Introduction to Nonlinear Dynamics

Santa Fe Institute
Complex Systems Summer School
2-5 June 2008

Liz Bradley
lizb@cs.colorado.edu

© 2008
Liz Bradley
Chaos:

Complex behavior, arising in a deterministic nonlinear dynamic system, which exhibits two special properties:

- sensitive dependence on initial conditions
- characteristic structure…

Systems that exhibit chaos are ubiquitous; many of them are also simple, well-known, and “well-understood”
Where chaos turns up:

• Flows (of fluids, heat, …)
 - Eddy in creek
 - Weather
 - Vortices around marine invertebrates
 - Air/fuel flow in combustion chambers
Where chaos turns up:

• Driven nonlinear oscillators
 - Pendula
 - Hearts
 - Fireflies

- and lots of other electronic, chemical, & biological systems
Where chaos turns up:

- Classical mechanics
 - three-body problem
 - paired black holes
 - pulsar emission
 - ….
- Protein folding
- Population biology
- And many, many other fields (including yours)

Hut & Bahcall
• continuous time systems:
 • time proceeds smoothly
 • “flows”
 • modeling tool: differential equations

• discrete time systems:
 • time proceeds in clicks
 • “maps”
 • modeling tool: difference equation
A useful graphical solution technique:

- “cobweb” diagram
- return map
- correlation plot
Bifurcations

Qualitative changes in the dynamics caused by changes in *parameters*
Bifurcations

Qualitative changes in the dynamics caused by changes in *parameters*:

- Heart: pathology
- Eddy in creek: water level
- Olfactory bulb: smell
- Brain: blood chemicals
- etc. etc.
Bifurcations in the logistic map:

Discrete time: should not connect dots!!
These plots stolen from Strogatz
• chaos

• veils/bands: places where chaotic attractor is dense (UPOs)
• chaos

• veils/bands: places where chaotic attractor is dense (UPOs)

• *period-doubling cascade* @ low R
Feigenbaum number
Universality!

Feigenbaum number and many other interesting chaotic/dynamical properties hold for any 1D map with a quadratic maximum.

Proof: renormalizations. See Strogatz §10.7

Don’t take this too far, though…
• chaos

• veils/bands: places where chaotic attractor is dense (UPOs)

• period-doubling cascade @ low R

• *windows of order within the chaos, complete with their own period-doubling cascades* (e.g., 3 to 6 to 12)
A bit more lore on periods and chaos:

- Sarkovskii (1964)
- Yorke (1975)
- Metropolis *et al.* (1973)
• chaos
• veils/bands: places where chaotic attractor is dense (UPOs)
• period-doubling cascade @ low R
• windows of order within the chaos, complete with their own period-doubling cascades (e.g., 3 to 6 to 12)
• small copies of object embedded in it (fractal)
Fractals and Chaos…

The connection: *many (most)* chaotic systems have fractal state-space structure.
Fractals

- non-integer Hausdorff dimension
- self-similar

Images from Gleick.

Examples: Cantor set, coastlines, trees, lungs, clouds, drainage basins, …
In computer graphics…

Matthew Ward, WPI
http://davis.wpi.edu/~matt/courses/fractals/trees.html
In maps:

Newton’s method on $x^4 - 1 = 0$
That was all about maps.

- discrete time systems:
 - time proceeds in clicks
 - “maps”
 - modeling tool: difference equation
Next: *flows*.

- continuous time systems:
 - time proceeds smoothly
 - “flows”
 - modeling tool: differential equations
But first…

original piece

chaotic mapping

chaotic variation