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Abstract Weconsider the properties of a cost function based automatedmarketmaker
aggregating the beliefs of risk-averse traders with finite budgets. Individuals can inter-
act with the market maker an arbitrary number of times before the state of the world
is revealed. We show that the resulting sequence of prices is convergent under general
conditions, and explore the properties of the limiting price and trader portfolios. The
limiting price cannot be expressed as a function of trader beliefs, since it is sensitive
to the market maker’s cost function as well as the order in which traders interact with
the market. For a range of trader preferences, however, we show numerically that
the limiting price provides a good approximation to a weighted average of beliefs,
inclusive of the market designer’s prior belief as reflected in the initial contract price.
This average is computed by weighting trader beliefs by their respective budgets, and
weighting the initial contract price by the market maker’s worst-case loss, implicit in
the cost function. Since cost function parameters are chosen by the market designer,
this allows for an inference regarding the budget-weighted average of trader beliefs.
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1 Introduction

It has long been recognized thatmarkets aremechanisms that accomplish both resource
allocation and belief aggregation, and that these two functions are inextricably linked.1

Inmany instanceswhere belief aggregation is desirable, however, spontaneousmarkets
do not exist. This is the casewithin organizations, wheremechanisms such asmeetings
and internal correspondence are highly imperfect vehicles for the transmission of
information and opinion.2

The need for belief aggregation and the inefficiency of traditional mechanisms for
securing it has led a number of organizations to experiment with internal “prediction
markets” that involve the purchase and sale of securities with state-contingent payoffs.
Among the earliest adopters were Hewlett-Packard, using real money contracts, and
Google, which created an internal currency convertible into raffle tickets and prizes
(Chen and Plott 2002; Cowgill et al. 2009). Several other organizations have since
followed suit, including non-profits and government agencies.3 The Penn-Berkeley
Good Judgment Project, twice winners of a forecasting competition sponsored by
IARPA (the U.S. Intelligence Advanced Research Projects Activity), has also made
extensive use of prediction markets (Ungar et al. 2012).

The earliest prediction markets, including those used by HP and Google, were web-
based double auctions for the trading of binary securities. Their design was based on
the pioneering Iowa Electronic Markets, which has listed contracts on such events as
the outcomes of presidential and congressional elections for over two decades (Berg
et al. 2008). This is a peer-to-peer market in which the exchange itself bears no risk,
and traders are required to have enough cash margin to cover their worst case loss
at all times. Such markets can work well if there is active participation by a large
number of traders and sufficient liquidity to maintain interest. But since all liquidity is
endogenously generated by the market participants, there may be situations in which
bid-ask spreads remain wide and trading is intermittent for long stretches of time.
Furthermore, prices across different contracts may be inconsistent in the sense that
opportunities for arbitrage remain unexploited.4

An alternative approach to prediction market construction entails the use of an
automated market maker that stands ready to buy and sell an indefinite amount of any
contract, but adjusts prices in response to its net position. The most commonly studied
class of such markets is that of market scoring rules, of which the logarithmic market

1 See, especially, Hayek (1945), who drew attention to the importance of the latter role.
2 Chen and Plott (2002) make this point as follows: “Gathering the bits and pieces by traditional means,
such as business meetings, is highly inefficient because of a host of practical problems related to location,
incentives, the insignificant amounts of information in any one place, and even the absence of amethodology
for gathering it. Furthermore, business practices such a quotas and budget settings create incentives for
individuals not to reveal their information.”
3 Among corporations, the list includes Microsoft, Intel, Eli Lily, GE, Siemens, and many others (Charette
2007; Broughton 2013). Providers of software for the implementation of predictionmarkets include Inkling,
Consensus Point, and Lumenogic.
4 Chen and Plott (2002) report that the sum of the market prices of a set of binary securities on mutually
exclusive and exhaustive events exceeded the amount that the single winning security would pay off in all
12 experiments in the HP market.
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scoring rule is an example (Hanson 2003, 2007; Chen and Pennock 2007). These
market makers, which are based on proper scoring rules, maintain a bid-ask spread
that is identically zero at all times, but only an infinitesimal amount can be purchased or
sold at the currently quoted price. The average price at which an order trades depends
on order size in accordance with a specified potential function referred to as the cost
function. Market scoring rules satisfy several nice properties. Arbitrage opportunities
are prevented from arising, so that no trader may ever make a single purchase or sale
in a way that guarantees a positive net payoff regardless of the state of the world.
Additionally—and crucially—the overall exposure to loss faced by the market maker
is kept bounded.5 The prediction market platforms offered by Consensus Point and
Inkling are based on automated market makers of this kind.

In this paperwe examine the properties of an algorithmic predictionmarket inwhich
binary securities are traded by myopic, risk-averse individuals with heterogeneous
prior beliefs and finite budgets. In order to focus on the role of heterogeneous priors, we
abstract here from differences in information, effectively assuming that all information
is public at the start of the trading process. The market therefore serves to aggregate
beliefs based on differences in the interpretation of public information, rather than
to aggregate information held by individuals with a common prior. This raises the
question of why a market designer might wish to aggregate such beliefs. If one views
each trader’s belief as being based on a distinct analytical model, the designer might
reasonably consider a forecast based on an average model to be superior to one based
on any single one of these.

There is considerable evidence that pooling the forecasts of individuals who agree
to disagree (and therefore cannot share a common prior) results in superior predictive
performance. For instance, the success of the Good Judgement Project is based largely
on its top teams, which are composed of members who share information coopera-
tively and whose divergent individual forecasts are then averaged before submission
to IARPA (Ungar et al. 2012). Similarly, the accuracy of real money peer-to-peer
prediction markets in forecasting election outcomes has routinely surpassed that of
opinion polls and econometric models; see for instance Wolfers and Leigh (2002) and
Leigh and Wolfers (2006) for Australian parliamentary elections, Rothschild (2009)
and Rothschild (2015) for US presidential elections, and Berg et al. (2008) on the
performance of 49 prediction markets across 13 countries. A significant proportion of
traders in such markets bet on a single candidate and never change the direction of
their exposure, which is strong evidence for heterogeneity in prior beliefs (Rothschild
and Sethi 2015).

Heterogeneous priors may be understood as arising from differences in perspective
that develop over time in response to information that is not directly relevant to the
problem at hand (Sethi and Yildiz 2015). Pooling the heterogeneous forecasts of
individuals with access to the same public information about an event may then be
viewed as pooling this deeper, less directly relevant information. This is the case even

5 Abernethy et al. (2013) generalized the idea of a market scoring rule to settings in which the state space is
exponentially large comparedwith the set of offered securities, and fully characterized the class of automated
market makers that guarantee no arbitrage, bounded market maker loss, and other desirable properties.

