
Institutional scalability and a complex systems view of sustainability

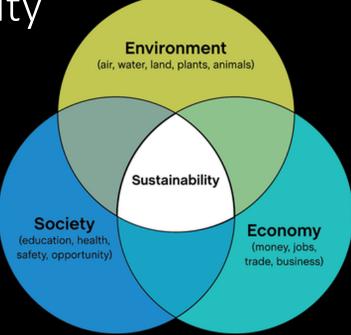
Ryan Taylor

REU, Summer 2017 and Summer 2018

[audience]

Roughly 75 people

- Rich alumni and maybe even science board members
- Postdoc and summer school alumni, wanting to reconnect
- Bonus: staff and some faculty


[purposes]

- Explain appreciation for Santa Fe Institute, in a way that is interesting
 - Personal perspective
 - A story. Collaboration, out of field | meeting tons of people
 - Concluding with my impression of SFI community and culture
- Share my passion for complex systems science
 - our work on institutional scaling, story?
 - Our scaling method: examining the effect of scale, crossing levels
 - Our main results: fundamentally different institutional types, unique roles
 - Connecting sustainability, complex systems, evolutionary political economy
 - application to sustainability challenges

My background in sustainability

UN Brundtland Commission 1987
UN Sustainable Development Goals 2015

- Goal and solution oriented
- Builds on many other frameworks

My background in sustainability ...how to approach solutions?

- Technological innovation
- Markets let private sector coordinate
- Policy administered by public institutions
- Social movements individual behavior change
- Historical / transformational cultural shifts

My background in sustainability ...how to approach solutions?

- Technological innovation
- Markets let private sector coordinate
- Policy administered by public institutions
- Social movements individual behavior change
- Historical / transformational cultural shifts

- (1) exists on a political spectrum
- (2) intervention at different levels of complexity

BUT DOES IT SCALE???

- Technological innovation
- Markets let private sector coordinate
- Policy administered by public institutions
- Social movements individual behavior change
- Historical / transformational cultural shifts

- (1) exists on a political spectrum
- (2) intervention at different levels of complexity

Sustainability! Complexity!

A few related concepts:

- Multiple scales, hierarchy
- Nonlinearity, feedbacks, dynamics
- Self-organization: collective action problems -> game theory
- Markets and institutions as information processors...

Summer 2017 REU!!!

Project team

Xiaofan Liang Minerva Schools

Marion Dumas SFI, LSE

Chris Kempes SFI-ASU

Manfred Laubichler ASU-SFI

Geoffrey West SFI

The Scalability, Efficiency and Complexity of Universities and Colleges:
A New Lens for Assessing Tradeoffs in Higher Education

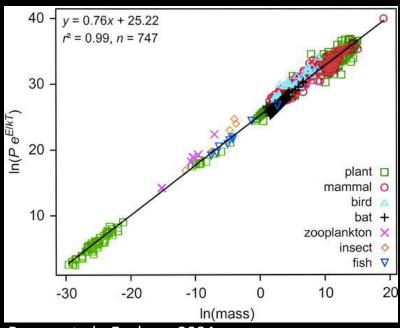
Project team

Xiaofan Liang Minerva Schools

Marion Dumas SFI, LSE

Chris Kempes SFI-ASU

Manfred Laubichler **ASU-SFI**



Geoffrey West SFI

The Scalability, Efficiency and Complexity of Universities and Colleges: A New Lens for Assessing Tradeoffs in Higher Education

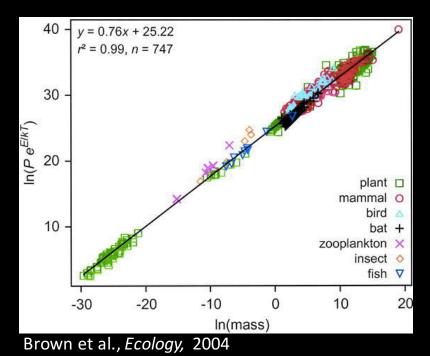
Size and function – scaling framework

Metabolic rate vs mass $\alpha \approx 3/4$

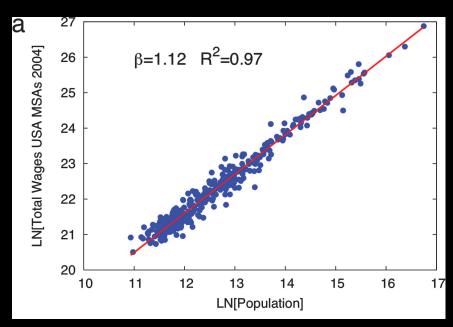
Brown et al., Ecology, 2004

$$Y = aX^{\alpha}$$

 α is the **slope** of the fitline and scaling exponent


 $\alpha > 1.05$: increasing (superlinear)

