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Chaos

Complex behavior, arising in a deterministic nonlinear
dynamic system, which exhibits two special properties:

« sensitive dependence on initial conditions

« characteristic structure. ..
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Chaos

Complex behavior, arising in a deterministic nonlinear
dynamic system, which exhibits two special properties:

« sensitive dependence on initial conditions

« characteristic structure...

Systems that exhibit chaos are ubiquitous; many of them
are also simple, well-known, and “well-understood”

Where nonlinear dynamics turns up

* Flows (of fluids, heat, ...)
- Eddy in creek
- Weather
- Vortices around marine invertebrates

- Air/fuel flow in combustion chambers

Where nonlinear dynamics turns up

¢ Driven nonlinear oscillators
- Pendula
- Hearts

- Fireflies

- and lots of other electronic, chemical, & biological
systems
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Where nonlinear dynamics turns up

¢ Classical mechanics
- three-body problem
- paired black holes

- pulsar emission

- Hut & Bahcall Ap.J. 268:319
* Protein folding
» Population biology

¢ And many, many other fields (including yours)

* continuous time systems:
* time proceeds smoothly
* “flows”

* modeling tool: differential equations

« discrete time systems:
* time proceeds in clicks
«

‘maps”

» modeling tool: difference equation

A useful graphical solution
technique

o

cobweb” diagram
* gka return map

* aka correlation plot

Image from Doug Ravenel’s website at URochester

Bifurcations

Qualitative changes in the dynamics caused by
changes in parameters

Bifurcations

Qualitative changes in the dynamics caused by
changes in parameters:

 Heart: pathology

* Eddy in creek: water level
* Olfactory bulb: smell

* Brain: blood chemicals

* etc. etc.
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Bifurcations in the logistic map
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Note: in discrete time plots, it makes no sense to connect dots!!

Plots from Strogatz
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Figure 10.2.5

Plots from Strogatz

Courtesy of Allison Brown;
Chaos, in preparation.

* chaos

« veils/bands: places where chaotic attractor is dense (UPOs)
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* chaos
« veils/bands: places where chaotic attractor is dense (UPOs)

* period-doubling cascade @ low R

Universality!

Feigenbaum number and many other interesting
chaotic/dynamical properties hold for any 1D
map with a quadratic maximum.

Proof: renormalizations. See Strogatz §10.7

Don t take this too far, though...

* chaos
« veils/bands: places where chaotic attractor is dense (UPOs)
* period-doubling cascade @ low R

* windows of order within the chaos, complete with their own
period-doubling cascades (e.g., 3 to 6 to 12)
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A bit more lore on periods and chaos

« Sarkovskii (1964)
3,5,7,...3x2, 5x2, ...3x2%, 5x22, ... 22,2, 1

Yorke (1975)
* Metropolis et al. (1973)

* chaos
« veils/bands: places where chaotic attractor is dense (UPOs)
¢ period-doubling cascade @ low R

* windows of order within the chaos, complete with their
own period-doubling cascades (e.g., 3 to 6 to 12)

e small copies of object embedded in it (fractal)

Fractals
« non-integer Hausdorff dimension
« self-similar

Aok

Images from Gleick

Examples: Cantor set, coastlines, trees, lungs, clouds, drainage basins, ...

The Mandelbrot set

www . youtube . com/watch?v=G_GBwuYu0Os

Fractals in computer graphics

Matthew Ward, WPI
davis.wpi.edu/~matt/courses/fractals/trees.html
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Fractals in Fractals and chaos...
maps
The connection: many (most) chaotic systems have fractal
Newton’s method state-space structure.
onx*-1=0
But not “all.”
From Strogatz
So far: mostly about maps. Next up: flows

« discrete time systems:
. . . ° B o .
« time proceeds in clicks continuous time systems:

* “maps” « time proceeds smoothly

« 2
» modeling tool: difference equation * “flows

* modeling tool: differential equations

Attractors Conditions for chaos in
continuous-time systems
attractor
Necessary:
* Nonlinear
basin of ) )
attraction * At least three state-space dimensions  (NB: only one needed in maps)

<

. Necessary and sufficient:
boundary of basin of

attraction * “Nonintegrable”
« Attractors exist only in dissipative systems!