123



158 R. Sethi, J. W. Vaughan

if individuals agree to disagree and do not themselves consider the beliefs of others to
be informative.

Our model has the following features. Traders interact repeatedly with a market
maker rather thandirectlywith eachother, and canbuyand sell unlimited amounts (sub-
ject to budget and collateral constraints) at prices determined by the market maker’s
cost function. A sequence of prices is generated by the behavior of traders, who can
adjust their portfolios each time they face themarket.We show that this price sequence
is convergent under very general conditions. Convergence does not follow from feasi-
bility alone, even in a market with a single trader, since any such trader can move the
price back and forth between two points without ever exhausting her budget. Hence
convergence relies on the optimality of trader behavior.

Given convergence, we turn to the question of how the limiting price and trader
portfolios should be interpreted. The beliefs of individual traders cannot be inferred
from their respective limiting portfolios even in an ordinal sense. For instance, it is
possible for a trader with more pessimistic beliefs about the likelihood of an event
to end up with larger asset position than one with the same initial budget and more
optimistic beliefs if the former faced lower prices on average when accessing the
market in early periods. Hence the ranking of trader beliefs need not correspond
to the ranking of asset positions even if all initial budgets are identical, a common
feature when out-of-equilibrium trading is allowed (Hahn and Negishi 1962; Foley
1994). Given the limiting price, however, the set of traders with positive limiting asset
positions must be more optimistic about the likelihood of the event than the belief
implicit in this price, while those with negative limiting asset positions must be more
pessimistic.

This limiting price clearly cannot be expressed as a function of trader beliefs, since
it is sensitive to the cost function as well as the order in which traders interact with the
market. We show that for a range of beliefs and trader preferences, the limiting price
provides a good approximation to a weighted average of beliefs, where trader beliefs
are weighted by their budgets, the price faced by the initial trader is interpreted as the
market maker’s belief, and this belief is weighted by the market maker’s maximum
loss implicit in the cost function. Since the cost function parameters are chosen by
the market designer, this approximation allows for an inference regarding the budget-
weighted average of trader beliefs. Furthermore, in markets with internal currencies,
the budgets themselves can be chosen to be equal if one wants to estimate a simple
average of trader beliefs. Alternatively, budgets can be allowed to vary endogenously
by allowing the same currency to be used in a sequence of markets, so that traders
with strong forecasting performance come to carry greater weight over time.

There are two strands of literature to which our work is directly connected. Pennock
(1999), Manski (2006), Gjerstad (2004), and Wolfers and Zitzewitz (2006) have pre-
viously considered prediction markets with heterogeneous priors and finite budgets,
but rather than a market maker allowing for a sequence of trades, they considered a
single equilibrium price determined by a market clearing condition. Manski showed
that with risk-neutral traders the equilibrium price corresponds to the corresponding
quantile of the belief distribution, and can therefore be quite distant from the average
belief. When traders are risk averse with log utility, however, the equilibrium price is
precisely equal to the budget-weighted average of trader beliefs (Pennock 1999). This
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connection becomes approximate if one allows for departures from log utility while
maintaining risk aversion (Gjerstad 2004; Wolfers and Zitzewitz 2006).

A second strand of literature examinesmarket scoring ruleswith a commonprior but
heterogeneous information.Ostrovsky (2012) finds thatwith risk-neutral traders in this
setting, prices converge to the common belief that would arise if all information were
pooled and applied to the commonprior. Chen et al. (2012) showed how this idea can be
used to design sets of securities to aggregate information relevant to a particular event
of interest. Full information aggregation and a common posterior belief also occur
with risk-averse traders under a weak smoothness condition (Iyer et al. 2010). These
results reflect the fact that with a common prior, posterior beliefs must be identical
if they are public information (Aumann 1976), and repeated belief announcements
generically leads to belief convergence (Geanakopolos and Polemarchakis 1982).With
heterogeneous priors, of course, posterior beliefs may differ even if all information
is aggregated. More importantly, all information may not be aggregated if the priors
themselves are unobservable (Sethi and Yildiz 2012).

Also related to our work is that of Othman and Sandholm (2010), who examine the
prices that emerge when a set of risk neutral traders with heterogeneous priors face
an automated marker maker in sequence, with each trader interacting with the market
just once. They establish that the last price in the resulting finite sequence is heavily
dependent on the order in which traders arrive, but that the price is relatively stable
when the number of traders is large and their order is chosen uniformly at random. In
contrast, the set of traders in our model each face the market repeatedly, resulting in an
infinite sequence of prices and portfolios with a well defined limit. It is the properties
of this limit with which we are concerned.

2 The Model

We explore a setting in which a finite set of traders with heterogeneous prior beliefs
and common information interact repeatedly with an electronic market maker. When
given an opportunity to trade, each individual adjusts his market position in order to
maximize expected utility conditional on his subjective belief. This shifts the market
state and determines the price faced by the next trader, and so on, in sequence, for an
indefinite number of periods.

Formally, let N = {1, ..., n} denote the set of traders. The true state of the world is
denoted ω ∈ {0, 1}, to be revealed after the trading process has run its course.6 The
subjective belief of trader i that ω = 1 is denoted pi , and each trader is endowed at
the start of the process with a cash endowment yi . Traders may have heterogeneous
initial cash holdings as well as heterogeneous beliefs.

Traders participate in a cost function basedmarket operated by an automatedmarket
maker. The market maker offers only a single security that may be redeemed for $1 if
ω = 1 and $0 otherwise. Traders may buy or (short) sell this security, and are allowed

6 To accommodate an unbounded number of trades one could assume, as in Ostrovsky (2012), that the sth
trade occurs at time 1 − 1/s and that the state is revealed at time 1. In practice, convergence to a limiting
price is quite rapid and requires just a few rounds of trading.
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to buy/sell arbitrary fractions of securities. They interact with the market one at a
time, repeatedly, in arbitrary order. Specifically, let k : N → N denote the trading
order, where k(t) is the trader who accesses the market in period t . We assume that
each trader can access the market an infinite number of times, and in particular, that
there exists some m ≥ n such that each trader can access the market at least once
every m rounds. This assumption is used only in the proof of convergence. A special
case of this arises if traders access the market in the same order repeatedly, so that
k(1), ..., k(n) are distinct and k(t) = k(t − n) for all t > n; here m = n.

Assumption 1 There exists a constant m such that for each i ∈ N , for each t ≥ 1,
there exists some t ′ such that t ≤ t ′ < t + m and k(t ′) = i .

