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¿What is a game?  
4 

In a game two or more player interact, adopting strategic decisions 

The game is characterized by two aspects 

1) The set of strategies available to the players 

2) The payoff obtained by each strategy when confronting the others 

Rock Paper Scissors 
Rock  0, 0 -1,1 1,-1 
Paper 1,-1 0,0 -1,1 

Scissors -1,1 1,-1 0,0 

Player 1 

Player 2 



Rational choice  
5 

The choices made by individuals in a society try to maximize their benefits 
and minimize their costs and risks.  
People make decisions about how they should act (adopt a strategy) by 
comparing the costs and benefits  (payoff) of different courses of action. 

"[Political economy] does not treat the whole of man’s nature as 
modified by the social state, nor of the whole conduct of man in 
society. It is concerned with him solely as a being who desires to 
possess wealth, and who is capable of judging the comparative 
efficacy of means for obtaining that end."  John Stuart Mill (1836) 

"It is not from the benevolence of the butcher, the brewer, or the 
baker that we expect our dinner, but from their regard to their own 
interest."  Adam Smith (1776) 

The Homo Economicus acts to obtain the highest possible well-being for him or herself  
given available information about opportunities and other constraints 



Best response – Nash Equilibrium 
6 

There are n players 
Each player i can  choose one  strategy si 
from a set  of strategies S 

We say that the strategy t ∈ S is a best response to si 
if by playing t  one gets the highest possible payoff 

A Nash Equilibrium is a strategy that is the best response 
to itself, or a couple of strategies that are mutually best 
responses to the other 



NashEquilibrium 

File 

Column 

(b,a) is the Nash equilibrium. 

 
Column best choice is always a,  File best response is b 
 
Fila best choice is always b,  Column best response is a. 
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Strategy a Strategy b 

Strategy a 1,2 0,1 

Strategy b 2,1 1,0 



R P S 
R  0, 0 -1,1 1,-1 
P 1,-1 0,0 -1,1 

S -1,1 1,-1 0,0 

Player A 

Player B 
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NashEquilibrium 

Sometimes, the Nash equilibrium is not trivially found 



Sometimes, there are more than one Nash equilibrium 
 

 
 

Battle of the sexes 
A couple is planning vacations. The woman prefers the beach, the man prefers 
the mountain. Both prefer spending their time together than separated 

Mountain Beach 

Mountain 2,1 0,0 

Beach 0,0 1,2 
Man 

Woman 
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NashEquilibrium 



Consider the game “Matching pennies” 
 

 
 

Head Tail 

Head 1,-1 -1,1 

Tail -1,1 1,-1 
Player A 

Player B 
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Mixed strategy 

p H (1-p) T 

q H  1,-1 -1,1 

(1-q) T -1,1 1,-1 

If there is  Nash equilibrium, each player would be able to choose an optimum 
frequency in response to the other player choice 



Mixed strategy 

As A can always change its strategy in response to what B does,  B looks for 
a choice whose payoff is independent of what A does 

p-(1-p)=-p+(1-p)  p=1/2 

q-(1-q)=-q+(1-q)  q=1/2 

p H (1-p) T 

q H  1,-1 -1,1 

(1-q) T -1,1 1,-1 

If A plays H, B wins –p+(1-p);  If A plays T, B wins p-(1-p) 
 

Player A 

Player B 
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Evolutionary Stable Strategies 

If the population adopted a strategy such that no mutant 
can take advantage of the situation, this strategy is called  
                                   evolutionarily stable 

12 

Consider a population  having adopted a unique shared strategy 

Due to mutation or incorporation, suddenly one individual adopts a 
different strategy. 