 α = 1: constant (linear)


 α < 0.95: decreasing (sublinear)

Size and function – scaling framework

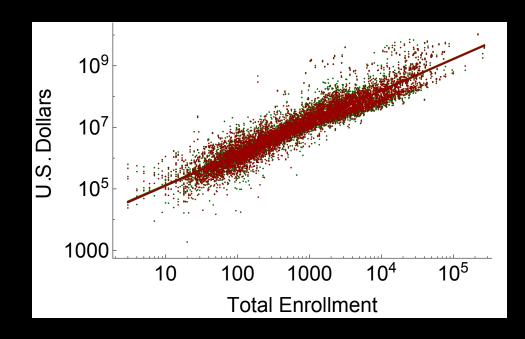
Metabolic rate vs mass $\alpha \approx 3/4$

Total Income vs population $\alpha \approx 7/6$

Bettencourt et al, PNAS, 2007

Size and function – scaling framework

• Reveals underlying mechanisms, e.g. network optimization.


West, Brown and Enquist, Science, 1997

Bettencourt, Science, 2013

Size and function — university scaling

Revenues and expenditures versus total enrollment

$$\alpha \approx 1$$

Total	Total		
Revenue	Expenditure		
1.03 ± 0.01	1.03 ± 0.01		

University sectors

Sector name	Control	Level	N schools	Selected examples
Public Research Universities	Public	4yr+, Doc	160	UCLA PSU
Private Research Universities	Private N-P	4yr+, Doc	103	# HARVARD
State Colleges	Public	4yr+	394	CSU The California State University
Community Colleges	Public	2yr	912	CALIFORNIA COMMUNITY COLLEGES
Non-Profit Private Colleges	Private N-P	4yr+	1,389	Seminaries, liberal arts (St. Johns)
For-Profit Colleges	For-Profit	4yr+	669	University of Phoenix ■
Professional Schools	For-Profit	2yr, 2yr-	2,225	Beauty schools, nursing programs

University scaling: financial flows

Sector name	Total Revenue	Total Expenditure	
Public Research Universities	1.29 ± 0.14	1.27 ± 0.13	
Private Research Universities	1.22 ± 0.24	1.19 ± 0.23	
State Colleges	0.80 ± 0.05	0.79 ± 0.05	
Community Colleges	0.81 ± 0.02	0.83 ± 0.02	
Non-Profit Private Colleges	0.98 ± 0.03	0.95 ± 0.02	
For-Profit Colleges	0.98 ± 0.03	0.87 ± 0.03	
Professional Schools	1.02 ± 0.02	1.05 ± 0.02	

Interpreting the scaling exponent:

 α > 1.05: increasing (superlinear)

 α ~ 1: constant (linear)

 α < 0.95: decreasing (sublinear)

University scaling: financial flows

Sector name	Total Revenue	Total Expenditure
Public Research Universities	2	2
Private Research Universities	2	2
State Colleges	0	0
Community Colleges	0	0
Non-Profit Private Colleges	1	1
For-Profit Colleges	1	0
Professional Schools	1	1

Coarse coding for scaling exponent:

2: increasing (superlinear)

1: constant (linear)

0: decreasing (sublinear)

University scaling: outcomes

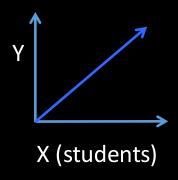
Coarse coding:

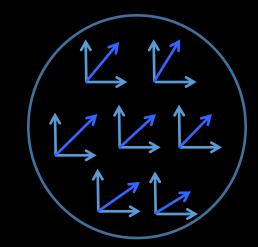
0 decreasing (sublinear)

1 constant (linear)
2 increasing (superlinear)