« Dissipation {==) contraction of state space under the influence of i.e., cannot be solved in closed form
the dynamics

* Can still have chaos if no dissipation...just not chaotic attractors




Concepts: review « State variable

* State space

« Initial condition

* Trajectory

* Attractor

 Basin of attraction
 Transient

* Fixed point (un/stable)
* Bifurcation

¢ Parameter

A Lorenz applet:

www.exploratorium.edu/
complexity/java/lorenz.html

(Note: by Jim Crutchfield, who will be
here next week)

Deterministic Nonperiodic Flow!

Epwarp N. Lorexz

Massachuseits Inshtule of Technology
(Manuscript received 18 November 1962, in revised form 7 Jaouary 1963)

ApsTRACT

Finite systems of deterministic ordinary nonlinear differential equations may be designed to represent
forced dissipative hydrodynamic flow, Solutions of these equations can be identified with trajectories in
phase space. For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily
unstable with respect to small modifications, so that slightly difiering initial states can evolve into consider-
ably different states. bymms with bounded solutions are shown to bounded numerical soluticas.

A simple system representing cellular convection h salved numerically. All of the solutions are found
to be unstable, and almost all of them are nonperic

The feasibility of very-long-range weather yledlcnnn is examined in the light of these results.

J. Am. Sci. 20:130
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e Equations:

x’=a(y-x) ?
z'=xy-bz

(first three terms of a Fourier expansion of the Navier-Stokes eqns)
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\%

C2
C2

State variables:
= x convective intensity
= ytemperature

= zdeviation from linearity in the
vertical convection profile

* Parameters:
= g Prandt] number - fluids property
= r Rayleigh number - related to AT

= b aspect ratio of the fluid sheet

SV YA
\VAVAY

x’=16(y-x)
y' =45x -y xz
z'=xy-4z

© 2006 Jos Leys and Etienne Ghys; www. josleys .com
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Courtesy of Donny
‘Warbritton

e
. . _////
Attractors
Four types:

« fixed points
« limit cycles (aka periodic orbits)
* quasiperiodic orbits

« chaotic attractors

A nonlinear system can have any number of attractors, of all
types, sprinkled around its state space

Their basins of attraction (plus the basin boundaries) partition the
state space

And there’s no way, a priori, to know where they are, how many
there are, what types, etc.

Attractors

* Fixed point
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Attractors

e Limit cycle

Attractors

* Quasi-periodic orbit...

“Strange” or chaotic attractors

* often fractal
« covered densely by trajectories

« exponential divergence of
neighboring trajectories. ..

Lyapunov exponents

« nonlinear analogs of eigenvalues: one A for each
dimension

/
/

Lyapunov exponents: summary

* nonlinear analogs of eigenvalues: one A for each
dimension

* negative A; compress state space; positive A; stretch it
* 3, <0 for dissipative systems

* long-term average in definition; biggest one dominates as
t = infinity

* positive A is a signature of chaos

* ), are same for all ICs in one basin

“Strange” or chaotic attractors:

« exponential divergence of
neighboring trajectories

* often fractal

« covered densely by trajectories

« contain an infinite number of
“unstable periodic orbits”...

6/5/12
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© 2006 Jos Leys and Etienne Ghys; www. josleys .com

Unstable periodic
orbits (UPOs)

Bradley/Mantilla, Chaos 12:596

Attractor “bones”...

© 2006 Jos Leys and Etienne Ghys; www. josleys .com

Poincare
recurrence

Crutchfield et al.
Chaos 255:46

The rest of today...

* Lunch (cafeteria downstairs)

* Dynamics Lab I: (here)
* Meet here at 1:30pm
« Bring your laptop, if you have one here
« Lab handouts on the CSSS wiki

* 3pm — Intro to student projects (here)

* 4:15pm — Start thinking & talking about those
projects!