If due to this different strategy the “mutant” beats  the rest of the 
population, by imitation the individuals will adopt the mutant strategy 

In other case, the mutant will be ignored 



Evolutionary Stable Strategies 

Each  player has the same set of available pure strategies R = {R1,R2,.... ,RN} 
The player can choose a pure or mixed strategy r 
          r=(p1, p2,…., pN ), with pi ≥0  y ∑ pi  =1 (this define a simplex) 
 
 
 
 

The payoff r1 gets when playing against r2 is 
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Payoff Matrix )( ijaA =
    aij is the  payoff Ri 

gets against Rj 

∑
ji

ijji app
,

21r1 A r2 = 



Evolutionary Stable Strategies 

jrArrAr iiij ∀≤
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A best response to a strategy r1 is a strategy  r2 such that 
                                   (r2 A r1 ) is a maximum.  
In the case when all the player have the same set of available strategies, a Nash 
equilibrium is a strategy that is its own best response 
 
 
If it is the only best response is a Strict Nash Equilibrium  
 ijrArrAr iiij ≠∀<
A key question in Game Theory is about the existence of a profile of strategies in a 
population that is stable and resistant to perturbations 
Mutants can not take any advantage. If a population with strategy ri  is invaded by 
individuals wit strategy  rj    

ijrrArrrAr jiijij ≠∀+−<+− ))1(())1(( εεεε



Evolutionary Stable Strategies 

15 

ijrrArrrAr jiijij ≠∀+−<+− ))1(())1(( εεεε

0)())(1( >−+−− jjjiijii ArrArrArrArr εε

ijii ArrArr >

jjji ArrArr >

⇒= ijii ArrArr

Strict Nash equilibrium 

Stability 



Evolutionary Games 

The behavior can be defined by trial and error.  Adaptation and learning are key  
factors 

 

The games are played in a population, where each individual receives a score 
 

Strategies that work better than the average spread while others disappear. The  
restriction of rational behavior can be relaxed 

 
Each player plays with all the population or only its neighbors (mean field vs. 
spatial)  
The success of each player determines the number of followers or descendants in  
the next step (Selection) 

 

The descendants or imitators inherit or copy the strategy with some error 
(mutation) 

If you reach the Nash equilibrium (global) no other strategy can invade 
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Replicator Dynamics 

Payoff Matrix )( ijaA =
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i Payoff T
ii xAexf  =)(

 Mean payoff TxAxxf  =)(
___

1=∑
i

ix( )Ni xxxxx ,...,,...,, 21=

( )0,...,0,1,0,...,0,0=ie

The replicator equation describes the evolution of the  frequencies of strategies 
in a population, with selection proportional to the fitness 

Population 



Replicator Dynamics 

xi  is the frequency of strategy (phenotype) i, fi  its fitness, the equation is  

      )),()((
.

xfxfxx iii
 −= ∑= i ii xfxxf )()(  
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It can be shown that if a strategy is evolutionary stable then it is a stationary state of 
the replicator equation 



Replicator Dynamics: RPS 
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Rock Paper Scissors 
Rock  0, 0 -1,1 1,-1 
Paper 1,-1 0,0 -1,1 

Scissors -1,1 1,-1 0,0 
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Replicator Dynamics: Stability 
20 
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Replicator Dynamics: Linear stability 
21 
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Replicator Dynamics: Linear stability 

Equilibria 
 
(1,0,0) 
(0,1,0) 
(0,0,1) 
 
 
                            Center 
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2x2 Symmetric Games 
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E1 a,a b,c 

E2 c,b d,d 
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               Each player can choose between two available strategies  

Consider a population that plays E1 with prob. x and E2 with prob. (1-x) 

dxxcf )1(2 −+=



2x2 Symmetric Games 
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2x2 Symmetric Games 
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E1 E2 
E1 a1, a1 0,0 

E2 0,0 a2,a2 
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bxxaf )1(1 −+=

               Each player can choose between two available strategies  

Consider a population that plays E1 with prob. x and E2 with prob. (1-x) 
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2x2 Symmetric Games 
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2x2 Symmetric Games 
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If  a1 > 0 and  a2 > 0, the flux close to x* , where the derivative is null  