At the end of any period t , trader i has a cash position yi,t and asset position zi,t .
Traders are constrained to take positions that leave them with non-negative wealth
in all states. For traders with positive asset positions this means only that their cash
cannot be negative. For traders with short positions, this means that they must have
enough cash collateral to meet their obligations if ω = 1 occurs. Initially all asset
positions are zero and cash positions are strictly positive: zi,0 = 0 and yi,0 = yi > 0
for all i .

Assumption 2 For each i ∈ N and t ∈ N, yi,t ≥ 0 and yi,t + zi,t ≥ 0.

The behavior of the market maker is fully specified by a potential function C ,
referred to as the cost function. Let qt denote the (possibly negative) number of secu-
rities that have been purchased from themarket at the end of period t , and set q0 = 0. If
trader k(t) purchases rt units of the security in period t , he is chargedC(qt )−C(qt−1),
where qt = qt−1 + rt . Specifically, if rt is the (possibly negative) quantity of the
security purchased by the trader j = k(t) in period t , then z j,t = z j,t−1 + rt and
y j,t = y j,t−1 − C(qt ) + C(qt−1). The use of a cost function implies that the market
is path independent in the sense that the cost of purchasing r units of the security and
then immediately purchasing r ′ units is the same as the cost of purchasing r + r ′ units
together in a single purchase. We assume the cost function C satisfies the following
standard properties; see, for example, Abernethy et al. (2013) for more details.

Assumption 3 C : R → R is smooth, increasing, convex, and satisfies bounded loss.

The bounded loss condition requires that regardless of trader budgets, behavior, and
the realized state, there is a finite bound on the loss of the market maker. Specifically,
maxq∈R {max {q − C(q) + C(0),−C(q) + C(0)}} is assumed to be upper bounded.

At the end of period t the instantaneous price πt of the security, that is, the price
per unit security of an infinitesimally small fraction of a security, is simply C ′(qt ), the
derivative of C evaluated at q = qt . The bounded loss condition implies that for any
π ∈ (0, 1), there exists some q ∈ R such that C ′(q) = π (Abernethy et al. 2013).
Let p0 = C ′(0) denote the initial price, before the onset of trading. This may be
interpreted as the prior belief of the market maker.
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Finally, we assume that when given the opportunity to trade, traders myopically
maximize the expected value of a utility function u(w), wherew is the wealth remain-
ing after the true state has been revealed.7

Assumption 4 u : R+ → R is smooth, increasing and strictly concave, with
limw→0 u′(w) = ∞.

Hence trader j = k(t) chooses rt ∈ R to maximize

p ju(z j,t + y j,t ) + (1 − p j )u(y j,t ). (1)

Since u is increasing and concave, and C is convex, this quantity is concave in rt and
it suffices to find a local maximum.

After the period t transaction, the state is updated as follows:

y j,t ← y j,t−1 − C(qt−1 + rt ) + C(qt−1) yi,t ← yi,t−1 ∀i 
= j
z j,t ← z j,t−1 + rt zi,t ← zi,t−1 ∀i 
= j
qt ← qt−1 + rt πt ← C ′(qt )

The next trader to face the market, k(t+1), then encounters the market state qt , and so
on. This generates sequences of prices {πt }, market maker positions {qt }, and trader
portfolios {yi,t , zi,t }. We show below that these sequences necessarily converge, and
use bars to denote the limiting values of all variables. Hence π̄ denotes the limiting
price, q̄ the limiting market state, and (ȳi , z̄i ) the limiting portfolio of each trader i .

3 Examples

The model may be illustrated with some simple examples. Suppose that the trader
preferences belong to the following class:

u(w) = w1−ρ/(1 − ρ) (2)

where ρ ≥ 0 is a parameter. This class of CRRA (Constant Relative Risk Aversion)
preferences includes risk neutrality and log utility as special cases.8

Suppose further that prices are set by the market maker in accordance with a Log-
arithmic Market Scoring Rule (LMSR), based on the cost function

C(q) = b log(eq/b + a) (3)

where b > 0 is a parameter reflecting the sensitivity of prices to orders, and a > 0 is a
parameter that determines the initial price (Hanson 2003, 2007). Specifically, the price

7 For simplicity we assume all traders share the same utility function, but all theoretical results carry over
to the setting in which each trader i has a distinct utility function ui satisfying the criteria in Assumption 4.
8 Specifically, risk neutrality corresponds to ρ = 0 and log utility to the limit as ρ → 1. Risk neutrality
falls outside of our model as Assumption 4 is violated.
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atmarket stateq isπ(q) = C ′(q) = eq/b/(eq/b+a). If themarketmaker’s initial belief
about the likelihood that ω = 1 is denoted p0 = π(0), then a = (1− p0)/p0. This is
the specification we use for our numerical simulations below, and is mathematically
equivalent to running a 2-state LMSR in which the initial holding for outcome 0 is
set to b log((1 − p0)/(p0)), resulting in an initial instantaneous price of p0 for the
security.

Within this class of preference and cost function specifications, we illustrate the
model with some examples. First consider the case n = 2. The order in which the two
traders interact with the market is irrelevant after the first trade has occurred; whenever
a trader faces themarket in two successive periods, there is no trade in the latter period.
Hence we may consider without loss of generality the case in which traders alternate
in interacting with the market. The following example considers a case in which the
initial price lies in between the beliefs of the two traders.

Example 1 Suppose n = 2, (p1, p2) = (0.2, 0.9), y1 = y2 = 10, ρ = 2, p0 = 0.6,
and b = 10. Then limiting outcomes depend on the trading order as follows:

k(1) π̄ q̄ (ȳ1, ȳ2) (z̄1, z̄2)

1 0.59 0.39 (14.75, 5.48) (−8.61, 8.22)
2 0.58 1.00 (15.58, 5.01) (−8.89, 7.89)

The price paths for the two cases are shown in Fig. 1. Note that the order of
trade affects the limiting outcomes. This order dependence does not generally arise in
information-based models with a common prior, as in Ostrovsky (2012).

Fig. 1 Price dynamics for different trading orders
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Fig. 2 Rebalancing by Trader 2 (transactions in bold)

In Example 1, regardless of the trading order, traders always trade in the direction
of their beliefs, buying when the price is below their subjective belief and selling when
it is above. But this need not always be the case, as the following example shows.

Example 2 Suppose n = 3, (p1, p2, p3) = (0.1, 0.7, 0.9), y1 = y2 = y3 =
10, k(t) = t for t ≤ 3 and k(t) = k(t − 3) thereafter. All other specifi-
cations are as in Example 1. Then the sequence of prices converges to π̄ =
0.58, with limiting market maker position q̄ = 0.79. Limiting holdings of cash
are (ȳ1, ȳ2, ȳ3) = (16.21, 9.00, 5.26) and limiting holdings of the security are
(z̄1, z̄2, z̄3) = (−11.62, 2.68, 8.14). Trader 2 buys at time t = 2 and sells at time
t = 5, although πt < p2 for all t .