6/5/12
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— Different timestep

Lorenz, Physica D 35:229

symmetric partitionod multisicp, 4 = 100

Different solver algorithm...
Different arithmetic

N. Ross Ph.D. thesis, Ucolorado, 2008

Adams explicit, k=100
symmetric multistep, A = 100 '

<=
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Moral: numerical methods can run
amok in “interesting” ways...

e can cause distortions, bifurcations, etc.
« and these look a lot like real, physical dynamics...
« source: algorithms, arithmetic system, timestep, etc.

* Q: what could you do to diagnose whether your results
included spurious numerical dynamics?

Moral: numerical methods can run
amok in “interesting” ways...

 can cause distortions, bifurcations, etc.
 and these look a lot like real, physical dynamics...
* source: algorithms, arithmetic system, timestep, etc.

* Q: what could you do to diagnose whether your results
included spurious numerical dynamics?

* change the timestep
* change the method

* change the arithmetic

So ODE solvers make mistakes.

...and chaotic systems are sensitively
dependent on initial conditions....

Shadowing lemma

Every* noise-added trajectory on a chaotic attractor is
shadowed by a true trajectory.

Important: this is for state noise, not parameter noise.

(*) Caveat: not if the noise bumps the trajectory out of the
basin

Solving PDEs

www . tecplot.com

Section

Trajectory

Plane of section

6/5/12
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Not the same thing as a projection!

The driven damped pendulum

Gi 0

) freq rotic = 5

trajectory

Poincare section

‘What bifurcations look like on a Poincare section

T

0.6

ezt o= 5

ez i < 5

The Lorenz attractor

%H

Ba a=16r=45b-¢ (0L2

5%

Cantor set!
(remember: not always...)

46,5 a=16r=45b=4; (12419628

What about a section of a UPO?

%%

-~

6/5/12

14



1455

5,5 a=16r=60b=¢ (2

Aside: finding UPOs

* Section

* Look for close returns

¢ Cluster

* Average

* See Gunaratne, So papers

55 azi6r=6b=4; 12619628

Computing sections

« If you’re slicing in state space: use the “inside-
outside” function

« If you’re slicing in time: use modulo on the
timestamp

Time-slice sections of periodic orbits:
some thought experiments

¢ pendulum rotating @ 1 Hz and strobe @ 1 Hz?
¢ pendulum rotating @ 1 Hz and strobe @ 2 Hz?
¢ pendulum rotating @ 1 Hz and strobe @ 3 Hz?
* pendulum rotating @ 1 Hz and strobe @ 1/2 Hz?

e pendulum rotating @ 1 Hz and strobe @ st Hz? (or
some other irrational)

Stability, A, and the un/stable
manifolds

These A & manifolds play a role in
control of chaos...

6/5/12
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Lyapunov exponents:

* one A for each dimension; ZA < 0 for dissipative systems
* ) are same for all ICs in one basin

* negative A compress state space along stable manifolds

* positive A stretch it along unstable manifolds

* biggest one (A;) dominates as t — infinity

* positive A is a signature of chaos

e calculating them:

* From equations: eigenvalues of the variational matrix (see variational system
notes on CSCI5446 course webpage; see link from Liz’s homepage.)

* From data: various algorithms that are hideously sensitive to numerics,
noise, data length, & algorithmic parameters...

Calculating A (& other invariants) from data

* A good reference: Kantz & Schreiber, Nonlinear
Time Series Analysis (Abarbanel’s book is also very
good)

* Associated software: TISEAN
www.mpipks-dresden.mpg.de/~tisean

TISEAN
Nonlinear Time Series Analysis
Rainer Hegger

Holger Kantz
Thomas Schreiber

Go to Version 3.0.1 (released March 2007

Go to Version 2.1 (released December 2000

TISEAN 3.0.1: Table of Contents

A All programs in alphabetical order
i\

\\\ Sections

« Generating time series

TISEAN 3.0.1 « Utilities

« Stationarity
TISEAN home « Embedding and Poincaré sections

« Prediction
Table of Contents .
General Manual
Surrogates Manual
Tutorial
Usage Notes Generating time series
Installation . s

A few routines are provided to generate test data from simple equations. Since there are powerfull packages (for

Problems Helena Nusse and Jim Yorke) that can generate chaotic data, we have only included a minimal selection here.