If a1 < 0 and a2 < 0, the flux close to x* , where the derivative is null  

0                        x*                                 1 

0                        x*                                 1 



2x2 Symmetric Games 
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Games type I (IV) : a1 < 0 y a2 > 0 (a1 > 0 y a2 < 0)   
 
Games type II: a1 > 0 y a2 > 0 
 
Games type III: a1 < 0 y a2 < 0 
 

Prisoner’s dilemma 
 
Coordination Games 
 
Hawks and doves 

 There are three (four) types of 2x2 Symmetric Games 
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Prisoner’s Dilemma 

Cooperation is 
more frequent 
than  suggested 
by models based 
on rational 
behaviour 

31 



Prisoner’s Dilemma 
32 

Two partners in crime are separated into separate rooms at the 
police station and given a similar deal. 
 
 If one implicates the other, he may go free while the other 
receives a 20 years in prison.  
 
If neither implicates the other, both are given moderate 
sentences (1 year) 
 
If both implicate the other, the sentences for both are severe (5 
years).  
 



Prisoner’s Dilemma 
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Prisoner’s Dilemma 
34 

R    REWARD            for  mutual cooperation 
 S    SUCKER’s          payoff                                              
T     TEMPTATION   to defect 
P     PENALTY           for mutual defection 

With T>R>P>S     and      R > (T+S)/2 

Cooperate Defect 

Cooperate R, R S, T 

Defect T, S P, P 



Prisoner’s Dilemma 
35 

(D) is dominant for player 1 
     
 
 
 
 

and player 2 
     
   

 
 

 
Both are better off if the other cooperates T>P 

 

Cooperate Defect 
Cooperat
e R S 

Defect T P T>R 
P>S Cooperate Defect 

Cooperate R T 

Defect S P 



Prisoner’s Dilemma 
36 

Each player has a dominant 
strategy to implicate the other. 
Thus in equilibrium each receives a 
harsh punishment, but both would 
be better off if each remained 
silent.  

From the individual point of view desertion is the rational choice, while cooperation is the 
collective rational behavior. 
 
 
The lack of cooperation is the tragedy of the commons. A situation in which multiple 
individuals, motivated only by self-interest and acting independently but rationally, end up 
destroying a limited shared good, even when it is clear that it is in their interest, either as 
individuals or together that such destruction do not happen. 

In simple instances,  rational decision prevails. 
Always defect.  
  
However, in the iterative defect is not always 
optimal and that mutual cooperation can 
cause a net gain in the two agents 
 

In a repeated or iterated prisoner's dilemma, cooperation may be sustained through  
trigger strategies.  



Prisoner’s Dilemma 
37 

Cooperate Defect 
Cooperat
e R S 

Defect T P T>R 
P>S 

P(D, D) > P(C,D)  ⇒  ESS?          P(D, D) > P(C,D) ⇒ P > 0 

P(C, C) > P(D,C)  ⇒  ESS?          P(C, C) > P(D,C) ⇒ R > T   False 



Prisoner’s Dilemma 
38 
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Prisoner’s Dilemma 
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Axelrod Tournament 
40 

 
R. Axelrod invited a group of Game Theory researchers to 
propose different strategies for an iterated P.D. 
 
Each strategy played against all the others including itself and a 
randomly alternating strategy 
 
 



Prisoner’s Dilemma 
41 

•Always cooperate on the first round; defect only after the other 
player has defected Tit for tat (TFT) 

•Always cooperate on the first round; defect only after the other 
player has defected two consecutive times Tit for  2 tats(TF2T) 

•Similar a TFT, but starts defecting Suspicious Tit for tat (STFT)  

•Starts  cooperating , defects after a defection and also sporadically Naive Probe(SI) 

•Similar a SI, but never avenges a defection responding his own 
defection Remorse probe(SR) 

•Starts defecting and if the opponent responds defecting plays TFT,. 
If the opponent does not avenge a defection alternates D and C Explorer (E) 

•Starts cooperating, but once the opponent defects, always defects Vindictive (V) 

•Always defects Free Rider (AD) 