Figure 2 illustrates the dynamics of prices for the first 18 periods. Each participant
trades six times. As can be seen from the figure, the second trader buys at t = 2 but
sells at t = 5, even though the price is below her subjective belief on both occasions.
The reason is that this trader builds up a positive inventory of the security at t = 2,
when the price has been pushed very low by the pessimistic trader 1. When trader 2
accesses the market for a second time at t = 5, she unloads some of this accumulated
inventory at a more favorable price, and thus rebalances her portfolio. This occurs
despite the fact that traders are behaving myopically, and the higher price at t = 5 is
not previously anticipated.

The fact that traders can shift prices away from their beliefs raises the possibility
that the limiting price may lie outside the interval defined by the lowest and highest
beliefs, even if the price temporarily falls inside. The following example illustrates.

Example 3 Suppose n = 2, k(1) = 1, (p1, p2) = (0.55, 0.40), y1 = y2 = 10, and
p0 = 0.64, with all other specifications as in Example 1. Then the sequence of prices
converges to π̄ = 0.5582 > max{p1, p2}, even though π2 = 0.5403 < p1.
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In this example, the market maker prior (and initial price) lies above the belief of
the most optimistic trader, who interacts with the market first. This trader sells and
the price declines but remains above the higher of the two trader beliefs. The second
trader then also sells and drives the price below the belief of the first trader, so it now
falls within the interval defined by the beliefs. In the third period, the more optimistic
trader now covers some of his short position, to an extent that the price is again driven
above his belief. After this, the price never falls back below the highest belief. We
show below that this phenomenon cannot occur if the market maker belief (and hence
initial price) itself lies within the interval defined by the trader beliefs. That is, if the
initial price is in the interval, then all subsequent prices also lie in this interval.

4 Price Bounds

As we have seen, an optimist may sell at a price that is below his expectation or a
pessimist may buy at a price above his expectation. The following result states that a
trader will trade against his belief only if this involves a reduction in risk, by selling
from a long position or buying to cover a short position in the asset. This is intuitive,
since trading against one’s belief involves a reduction in expected payoff and can only
be motivated by a reduction in risk.9

Lemma 1 Let i = k(t).

1. If pi ≤ πt−1 and zi,t−1 ≥ 0, then πt ≤ πt−1.
2. If pi ≥ πt−1 and zi,t−1 ≤ 0, then πt ≥ πt−1.

The first part of this result follows from the fact a trader with a non-negative asset
position, facing a price that is above (or equal to) his belief, will prefer not to trade
at all rather than to buy additional units of the asset. By the convexity of C , the price
cannot rise except in response to a purchase, and hence the price must remain the same
or fall. The reasoning for the second case is analogous.

Next we show that a trader with a positive asset position, facing a price that is
below his belief, will not buy so much of the asset that the price rises above his belief.
Similarly, a trader who holds a short position and faces a price above his belief will
not sell additional units to such a degree that the price falls below his belief.

Lemma 2 Let i = k(t).

1. If pi ≥ πt−1 and zi,t−1 ≥ 0, then πt ≤ pi .
2. If pi ≤ πt−1 and zi,t−1 ≤ 0, then πt ≥ pi .

The proof of the first case uses Lemma 1 to show that if i were to first make a
purchase that moves the price to exactly his belief pi , then he would prefer to keep the
price there than to make an additional purchase that moves the price higher. Together
with the path independence of the market, this implies that his initial optimal trade
would not move the price above pi . The proof of the second case is analogous.

9 All proofs are in the Appendix.
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These results allow us to place bounds on the sequence of prices. We can show
that the price remains within the interval defined by the lowest and highest belief,
as long as the initial price lies in this interval. Define I = [pmin, pmax], where pmin
and pmax are the lowest and highest elements in the set {p0, . . . , pn}. Notice that this
set includes the initial market price p0, which can be interpreted as the belief of the
market maker. We then have the following result.

Proposition 1 For all t ≥ 0, πt ∈ I .

The proof uses an inductive argument, showing that a trader will never move the
price outside of I if the price has never fallen outside of I in the past. If it is a particular
trader’s first time facing the market (and he therefore has a zero asset position), this
follows from an application of Lemmas 1 and 2. For a trader who has faced the market
before, one can use the optimality of his previous trade to reason about the range of
prices he might move the market to.

Proposition 1 establishes that prices remain within the interval defined by trader
beliefs as long as the initial price, reflecting the market designer’s prior belief, also
lies in this interval and, more generally, that the price sequence must lie in the interval
defined by the entire set of beliefs, inclusive of themarket maker’s prior. An immediate
implication of this is that prices are always bounded away from the extremes of 0 and
1. We show next that the price sequence is also convergent.

5 Convergence

Given that i = k(t) is the trader facing the market in period t , let s(t) denote the last
period in which this trader interacted with the market, with s(t) = 0 if i has not traded
prior to period t . If s(t) > 0, then the trader’s position (yi,t−1, zi,t−1) at the start of
period t must have been optimal at the price πs(t) at which this trader last left the
market. Our next result states that this trader’s period t transaction results in a price
πt that is a weighted average of the price at which the trader last left the market and
the price at which he now finds it.

The proof involves an argument that since it was optimal for trader i = k(t) to leave
the market price at πs(t) on his last trade, and his position has not changed since then,
he will want to buy (respectively, sell) if and only if the current market price is less
than (greater than) πs(t). However, it will not be optimal for him to buy (sell) enough
to push the price past his belief; if he pushed it exactly to his belief, he would want to
start selling (buying).

Lemma 3 For each t such that s(t) > 0, there exists αt ∈ [0, 1) such that πt =
αtπs(t) + (1 − αt )πt−1.

If the prices πt−1 and πs(t) are identical, then Lemma 3 holds for any α ∈ [0, 1).
If not, then the following establishes that there is an upper bound ᾱ < 1 such that
αt < ᾱ for all t provided that the prices πs and πt−1 are separated by some number
η > 0. The proof starts with the observation that the optimal trade for an individual
with position (y, z) at the current market price πt−1 can be summarized by a value α

specifying how the new market price will mix πt−1 and πs , as in Lemma 3. This value
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can be written as a continuous function of y, z, πs , and πt−1. A key step in the proof
is to show that if we restrict attention to only those πs, πt−1 ∈ [pmin, pmax] such that
|πs − πt−1| ≥ η, and the pairs (y, z) for which the trader does not wish to trade at
price πs , the domain of α becomes compact. Since α is continuous with a compact
domain, its range must be compact as well, and must be a subset of [0, 1) by Lemma 3.
Therefore, it must be upperbounded by a constant strictly less than 1.