Lyapunov exponents are an important means of quantification for unstable systems. They are however difficult to estimate from a time

series. Unless low dimensional, high quality data is at hand, one should not attempt to calculate the full spectrum. Try to compute the

maximal exponent first. The two implementations differ slightly. While lyap k implements the formula by Kantz, lyap r uses that by
‘which differs only in the definition of the neighbourhoods. We recommend to use the former version, lyap k.

‘The estimation of Lyapunov exponents is also discussed in the introduction paper. A recent addition is a programm to compute finite
time exponents which are not invariant but contain additional information.

[Maximal exponent [lyap k. Iyap £
[Lyapunov spectrum [lyap spec

Description of the program: lyap_k

 The program estimates the largest Lyapunov exponent of a given scalar data set using the algorithm of Kantz.

Usage:
lyap_k [Options]

Everything not being a valid option will be interpreted as a potential datafile name. Given no datafile at all, means read stdin. Also -
‘means stdin

Kantz’s algorithm:

Choose point K o .
Look at the points around it

Measure how far they are from K

Average those distances

Watch how that average grows with time (An)

Take the log, normalize over time = S(An)

Repeat for lots of points K and average the S(An)

N wd =

6/5/12
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If you’re

The slope of the scaling region—iff one exists —is the A,

lucky:
S(An)

g
&

billons of Cycles A

Calculating A (& other invariants) from data

* Be careful! TISEAN has lots of knobs and its
results are incredibly sensitive to their values!

* Use your dynamics knowledge to understand &
use those knobs intelligently

* Look at the plot; do not blindly fit a regression
line to something that has no scaling region

[Option Description Default
1# number of data to be used [Whole file
~x# _[mumber of lines to be ignored 0
¢ column to be read T
-M#_maximal embedding dimension to use |2
-m# _minimal embedding dimension touse |2
d# (delay o use T
~r# _minimal length scale to scarch neighbors [(data interval)/1000
R# _[maximal length scale (o search neighbors (data interval)/100
## _[umber of length scales to use 5
“n#  number of refercnce points to use fal
~s# _jnumber of iterations in time 50
“#_[theiler window' 0
of  upu e tame (or sy e o wers s romsin)
erbosity level
_vg | 0: only panic messages s
1 add input/output messages
2: add statistics for cach iteration
B [show these options [none

Description of the Output:

For each embedding dimension and each length scale the file contains a block of data consisting of 3 columns

1. The number of the iteration
2. The logarithm of the stretching factor (the slope is the Lyapunov exponent if it is a straight line)
3. The number of points for which  neighborhood with enough points was found

Fractal dimension:

¢ Capacity
¢ Box counting

¢ Correlation (d2 in TISEAN)

e Lots of others:
¢ Kth nearest neighbor
e Similarity
¢ Information
¢ Lyapunov

¢ See Chapter 6 and §11.3 of Kantz & Schreiber

We’ve been assuming that we can

measure all the state variables...

But often you can’t.

VAYA Y

6/5/12
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How to undo a projection?

((F\ ) —

\\/

Delay-coordinate embedding

“reinflate” that squashed data to get a topologically
identical copy of the original thing.

Reconstruction space

Mechanics X(t+7)
X t
13 0.1 13
12 02 / |
10 03 10
08 04
1105 . x(t)
14 06 :
16 07
x(t+27) =02
m=23

X(t+t)
T—x
—_—
embed
x(0)
x(t+27)
X(t+7)
X t
13 0.1
12 02
10 03
08 04 o,
1.1 05
14 0.6
16 0.7 x®
X(t+2 =02
(t+27) P

TISEAN’s delay command does this

Measure just the x
coordinate. ..

l
M

Il
M“ A ‘M ‘ ‘“

i
Il J’

—

\“

\
| M‘“““

| ”\”u ik “”*“

6/5/12
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Takens* theorem

...and then embed:
For the right v and enough dimensions, the
embedded dynamics are diffeomorphic to (have same
topology\as) the original state-space dynamics.

T

I 3
I il | .

opilim0 R T A VTR
I R [ |
ULy O Tt
TV \‘ UL
—:M\‘\“W LU
* Whitney, Mane, ...