•Always cooperates Cooperator (AC) 



Iterated Prisoner’s Dilemma 
42 



Axelrod Tournament 
43 

TFT  was the winner, exploiting the following attributes 
 (i) being affable  
(ii) Being sensitive to provocation 
(iii) Not being rancorous 

Don’t be envious 
Don’t play as if it were a zero sum game 
You don’t have to beat your opponent for you to do well 
 

Be nice (don’t be the first to defect) 
Start by cooperating, and reciprocate cooperation 
 

Retaliate appropriately 
Always punish defection immediately,  
But use “measured” force — don’t overdo it 
 

Don’t hold grudges 
Always reciprocate cooperation immediately 



Prisoner’s Dilemma 
44 

A spatial variant of the iterated prisoner's dilemma 
A model for cooperation vs. conflict in groups 
It shows spread of 

altruism  
exploitation for personal gain 

in an interacting population of agents learning from each other 
Initially population consists of cooperators and a certain amount of  
defectors 
Advantage of defection is determined by the 'payoff matrix'  
A player can change strategy, by selecting the most favourable 

strategy  from itself and its direct neighbours  



Prisoner’s Dilemma 
45 

In spatial games,  players interact with their neighbors and adopt 
the state that is more convenient. 

 
Reveals the importance of social topology (complex networks) and 

bounded rationality (expectation based on local conjecture) to 
describe how cooperative behavior spreads in the population. 
 

 
In models where complex networks are considered, the 

cooperators can invade defectors. 



Prisoner’s Dilemma 
46 

The interaction topology can be described by a network or graph 

First models: Square lattices 

Moore Von Neumann 



Prisoner’s Dilemma 
47 

Strategies : C (blue)  D(red) 
 
Consider a Moore neighborhood (8 neighbors) 
The central site imitates  the strategy of the neighbor who 
accumulates the greatest benefit 
 
 
 
 
 
 
 
 
 
 
 

Site(2,2) is the selected one ⇒ (3, 3) changes from red to blue 



Prisoner’s Dilemma 
48 

Cooperate Defect 

Cooperate 1 0 

Defect b ε 



Prisoner’s Dilemma 
49 

Depending on the value of b there can be four scenarios.  
When a single defector is  inserted into a sea of cooperators, 
always expands to a 3 x 3 block of cooperators and then 
 
 (i) returns the state of the starting block 
 
  (ii) remains there indefinitely 
 
  (iii) creates a cross-shaped cluster and returns to the initial state 
 
  (iv) spread defection 



Prisoner’s Dilemma 
50 



Prisoner’s Dilemma 
51 

A cooperator can not expand in a sea of defectors 
 
Cooperation can propagate only if inserted in a cluster, e.g. for b 
<3/2,  It can start with a cluster 2 x 2, which in the next period 
evolves to 4 x 4, and then to 6 x 6. 
 
Space games allow you to show the possibility of co-existence of 
cooperation and defection 



Prisoner’s Dilemma 
52 

Cooperators 

No Cooperators 

NC → C 

C  → NC 



Prisoner’s Dilemma 
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Complet 

Ring 

Tree 

Star 

Lattice 

Small World 

Scale free 



Prisoner’s Dilemma 
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Ultimatum Game 
55 

Two players interact to decide how to divide a sum of money M that is given  
to them.  
The first player, the offerent O, proposes how to divide the sum between the  
two players (M-x, x) 
The second player, the acceptor A, can either accept or reject this proposal.  
 
If the A player rejects the offer, both  receive nothing.  
 
If the A player accepts, the money is split according to the proposal.  

Rational players:  Offer x very small, Accept  x>0 



Ultimatum Game 
56 

One solution, Nash equilibrium  
                                            
                                         D= (M - ε , ε)  
  
 It is the “rational” solution based on the axioms 
 
1 Each player prefers a payoff  α t0 β if α > β  
 
2 Both players know 1 
 
3 O can calculate the optimal offer 
 
 



Ultimatum Game 
57 

University students 

Modal offer = 50%.  