Lemma 4 For any η > 0, there exists ᾱ(η) < 1 such that, for all t with s(t) > 0 and
|πs − πt−1| ≥ η, αt < ᾱ.

We are now in a position to establish convergence. Let m be defined as in Assump-
tion 1. For t > m define

π̄t = max{πt−s | s = 0, ...,m − 1},
π t = min{πt−s | s = 0, ...,m − 1}.

These are the highest and lowest prices observed over the past m periods, once the
period t transaction has been completed. From Lemma 3 and Assumption 1 we have:

Lemma 5 The sequences {π̄t } and {π t } are non-increasing and non-decreasing
respectively.

An immediate consequence is that both sequences are convergent; let π̄ and π

denote their respective limits. We therefore have lim supπt = π̄ ≥ π = lim inf πt .

The sequence of prices is convergent if and only if the above holds with strict equality.
We know from Lemma 3 that πt is a weighted combination of πt−1 and πs(t), and

fromLemma4 that this combination cannot put toomuchweight onπs(t). Furthermore,
since the sequence {π̄t } is convergent, we know that for sufficiently large t, πs(t) cannot
be much larger than π̄ . Together these imply that πt−1 cannot be too small if πt is
close to π̄ . The following lemma, which is a key step in establishing convergence,
formalizes these ideas.

Lemma 6 For any γ > 0, there exists δ ∈ (0, γ ) and t ′ ∈ N such that, for all
t > t ′, πt > π̄ − δ implies πt−1 > π̄ − γ .

This result can be used to construct a sequence ofm consecutive prices all of which
are arbitrarily close to π̄ , and hence all greater than π if π < π̄ . But every sequence
of m consecutive prices must include at least one that is no greater than π , which is
enough to prove convergence:

Theorem 1 The sequence {πt } is convergent.
We now turn to the question of how the limiting price and portfolios may be inter-

preted, having established that these limits are well-defined.

6 Limiting Portfolios

Recall that π̄ denotes the limiting price. For any trader i with belief pi and limiting
portfolio (ȳi , z̄i ), the following must hold:
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Proposition 2 For each i, z̄i > 0 (resp. z̄i < 0) if and only if pi > π̄ (resp. pi < π̄ ).

This result is very intuitive. If a trader with belief higher than the terminal price holds
a short position, he could reduce risk and increase expected return by buying a small
quantity of the asset. If, instead, he holds a zero position he could increase utility
despite increasing risk by buying a small amount of the asset. Hence such a trader
must hold a positive position. The proof, which appears in the appendix, uses the
optimality conditions and the concavity of u to formalize this idea. The case of traders
with negative positions is analogous.

Proposition 2 implies that, given the limiting price, the set of traders may be parti-
tioned into two groups, such that all members of one group hold positive limiting asset
positions and assign greater likelihood to the occurrence of the event than the limiting
price, while all those in the other group hold short limiting positions in the asset and
assign lower likelihood to the occurrence of the even than the limiting price. One
cannot, however, rank the beliefs of individuals who belong to the same group based
on their limiting portfolios. That is, a trader with a larger limiting asset position may
place lower likelihood on the occurrence of the event than a trader with a smaller asset
position, even if both begin with the same cash position. This is a common feature
of markets in which out-of-equilibrium trading is permitted, since the prices faced by
individual traders depend on the beliefs of their predecessors in the trading order.

We now show that under certain conditions, the limiting price may be used to make
inferences about a weighted average of trader beliefs.

7 Limiting Prices

We have proved that prices converge in markets operated by cost function based
automated market makers when traders are risk averse with heterogeneous beliefs.
We now investigate the value to which they converge. We have already shown that this
value depends on the order inwhich traders interact with themarket, so it cannot be any
deterministic function of traders’ beliefs and budgets. However, we will see that under
a wide range of conditions, this value is very close to a deterministic quantity, and in
particular, to a weighted average of the beliefs of the traders and the initial market
price (which can be interpreted as themarketmaker’s prior belief), with traders’ beliefs
weighted by their budgets and the initial market price weighted by the market maker’s
worst case loss. We use numerical methods to explore the conjecture that

π̄ ≈ 1

ȳ

n∑

i=0

yi pi , (4)

where p0 is the initial price, y0 is the maximum loss implicit in the cost function, and
ȳ = ∑n

i=0 yi .
Since the initial price and the cost function are both chosen by the designer, it is

possible to infer the budget-weighted average of trader beliefs if this approximation is
close. For instance, with a Logarithmic Market Scoring Rule (LMSR) market maker
(as in Eq. 3), the maximum loss is y0 = b log(1/min{p0, 1− p0}) Since p0 and b are
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chosen by design, if the sum of trader budgets is also known then the approximation
(4) may be used to deduce (1/(ȳ − y0))

∑n
i=1 yi pi , which is the budget weighted

average of trader beliefs. The budgets may themselves be chosen by design in the case
of internal currencies, or simply carried over from one market to the next, in order to
place increasing weight on the forecasts of successful forecasters over time.

In the simulations below we explore the degree to which this approximation is
reasonable, restricting attention to the LMSR market maker (as in Eq. 3) and traders
with CRRA utility (as in Eq. 2).

7.1 Log Utility

We begin by describing a set of simulations for traders with log utility. In each of
these simulations, in each round, a trader chosen uniformly at random is given the
opportunity to trade, and chooses the purchase or sale that myopically maximizes his
expected utility. This is repeated until there is no trader who wishes to make a non-
negligible purchase or sale (which in this case means trading more than 0.001 units
of the security) at which point we say the market has converged.10

In the first set of simulations, the number of traders is fixed at 5. An LMSR mar-
ket maker is used with an initial price of 0.5 and the liquidity parameter b = 20,
giving the market maker a worst case loss of 20 log 2 ≈ 13.86. The market is sim-
ulated 100 times. Each time, each trader i’s belief pi is sampled independently and
uniformly in [0, 1] and his initial budget yi is sampled independently and uniformly
in [10, 20].

Figure 3 illustrates the high correlation between the market’s final prices and the
weighted average of the traders’ beliefs and initial price. Each dot represents one run of
the simulation, with the x-axis showing the weighted average of all beliefs (inclusive
of p0) as in the right side of (4), and the y-axis showing the final market price. Over the
100 runs, the average absolute difference between the weighted average and final price
is 0.0086, and the average squared difference 0.00018.11 The correlation is 0.9932.