’ ’ Note: the measured quantity must be a smooth,

generic function of at least one state variable,
and must be uniformly sampled in time.

:
A

Picking ©

pondulun data; tau=0.020 din=3

pondulun data; tau=0.010 dim=3
thets |

thota
Wi

Diffeomorphisms and topology

~thota(t)

Diffeomorphic: mapping from the one to the other
is differentiable and has a differentiable inverse.

pondulun data; tau=e.1 di

thota R
o[

What that means:
qualitatively the same shape

have same dynamical invariants (e.g., A)

Thota(t)

TISEAN contains tools that help you do this (e.g., mutual)

* nonlinear time-series analysis

NLTSA¥* of computer performance

dynamics

Picking m

m > 2d: sufficient to ensure no
crossings in reconstruction space

...may be overkill.
bzip2 dynamics on an

“Embedology” paper: m > 2 dy .
Intel Core2

(box-counting dimension)

Mytkowicz et al., Chaos 19:033124

TISEAN contains tools that help you do this (e.g., false_nearest)




bzip2 dynamics on an
Intel Pentium 4

A=0.07

Mytkowicz et al., Chaos 19:033124 e

povray dynamics on
an Intel Core2

Mytkowicz et al., Chaos 19:033124 H Caveat: need enough data... H

If At is not uniform

the true trajecto;

Conditions: even

Interspike interval embedding

idea: lots of systems generate spikes —
hearts, nerves, etc.

if you assume that the spikes are the result of
an integrate-and-fire system, then the At
has a one-to-one correspondence to some
state variable’s integrated value...

in which case the Takens theorem still holds.

(with the Ats as state variables)

Sauer Chaos 5:127

What if we measured time-series data
from a roulette wheel?

The Eudaemonic Pie
(or The Newtonian Casino)

—
§

embed

6/5/12
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The Santa Fe competition AMM

000 1105 200

BMW\_WWNWWMJ\NM'fb,‘wﬂﬁﬂtlﬂll‘[ ‘

e Weigend & Gershenfeld, 1992

* put a bunch of data sets up on an ftp server I Vi o ey N
Ci [

¢ and invited all comers to predict their future

e chronicled in Time Series Prediction: DM&WW\WMWMW("W”M&JFMW”&
Forecasting the Future and Understanding the
Past, Santa Fe Institute, 1993 (from which the images on

A
iy A "
the following half-dozen slides were reproduced) Ei\lrM WV‘\'\‘MM‘\‘W V'\A)‘V‘Y

The Santa Fe competition: data Embedding + patch models: (Sauer)

e Laboratory laser Souer

© compettion entry

e Medical data (sleep apnea)

* Currency rate exchange

* RK4 on some chaotic ODE | ‘}s tf‘g\ *Nﬁﬁ ;
i i oW

* Intensity of some star ol
1080 t 100

¢ A Bach fugue

Neural net: (Wan) Further out:

21



Lorenz’s method of analogues

- e - e
e #
- 4
- .‘L
e -

A k-nearest neighbor modification of LMA

°§}§=—=°

Using kLMA to predict computer dynamics

(] 100 200 300 200 500 600
time (instructions x 100,000)

*  Original Signal
Predicted Signal
Error Between Signals

Garland/Bradley Intelligent Data Analysis 2011

w0 1000

RMSPE = 11.566
(07% of the average)

column_major
cache misses

6/5/12
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Noise...

Linear filtering: a bad idea if the system is chaotic
Nonlinear alternatives:

« use the stable and unstable manifold structure
on a chaotic attractor...

Farmer & Sidorowich, in Evolution, Learning and
Cognition, World Scientific, 1983

Idea:
e If you have a model of the system, you can
simulate what happens to each point in
forward and backward time

e If your system has transverse stable and
unstable manifolds, that does useful things to
the noise balls

* Since all three versions of that data should be
identical at the middle time, can average them

e == poise reduction!

*  Works best if manifolds are perpendicular, but
requires only transversality

Results:

Farmer & Sidorowich, in Evolution, Learning and
Cognition, World Scientific, 1983

6/5/12
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