Mean offer = 40%–50%. 

Offers < 20% rejected 



Ultimatum Game 
58 



Ultimatum Game 
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Ultimatum Game - Replicator 
60 

The trade amount is 1 
 
The players have equal chance of being A or O 
   When i is O offers pi 
  When i is A rejects any offer below qi 

 

The strategy of a player is defined by (p,q) 
 
                                              1- pi ≥ qi 



Ultimatum Game - Replicator 
61 

                            Payoff of a player (p1 , q1 ) 
   
1- p1 + p2   p1≥q2 ∧ p2 ≥ q1 
 
1 - p1    p1 ≥ q2 ∧ p2 < q1 
 
p2               p1< q2 ∧ p2 ≥ q1 
 
0    p1 < q2 ∧ p2 < q1 



Ultimatum Mini Game 
62 

 4 strategies: G1 - G4 
 G1= (l,l) : reasonable 
 G2 =(h,l) : altruist 
 G3 = (h,h) : fair 
 G4 = (l,h) : ambicious 

 
 

Offers l (low), h (high):   0< l < h < 1/2 



Ultimatum Mini Game 
63 

 G1 is a fix point 
 A mixed population G1 and G3 

converge to G1 or G3 
 A mixed population G1 and G2 

tends to G1 
 A mixed population G2 and G3 is 

neutrally stable 



Ultimatum Mini Game 
64 

   Consider that accepting a low offer affects the reputation 
  The mean offer of a O-h to a  A-l is reduced by a 
  In an extreme case, when h-l=a,  O has all the information about 

A, G3 is stable, G1 y G2 are neutrally stable.  
 
 With information, fairness dominates 



Evolutionary Ultimatum Game 
65 

p: disorder parameter 



Spatial Ultimatum Game 
66 
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68 

Herding Arch Formation 

Disruptive Interference Wall seeking 



Agent based models 
69 

Rational agents get optimal escape route 

 
Each individual has personal attributes 
 

  Simulation based on Social Forces models  
or collision avoiding 

  

Newton’s Second Law 
Repulsive interaction force 
Interactions with the walls 



Gas Lattice models 
70 

Individuals on a grid 

 
Discretize space into cells 
 

  Lack of social behaviour 



The movement of pedestrians 
71 

There is also a probability R<1 of a non 
rational choice (random selection).  
The  movement will be decided according 
to a combination of both strategies 

 
At each time step, pedestrians prioritize 
the  target direction (up, down, left, right)  
according to rational choice (reach the 
exit) 
 

  



72 

  Once they have made a choice, the pedestrians try to move to the selected 
site.   But there are some restrictions.....  
1) The site must be empty 
2) The site might have been chosen by more than one pedestrian 

  When the site is empty and was chosen by more that one pedestrian, there is  
a competition among the interested individuals to decide who will make the  
move 

  There is a sort of game between the involved competitors, where individuals 
can  adopt either a cooperative or a defective (non cooperative) behaviour 

The interaction among pedestrians 
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C D 

C 1/2 0 

D 1/P 1/(2P) 

(n-1)C (n-m-1)D 

C 1/ n 0 

D 1/P 1/((n-m)2P) 

The “payoff” matrix 

If 1<P<2              Prisoner’s Dilemma 
 
 If  2<P                Stag Hunt 
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(n-1)C (n-m-1)D 

C 1/ n 0 

D 1/P 1/((n-m)2P) 

The temptation to defect 

From the individual point of view defecting is always better than 
cooperate (P<2) 
 

From the global point of view, at each encounter of two cooperators the 
chance of at least one of them moving to the desired site is higher than 
when defectors are involved 
 

This is the analogous conditions on P.D. and S.H. iterative games:  
                                  
                       P(D,C)+P(C,D)<2 P(C,C)          1/P+0<2x1/2 
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Snapshots 
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Only cooperators  