We next examine the effect of varying the number of traders n. Variants of the
first simulation are run with n taking on every value between 1 and 50. The results
are summarized in Fig. 4. The x-axis is the number of traders n. The y-axis is the
absolute difference between the market’s final price and the weighted average of
beliefs (including the market maker for the solid line, without the market maker for
the dashed line), averaged over 100 runs at that value of n.

Two phenomena can be observed as n grows large. First, the weighted averages
become more accurate. Second, the effect of the initial price on the weighted average
becomes negligible. As such, a weighted average of traders’ beliefs without the initial
price is a good estimate of the final price.

One potential criticism of sampling trader beliefs uniformly in [0, 1] is that the
average belief tends to be close to 0.5, especially when the number of traders is large.
To remove this effect, we ran a variation of the first simulation above (with n = 5)

10 We experimented with smaller convergence tolerances; the results change only negligibly.
11 Leaving out themarket maker, the average absolute difference goes up to 0.0226 and the average squared
difference to 0.00078.
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Fig. 3 Correlation between the market’s final prices and the weighted average of traders’ beliefs and the
initial price when traders’ beliefs are drawn uniformly in [0, 1]

Fig. 4 Mean absolute difference between the weighted average of beliefs and the initial market price and
the final market price as the number of traders grows
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Fig. 5 Correlation between the market’s final prices and the weighted average of traders’ beliefs and the
initial price when traders’ beliefs are drawn from Beta distributions with σ 2 = 0.01

with trader beliefs drawn according to Beta distributions.12 For each run of the market,
a new Beta distribution was chosen at random by first selecting a mean μ uniformly
at random in a range (μL , μH ), and then setting the Beta parameters α and β using

α = μ2 − μ3

σ 2 − μ β =
(
1

μ
− 1

)
α

where σ 2 = 0.01 and μL and μH were chosen to ensure that either α > 1 or β > 1.
The resulting Beta distribution has mean μ and variance σ 2 = 0.01. The belief of
each trader was then drawn from this distribution.

In Fig. 5, each dot again represents one run of the simulation, with the x-axis
showing the weighted average of beliefs and the y-axis showing the final market
price. The correlation is extremely high. However, notice that the limiting price tends
to be higher than the weighted average when the average belief is very high, and
lower than the weighted average when the average belief is very low. This sug-
gests that for events that are very likely or unlikely to occur, any inference regarding
trader beliefs using (4) will be biased towards the extremes. If one wants to infer
trader beliefs this would require an adjustment towards a belief of 0.5. However, as
reported by Ungar et al. (2012), even teams of top forecasters tend to have beliefs
that are biased away from the extremes, and the success of the Penn-Berkeley Good

12 We use this class of distributions because it is defined on the unit interval, includes the uniform as a
special case, and allows for both single-peaked and bimodal density functions.
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Judgment project stems in part from the fact that they push the mean forecast of
their top teams away from 0.5 before submission to IARPA. Figure 5 reveals that
algorithmic prediction markets produce this effect automatically, and this might
explain why prediction markets outperform the unadjusted mean forecasts of their
top teams.

This effect arises because bounded loss causes prices to be adjusted sharply upwards
if traders as a group accumulate a large long position, and sharply downwards if they
are heavily short. The result is an inversion of the usual favorite-longshot bias found
in peer-to-peer markets and sports betting (Wolfers and Zitzewitz 2006).

7.2 Varying Risk Aversion

We also examined the effect of varying the CRRA utility parameter ρ which controls
the extent to which the traders are risk averse. We repeated the first simulation above
with ρ taking on every multiple of 0.2 between 0 and 10. In the extreme case when
ρ = 0, traders are risk neutral and therefore our theory does not apply. In all other
cases, traders are risk averse to different degrees.

The results are shown in Fig. 6. While the approximation is reasonable throughout
this range, it is especially close when preferences are close to the log utility case.
Values of ρ in the range (1, 2) yield excellent approximations, reflecting levels of risk
aversion slightly higher than in the log utility case.

Fig. 6 Mean absolute difference between the weighted average of trader beliefs and the initial market price
and the final market price as the CRRA utility parameter ρ is varied
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Since the market designer chooses the cost function, Eq. (4) can be used to infer
the weighted average of trader beliefs from the limiting price. Our results show that
this inference will be most precise if the coefficient of relative risk aversion ρ lies
in a particular range. But even if this is not the case, (4) still provides a method for
adjusting the limiting price in order to obtain a better estimate of trader beliefs by
taking into account the properties of the cost function. This is superior in all cases to
a naive interpretation of the market price that neglects the properties of the algorithm
being used to elicit beliefs.

8 Conclusions

Prediction markets based on automated market makers have become a fixture of the
forecasting landscape in a broad range of organizations, although little is understood
about how market prices should be interpreted in terms of trader beliefs and the
attributes of cost functions. In this paper we have taken a step towards filling this
gap, by exploring the properties of limiting prices and portfolios when risk averse
traders interact repeatedly in arbitrary order with the market. Although exact inter-
pretations of the price in terms of trader beliefs is not possible in this environment,
good approximations can be obtained if traders are risk-averse and their beliefs are
not distributed in a manner that is too extreme.

The practical relevance of our findings is that a market designer could use them to
make better inferences about trader beliefs, relative to the naïve benchmark in which
the cost function parameters are ignored. As noted by Othman et al. (2013), the set-
ting of these parameters is “more art than science” and “a constant dilemma” for
those who have tried to construct cost function based markets. While these authors
and others (Li and Vaughan 2013; Abernethy et al. 2014) have proposed alterna-
tive approaches that adjust the liquidity parameter in response to the intensity of
trading activity, most implementations continue to use the classic LMSR. Whether
or not our results on convergence and the interpretation of prices carry over to
these proposed designs remains an open question that is worth exploring in future
research.

There are at least two other natural extensions of ourwork. First, one could allow for
the possibility that traders may deviate frommyopic optimization if they believe that a
more favorable pricewill be availablewhen they next have an opportunity to trade. This
would require traders to hold beliefs about the beliefs and trading strategies of others,
as well as beliefs about the order of trading. For a fixed, finite number of trading
rounds and complete information about beliefs, preferences, and the trading order,
this model can be solved through backward induction. However, even with a small
number of traders and periods, the correct anticipation of all future trades requires an
enormous amount of cognitive sophistication. Furthermore, simulation results reveal
that the solution to this problem is extremely sensitive to the exact specification of
parameters: simply adding a period in the two trader case can sharply alter the pattern
of trades in all periods. Adding uncertainty about beliefs, preferences, and the order of
trading renders the hypothesis of fully optimal forward-looking behavior implausible.
It is likely, therefore, that traders will use heuristics rather than full-scale optimization
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in any departure from myopic behavior. It seems worth exploring variations of our
model with the incorporation of plausible heuristics.

