efficient market hypothesis we should ex-
pect difference between “right prediction”
and “wrong prediction” . In fact, the weak
form of EMH states that the next return rt
will have zero mean value

E[rt] = 0 . (3)

This condition holds for the transaction-to-
transaction returns, but not necessarily for
the impacts. From Eq. (3) we can write

p+
t E[r+] = p−t E[r−] , (4)

where p+ and p− are the probabilities that rt
will be positive or negative respectively, and
E[r+] and E[r−] are the mean values of the
absolute value of rt if rt is positive or nega-
tive respectively. Then, if a sign is more likely
to probable than the other, the average abso-
lute return must be smaller, e.g. if p+

t > p−t ,
then E[r+] < E[r−]. This relationship is con-
sistent with the result observed for impacts
(if we expect the arrive of a market order on
a given side of the order book, the return
of a market order arriving on the opposite
side will be greater), but it is not observed
when considering transaction-to-transaction
returns. This is a quite surprising result
given that relations 3 and 4 hold for the
transaction-to-transaction returns, but not
(necessarily) for the impacts. To shed more
light on this point we perform another test.

3 We note that such a choice does not improve the
reliability, that remains practically the same for all
L ≥ 20.
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FIG. 4: Sign predictability and absolute
returns. On the x-axis there is the absolute
value of the ‘sum’ predictor, |S| = |

∑L
i=1 si| with

L = 20. High predictability corresponds to high
values of the absolute sum. On the y-axis there
is the mean value of the next absolute returns
wL+1. We compare transaction-to-transaction
returns to impacts. We compare transaction-
to-transaction returns (blue circles) to impacts
(orange triangles). In both cases an high pre-
dictability of the next sign corresponds to an
high value of the next absolute return. This
monotonic relationship is much more evident for
transaction-to-transaction than for impacts.

B. Another test: runs of same-sign
returns

We check the relationship between signs
and absolute returns also in another way.
We consider runs of equal signs and take
the absolute return corresponding to the first
sign flip. I.e., let a sequence of signs be
si = si+1 = . . . = si+L−1 and si+L = −si,
we take wnext = wi+L. We plot the mean
value of wnext conditional on the length L,
E[wi+L|L] (y-axis), against L (x-axis). For
each value of L the standard error is about of
the same order of the sample mean; thus, we
have preferred to leave it out from our plots
in order to get a clearer qualitative trend.
Instead, we give some descriptive statistics:
min, first quartile, median and third quartile.
We perform this test for both transaction-to-
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FIG. 5: Right prediction vs. wrong predic-
tion. Transaction-to-transaction returns.
On the x-axis we put the absolute value of the
‘sum’ predictor, |S| = |

∑L
i=1 si| with L = 20.

On the y-axis we put the mean value of the
next absolute return wL+1. We distinguish the
cases when the predictor works, i.e. the next
sign is the same as the prediction (green cir-
cles), from the cases when the predictor does
not work, i.e. the next sign is the opposite of
the prediction (red squares). We see that there
is no practically distinction between the two, and
both grow monotonically as the predictability
increases. But we have to stress that the re-
liability of the ‘sum predictor’ is very poor for
transaction-to-transaction return.

transaction and impacts. We report our re-
sults in Fig. 8 and 9.

We see that in both cases the absolute
return increases as the length of sequences
of identical signs increases. In terms of the
sum predictor this corresponds to an increas-
ing of the predictability. From this anal-
ysis we have a confirmation of one of our
intuitions. The liquidity moves with the
run of market orders: the longer the run
of penetrating market orders of the same
sign, the larger the first absolute impact of
the opposite sign. This analysis points out
that also transaction-to-transaction returns
show a similar behavior: the longer the run
of transaction-to-transaction returns of the
same sign, the larger is the transaction-to-
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FIG. 6: Right prediction vs. wrong predic-
tion. Impacts. On the x-axis we put the abso-
lute value of the ‘sum’ predictor, |S| = |