R: probability of random choice     ρ:  Initial density           L: Size of the room 
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P 

Only  defectors 

P 
P 
P 
P 
P 

                     ρ:  Initial density                                    P:  Defector penalization 
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Mixed populations 

          ρD (0) :  Initial D proportion                                P:  Defector penalization 

tn(ρD)= (t(ρD)-t(0))/t(1) 



79 

Rationale 

Cooperators are always 
overcome when 
competing with 
defectors 
 

 

We will measure 
1) ρi (t) : Difference between instantaneous    
                     and initial fraction of C over the          
                     initial fraction of C 
2) ρe (t): Difference between  the fraction of C  
                     at the exit and the fraction  of C   
                     within the room over the fraction of  
                     C within the room 
3) CC:  Ratio between the fraction of C        
                  neighbours of a C and the       
                  instantaneous fraction of C in the  
                  room 
 

Nevertheless, the emerge and prevalence of 
cooperation has been observed in several  
examples as an effect of the advantage of 
mutual cooperation 

To take profit from 
mutual cooperation, 
cooperation must 
conform clusters, 
resisting the invasion by 
defectors 

We look for effects 
of mutual 
cooperation and the 
formation of clusters 
of cooperators 
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Cooperators dynamics: Fractions of C 

1) ρi (t) : Difference between instantaneous  and initial fraction of C 
over the  initial fraction of C 

2) ρe (t): Difference between  the fraction of C  at the exit and the 
fraction  of C   within the room over the fraction of  C within the 
room 
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Cooperators dynamics: Clustering 

CC:  Ratio between the fraction of C  neighbors of a C and the 
instantaneous fraction of C in the room 



Contents 

1.- Concepts of game theory 
2.- 2x2 symmetric games  
3.- Emergence of cooperation. 
4.- Room evacuation and game theory. 
5.-Lexicon evolution and game theory.  
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Naming Games 

Interactions of  N agents who try to communicate and need to conform a 
lexicon, i.e. a system of Name-Object associations 

The agents can keep in memory different words, can speak or hear 

At each time step 2 agents, a transmitter and a receiver, are randomly 
selected 

The transmitter communicates a name to the receiver 
(if the transmitter has nothing in memory –at the beginning- it invents a name) 

-if the receiver already has the name in its memory                 success 
                                                                                            else                  failure 
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Naming Games 

Success : the speaker and hearer retain the uttered word as the correct one and 
cancel all other words from their memory  

Speaker Speaker Hearer Hearer 

JUYFE 
PUFC 
RETS 

PUFC PUFC PUFC 
GIUT 
BOPI 

Failure : the hearer adds to its memory the word given by the speaker 

Speaker Hearer 

JUYFE 
PUFC 
RETS 

KREC 
GIUT 
BOPI 

Speaker Hearer 

JUYFE 
PUFC 
RETS 

KREC 
GIUT 
BOPI 
PUFC 
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Bimatrix Naming Game  

In the model, the individuals can communicate through a simple system of 
sounds or signals . 

The use and interpretation of each one of the signals is defined by a couple 
of matrices, the transmitter matrix T and the receiver matrix R.  

There are s sounds or signal and o objects or concepts, 
The element tij of the o × s transmitter matrix contains information about the 
probability that the individual refers to concept ith, using the jth signal.  
 
The s×o receiver matrix contains the reciprocal information, i.e. rij is the 
probability that the individual associates the signal ith, to the jth concept.  

R is not necessarily the transpose of T 
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Bimatrix Naming Games 
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Bimatrix Naming Games 
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Bimatrix Naming Games 

Communicative  Power: individuals a and b, object k  
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Bimatrix Naming Games 

• The individual samples the transmission and 
reception behavior of the environment to build up its 
own behavior, by imitating the others.  

• The imitators adopts the average transmission and 
• reception behaviours of the system. 

Imitator 

• This individuals seeks to optimize its role as 
transmitter and receiver. 