Second, one could allow for both heterogeneous priors and differences in informa-
tion. Clearly the priors themselves cannot be common knowledge, since discovery of
these is part of the rationale for constructing the market. Hence traders would need to
update not only beliefs about the state, but also their beliefs about the beliefs of others
as the process unfolds. In a model of sequential and truthful belief announcements,
Sethi andYildiz (2012) show that information need not be fully aggregatedwhen priors
are independently distributed and unobservable. Whether or not this is also the case
when information is revealed by trades rather than by belief announcements remains
an open question worthy of attention.

Appendix

Proof of Lemma 1 To prove the first case, assume that pi ≤ πt−1 and zi,t−1 ≥ 0. By
the convexity of C , showing that πt ≤ πt−1 is equivalent to showing that trader i does
not select rt > 0. For this, it suffices to show that he prefers rt = 0 to any rt > 0.

Consider some r > 0. By the convexity of C , the cost of purchasing r at time t is
at least πt−1r which is at least pir by our assumption that pi ≤ πt−1. The expected
utility of trader i after making this purchase is therefore upper bounded by the function

v(r) = piu(yi,t−1 + zi,t−1 − pir + r) + (1 − pi )u(yi,t−1 − pir). (5)

Taking the derivative of this function with respect to r yields

v′(r) = pi (1 − pi )
(
u′(yi,t−1 + zi,t−1 − pir + r) − u′(yi,t−1 − pir)

)
. (6)

Since u is concave (and so u′ is decreasing) and zi,t−1 ≥ 0, v′(r) is decreasing for
r > 0. Since v(0) is exactly the expected utility of trader i with r = 0 and v(r) is an
upper bound on his utility when r > 0, this implies that trader i prefers rt = 0 to any
value rt > 0, as desired.

The proof of the second case is analogous to the proof of the first. �
Proof of Lemma 2 To prove the first case, assume that pi ≥ πt−1 and zi,t−1 ≥ 0. We
must show that trader i does not select a bundle that would result in a price of πt > pi .
For this, it suffices to show that he would prefer to move the price to exactly pi rather
than to any higher price.

Since any cost function based market is path independent, moving the price from
πt−1 to πt costs the same as moving the price from πt−1 to pi and then from pi to πt .
Therefore, it suffices to show that if trader i first moves the price to pi , he prefers to
keep it there rather than subsequently moving it to a higher value.

By the convexity ofC , the price can be increased fromπt−1 to pi only by purchasing
a non-negative number of shares. Let ẑ ≥ zi,t−1 ≥ 0 be the asset position of trader i
after this move. Since his asset position is still non-negative, and the market price is
now exactly equal to his beliefs, we can apply Lemma 1 to immediately show that he
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prefers to keep the price at pi or decrease it rather than increase it, which completes
the proof.

The proof of the second case is analogous to the proof of the first, relying on the
second case in Lemma 1. �
Proof of Proposition 1 Since π0 = p0 and p0 ∈ I by definition, it is clear that π0 ∈ I .
Suppose, by way of contradiction, that there exists t ≥ 1 such that πs ∈ I for all s < t
and πt /∈ I . We consider the case πt > pmax (the case πt < pmin may be proved
analogously).

Let i = k(t), and suppose first that zi,t−1 = 0. If pi ≤ πt−1 thenπt ≤ πt−1 ≤ pmax
from Lemma 1 and the fact that πt−1 ∈ I , a contradiction. And if pi ≥ πt−1 then
πt ≤ pi ≤ pmax from Lemma 2 and the fact that pi ∈ I , a contradiction.

Now suppose that zi,t−1 
= 0. Then there exists s < t such that k(s) = i and
k(t ′) 
= i for all t ′ ∈ {s + 1, ..., t − 1}. We know that (yi,t−1, zi,t−1) is an optimal
portfolio for i at market state qs , when the market price is πs ≤ pmax. If πt−1 = πs

then i will not change his portfolio in period t , so πt = πt−1 ≤ pmax, a contradiction.
If πt−1 > πs then i will sell in period t , so πt < πt−1 ≤ pmax, a contradiction.

Finally, if πt−1 < πs , then i will buy in period t . Any such transaction may be
viewed as taking two steps in sequence: buy until the price reaches πs , and then buy
or sell to reach the new optimum. After the first stage the market state will be qs and
the endowment will be (y, z) where y < yi,t−1 and z > zi,t−1. Since i did not want to
buy or sell at this market state with portfolio (yi,t−1, zi,t−1), he will want to sell with
portfolio (y, z). Hence πt < πt−1 ≤ pmax, a contradiction. �
Proof of Lemma 3 Suppose that trader i with endowment (y, z) is considering pur-
chasing r units of the asset at some market state q, and let cq(r) = C(q + r) − C(q)

denote the cost of this transaction. If r < 0, this is a sale and the cost is negative. The
expected utility of trader i after this transaction is given by piu(y − cq(r) + z + r) +
(1 − pi )u(y − cq(r)). Taking the derivative with respect to r gives

pi (1 − c′
q(r))u

′(y − cq(r) + z + r) − (1 − pi )c
′
q(r)u

′(y − cq(r)). (7)

Consider any t such that s(t) > 0 and let i = k(t). For notational simplicity, we
will write s in place of s(t). We know that trader i would not want to buy or sell at
endowment (yi,s, zi,s) and market state q such that C ′(q) = c′

q(0) = πs ; otherwise,
the path independence of the cost function implies that trader i would not have left
the price in this state at time s. From Eq. 7, this tells us that

pi (1 − πs)u
′(yi,s + zi,s) − (1 − pi )πsu

′(yi,s) = 0. (8)