∑L
i=1 si|

with L = 20. On the y-axis we put the mean
value of the next absolute return wL+1. We
distinguish the cases when the predictor works,
i.e. the next sign is the same as the prediction
(green circles), from the cases when the predic-
tor does not work, i.e. the next sign is the oppo-
site of the prediction (red squares). We see that
both grow monotonically as the predictability in-
creases, but there is a significant distinction be-
tween the two. When the next return occurs on
the opposite side w.r.t. the prediction, its im-
pact is much bigger than when it occurs on the
predicted side.

transaction return of the opposite sign. This
result contradicts that one we obtained using
the sum predictor (see Fig. 5), which could be
affected by the inaccuracy of the predictor.

V. CONCLUSION

Starting from our previous results on the
overestimation of volatility we investigated
deeper the likely non-synchronous and non-
pairwise dependence between signs and sizes
for the stock AZN during the period May
2000–December 2002. We observed that sign
predictability seems to have a key-role in af-
fecting future absolute returns. We consid-
ered a simple predictor of the signs, defined
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FIG. 7: Right prediction vs. wrong predic-
tion. Impacts. On the x-axis we put the abso-
lute value of the ‘sum’ predictor, |S| = |

∑L
i=1 si|

with L = 50. On the y-axis we put the mean
value of the next absolute return wL+1. We re-
port the same test as in the previous figure, but
changing the length of the sum: from L = 20
to L = 50. This change does not improve
significantly the reliability of the sign predic-
tion, but shows more clearly the different ef-
fect on the next absolute return between a right
prediction (green circles) and wrong prediction
(red squares) of the next sign. We see that
both grow monotonically as the predictability
increases, but when the next return occurs on
the opposite side w.r.t. the prediction the im-
pact is much bigger than when it occurs on the
predicted side.

as the sum of the signs on a given length,
and we observed that the next absolute re-
turns is greater when the predictability of the
next sign is higher. This result holds for
both transaction-to-transaction returns and
impacts. Moreover, we investigated the dif-
ferent effect of right predictions and wrong
predictions. For transaction-to-transaction
returns we did not observe significant differ-
ences, but probably this outcome is due to
the inaccuracy of the predictor in this case
(because of the short-memory of the signs).
Instead, for impacts we observed a significant
difference in the two cases: the absolute re-
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FIG. 8: Run of identical signs and abso-
lute value of the next opposite return.
Transaction-to-transaction. On the x-axis
there is the length of a sequence of identical
signs. On the y-axis we report the first quar-
tile, the median, the sample mean and the third
quartile of the next absolute return with oppo-
site sign. Data are binned on the x-axis. We
observe that median, mean and third quartile in-
crease as the length of the run of identical signs
increases. The mean and the third quartile in-
crease significantly. This means that after a long
run of returns with the same sign the first oppo-
site return will typically move much deeper the
price in the opposite direction. The last data
point bins together sequences with L ≥ 13.

turn is always greater when the prediction is
wrong. This means that the arrive of “un-
expected” orders causes larger price changes,
which move the price in the “unexpected” di-
rection. This reverting phenomenon might be
explained by liquidity fluctuations: the liq-
uidity in the order book moves depending on
the flow of supply and demand, leaving the
book more “sparse” on the side where no or-
der arrive is expected. This result is con-
firmed by the analysis on the runs of equal
signs. The longer is the run of returns with
the same sign, the larger is the first next ab-
solute return with opposite sign.

In conclusion, from our analyses we find
that the signs of the returns and the abso-
lute values of the returns are surely corre-
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lated. This correlation is subtle and involves
the sign predictability. It is also very likely
that this inter-dependance is related to the
liquidity imbalance and its time evolution.
This conclusion is validated also by other
works [7, 8].To gain more information will
be necessary to improve the sign predictor,
for example by using a simple autoregressive
model. This issue will be a central topic to
develop in our future works.
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