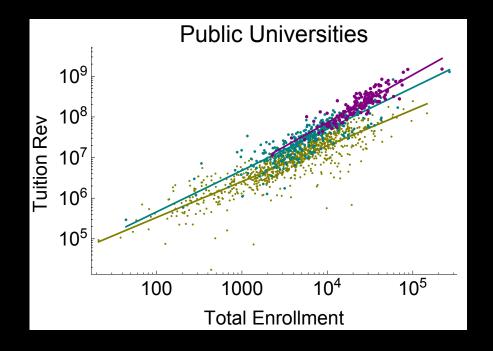
Purpose area	Level of education	Educational Performance	Affordability	Non-education al functions	Financial Performance
Outcome scaling measure	Level (up to Doctoral)	Completions	Net tuition	No outcome variables. Research exp. shown	Profit margin (rev. scaling – exp. scaling)
Public research universities	4yr+, Doc.	2	0	2	1
Private research universities	4yr+, Doc.	2	0	2	1
State colleges	4yr+	2	1	-	1
Community colleges	2yr	1	2	-	1
Non-profit private colleges	4yr+	1	0	-	1
For-profit colleges	4yr+	-	1	-	2
Professional schools	2yr, 2yr-	1	0 or 1	-	1

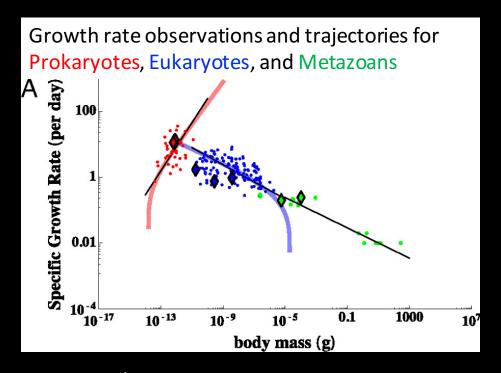
Relevance at multiple levels of complexity


I. Students:college search


II. Institutions: growth strategies

III. Sector and IV. System-wide: policy for scaling up




... toward a science of institutional scaling

- 1. Universities exhibit scaling
- 2. Diverse ecology of institutions Institutional design can change the scaling.
 - Community Colleges b: 0.88 ± 0.03
 - State Colleges b: 1.02 ± 0.06
 - Public Research Universities b: 1.18 ± 0.09

... toward a science of institutional scaling

- 1. Universities exhibit scaling
- 2. Diverse ecology of institutions Institutional design can change the scaling.
- 3. Suggests evolutionary constraints

Kempes et al, PNAS, 2012

... toward a science of institutional scaling

1. Universities exhibit scaling ♀

2. Diverse ecology of institutions Institutional design can change the scaling.

3. Suggests evolutionary constraints

<u>Development</u> as the process by which we evolve our institutions (or organizations)

What more can we learn about the physiology of institutions to help sustainable development?

Thank you!

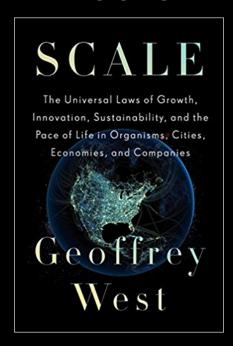
Special acknowledgments:

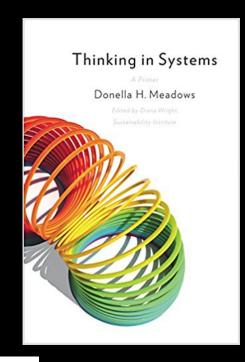
Xiaofan Liang Paul Hooper

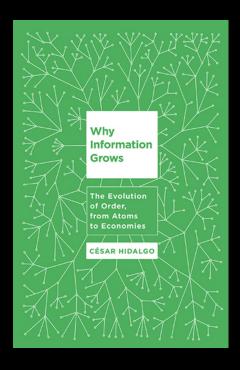
Chris Kempes Carla Shedivy

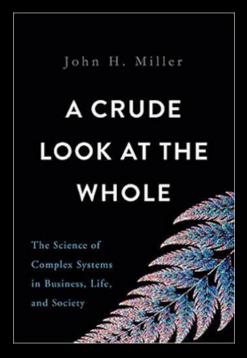
Marion Dumas JP Gonzales

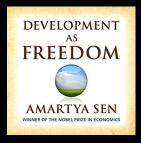
Manfred Laubichler


Geoffrey West


Cate Heine




Teamwork | When we all work together, we all win together


Books

- + COMPLEXITY by Melanie Mitchell!!!
- + THE ORIGIN OF WEALTH by Eric Beinhocker