Now consider the decision of trader i at time t . Since the endowment of trader i
at the start of period t is precisely (yi,s, zi,s) and the current price is πt−1, Eq. 7
tells us that trader i would want to buy a positive quantity of the asset if and only if
pi (1− πt−1)u′(yi,s + zi,s) − (1− pi )πt−1u′(yi,s) > 0. From Eq. 8, this holds if and
only if πt−1 < πs . Similarly, trader i would want to sell a positive quantity (or buy a
negative quantity) if and only if πt−1 > πs .
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First consider the case in which πt−1 < πs , so the trader wants to buy. Suppose
that i submits an order that restores the market to the state q such that C ′(q) =
cq(0) = πs . Let (y′, z′) denote the resulting endowment, and note that y′ < yi,s and
y′ + z′ > yi,s + zi,s . We shall show that at this endowment and price, the trader
now wishes to sell. Consider a purchase (possibly negative) of r units starting from
the endowment (y′, z′) at market state q. As before, the expected utility is given by
piu(y′ − cq(r) + z′ + r) + (1 − pi )u(y′ − cq(r)), and its derivative at r = 0 is
pi (1 − πs)u′(y′ + z′) − (1 − pi )πsu′(y′). This must be less than 0 by Eq. 8, the
concavity of u, and the fact that y′ < y and y′ + z′ > y + z. By path independence of
the cost function, this implies that while i would like to buy at price πt−1, he would
not buy enough to push the price back to πs , yielding the result. The proof for the case
in which πt−1 > πs is analogous. �
Proof of Lemma 4 Let � = {(y, z) | y > 0, y + z > 0}, and define the function
ψ : � → (0, 1) as

ψ(y, z) = piu′(y + z)

piu′(y + z) + (1 − pi )u′(y)
. (9)

From (8), the endowment (y, z) ∈ � is optimal for trader i at price ψ(y, z) in the
sense that a trader with portfolio (y, z) would not want to buy or sell if the current
price were ψ(y, z). ψ is continuous since u is smooth, so the inverse image ψ−1(E)

of any closed set E ⊂ (0, 1) is closed. In particular, ψ−1({π}) is closed for any
π ∈ I = [pmin, pmax].

Consider any t such that s(t) > 0, and let s = s(t) and i = k(t). Since πs ∈
I and limw→0 u′(w) = ∞, optimal portfolios will satisfy the non-negative wealth
constraints with strict inequality in all periods. That is, (yi,s, zi,s) ∈ �. By Lemma
3, the choice problem faced by trader i in period t with budget y = yi,s and assets
z = zi,s may be expressed as follows: choose α ∈ [0, 1) to maximize

piu(y − cπs ,πt−1(α) + z + rπs ,πt−1(α)) + (1 − pi )u(y − cπs ,πt−1(α)), (10)

where rπs ,πt−1(α) is the (positive or negative) quantity of assets that trader i would
need to purchase to bring the market price to πt = απs + (1−α)πt−1, and cπs ,πt−1(α)

is the cost of this purchase. The bounded loss of C implies that these quantities must
exist since itmust be possible tomove themarket price to anything in (0, 1) (Abernethy
et al. 2013). Furthermore, one can easily verify that for any given values of πs and
πt−1, rπs ,πt−1(α) and cπs ,πt−1(α) are both continuous since the cost function C is
smooth and convex. The necessary and sufficient condition for a maximum is

pi (r
′
πs ,πt−1

(α) − c′
πs ,πt−1

(α))u′(y − cπs ,πt−1(α) + z + rπs ,πt−1(α))

− (1 − pi )c
′
πs ,πt−1

(α)u′(y − cπs ,πt−1(α)) = 0.

For any given tuple (y, z, πs, πt−1) with πs 
= πt−1, this condition implies a unique
solution α(y, z, πs, πt−1) by Lemma 3. By the continuity of u(·), rπs ,πt−1(·), and
cπs ,πt−1(·), α(·) is also continuous where it is defined.
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Note that for any η > 0, α(·) is well-defined on the domain

 = {(y, z, πs, πt−1) ∈ R
4 |

(πs, πt−1) ∈ [pmin, pmax]2, (y, z) ∈ ψ−1({πs}), |πs − πt−1| ≥ η}.

Sinceψ−1({πs}) is closed and bounded, is compact. Since compactness is preserved
by continuous functions, α must also have a compact range, which excludes α = 1 by
Lemma 3; although some states in  may not be reachable in the market, the proof
of Lemma 3 holds for all states in this set. Hence the range of α over domain  must
have a maximum element ᾱ(η) < 1. �
Proof of Lemma 6 Note that for any η > 0, there exist ε > 0 and δ > 0 such that

η > ε + δ + ᾱ(η)ε

1 − ᾱ(η)
, (11)

since ᾱ(η) < 1 from Lemma 4. Let η > 0 be given and consider any positive ε

and δ consistent with (11). By definition of π̄ , there exists t ′ such that, for all t >

t ′ −m, πt < π̄ + ε. Consider any τ > t ′ with πτ > π̄ − δ. Clearly πs(τ ) < π̄ + ε. By
Lemma 3,

πτ = ατπs(τ ) + (1 − ατ )πτ−1. (12)

This implies (1 − ατ )πτ−1 = πτ − ατπs(τ ) > π̄ − δ − ατ (π̄ + ε). Hence

πτ−1 > π̄ − δ + ατ ε

1 − ατ

> πτ −
(

ε + δ + ατ ε

1 − ατ

)
(13)

where the last inequality follows from the fact that πτ < π̄ + ε.
We claim that πτ−1 > πτ − η. Suppose not. Then πτ − πτ−1 ≥ η, which by (12)

implies that πs(τ ) − πτ−1 ≥ η, and ατ ≤ ᾱ(η). Hence from (13), we obtain

πτ−1 > πτ −
(

ε + δ + ᾱ(η)ε

1 − ᾱ(η)

)
, (14)

which implies πτ−1 > πτ −η from (11), a contradiction. Hence πτ−1 > πτ −η.Note
that δ < η from (11), so πτ−1 > π̄ − δ − η > π̄ − 2η. Setting η = γ /2 yields the
desired result. �
Proof of Theorem 1 FromLemma 6, for any γ > 0, there exists t ′ ∈ N and a sequence
of positive numbers δ1, ..., δm such that γ = δ1 > δ2 > ... > δm > 0 and, for all
t > t ′ and i = 2, ...,m, πt+i > π̄ − δi �⇒ πt+i−1 > π̄ − δi−1. Furthermore,
there exists t > t ′ such that πt+m ≥ π̄ > π̄ − δm . Suppose that π̄ > π and set
γ = π̄ − π . Then there exists a sequence of m consecutive prices πt+1, ..., πt+m all
of which exceed π . Hence π t+m > π , a contradiction. �
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Proof of Proposition 2 Consider a trader with belief p, portfolio (y, z), facing price
π . From the first order condition for optimality, this trader will choose to remain at
this portfolio if and only if

p(1 − π)u′(y + z) = π(1 − p)u′(y), (15)

or

π = pu′(y + z)

pu′(y + z) + (1 − p)u′(y)
. (16)

Concavity of u implies that

π = pu′(y + z)

pu′(y + z) + (1 − p)u′(y)
< p (17)

if and only if z > 0. Similarly, π > p if and only if z < 0. Since the terminal portfolio
is optimal given the terminal price, the result follows. �
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