• With this rationale, the individuals adopts the mean 
transmission behavior to build up its receiver matrix 
and vice versa 

Calculator 

• This individuals only samples the transmission 
behavior of the population and coordinates its 
reception behavior to be affine to its own 
transmission. 

Saussurean 
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Bimatrix Naming Games 
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Bimatrix Naming Games 
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Each lexicon is a strategy  

Individuals can be transmitters and receiver 

The payoff is the communicative power 

Consider evolutionary dynamics 
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Bimatrix Naming Games 
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The optimum R matrix has rji = 1 when tij is the largest value  
 
The maximum communicative power will be obtained when T  
has at least one 1 in every column (if o > s) or in every row (if o < s).  
 
When o = s then T = R†. 
  
Matrices containing either 0 or 1 in their elements are called binary matrices 
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Bimatrix Naming Games 

A lexicon a is a Strict Nash equilibrium if and only if o = s with T being a 
permutation matrix and R its corresponding transpose one.  
 
A permutation matrix is a binary matrix with the additional constraint of having 
only one element equal to 1 in each row and column. 
 
This strong condition implies that in such a lexicon there are bijective relations 
between the set of signals and objects, one word to each object and vice versa.  
 

))()((
2
1)(),(

1 1

abbaa
ji

b
ij

o

i

s

j

b
ji

a
ij RTTrRTTrrtrtbaP ⋅+⋅=+=∑∑

= =



94 

Bimatrix Naming Games 

The cases o≠ s are more interesting.  
No Strict Nash Equilibria or Evolutionary stable lexicons            Simple Equilibria 
 
(1) The elements of T and R must be numbers in the interval [0,1]. 
(2) all the non zero elements of a column of T and R are identical. 
(3) R† is in the support of T , that means that if the element tij is non null, rji must 
be non null. 
Homonymy is possible, but with restrictions. If some objects are associated to 
the same set of signals, none of them can have associations to signals not 
belonging to the set.  
 
A reciprocal condition exist for synonymy. If some signals are associated to a 
group of objects, none of them can have associations to objects outside this 
set. 
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Bimatrix Naming Games 

Strict Nash Equilibrium 

Nash Equilibrium 

Nash Equilibrium 

Not Equilibrium 
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Evolutionary Naming Games 

N individuals 
 
            Lexicon dynamics 
 
                             Underlying complex network 
 
                                                   Network dynamics 
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Evolutionary Naming Games 

During the interaction, the speaker chooses a given meaning and uses a word to 
express it according to the lexical matrix, using the stronger object-word 
association. 
The hearer will then compare whether his lexicon also associates the 
chosen word with the meaning denoted by the speaker. If this happens the 
interaction is considered a success 

A given lexicon will be defined by the strength of the association between a given 
word sk and an object ol. These strengths will be upload to a o × s matrix, M 
adopting values within the interval [0, 1]., 

The success of the interaction occurs when both individuals share the same 
object-word association.  
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Evolutionary Naming Games 

The defined lexical matrices M are not normalized.  
 
The normalization is not unique and depends on the role of the agent and 
the chosen normalization is in correspondence with previously discussed 
ideas.  
 
When the individual i is a speaker, the matrix will be normalized according 
to the rows, such that the sum of the value in each row equals one. 
 
When the individual plays the role of hearer, the normalization will be 
performed according to the columns. 
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Network Dynamics 

A node i  is randomly chosen 
 
One of its neighbors, j, is selected.  
 
A third node k, not connected with i is randomly chosen 
 
The lexical distance between i-j, i-k is compared 
  
 
 
 
 
The link between i-j is broken and a new link between i-k is created 
according to certain probability, depending on the lexical distance. 

2

1 1
)(1 b

ij

o

i

s

j

a
ij

l
ab tt

so
d −

⋅
= ∑∑

= =



100 

Both Dynamics 

The simulation performs N*tr cultural steps followed by N* tn network steps 
 
Repertoire dynamics favor convergence 
 
Network dynamics favors fragmentation and freezes the lexical dynamics 
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