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Chaos 

Complex behavior, arising in a deterministic nonlinear 
dynamic system, which exhibits two special properties: 

•  sensitive dependence on initial conditions 

•  characteristic structure… 
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Chaos 

Complex behavior, arising in a deterministic nonlinear 
dynamic system, which exhibits two special properties: 

•  sensitive dependence on initial conditions 

•  characteristic structure… 

Systems that exhibit chaos are ubiquitous; many of them 
are also simple, well-known, and “well-understood” 

Where nonlinear dynamics turns up 

•  Flows (of fluids, heat, …) 

- Eddy in creek 

- Weather 

- Vortices around marine invertebrates 

-  Air/fuel flow in combustion chambers 

Where nonlinear dynamics turns up 

•  Driven nonlinear oscillators 

- Pendula 

- Hearts 

-  Fireflies 

- and lots of other electronic, chemical, & biological 
systems 
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Where nonlinear dynamics turns up 

•  Classical mechanics 

- three-body problem 

-  paired black holes 

-  pulsar emission 

-  …. 

•  Protein folding 

•  Population biology 

•  And many, many other fields (including yours) 

Hut & Bahcall Ap.J. 268:319	



•  continuous time systems:  

•  time proceeds smoothly 

•  “flows” 

•  modeling tool: differential equations 

•  discrete time systems:  

•  time proceeds in clicks 

•  “maps” 

•  modeling tool: difference equation 

A useful graphical solution 
technique  

•  “cobweb” diagram 

•  aka return map 

•  aka correlation plot 

Image from Doug Ravenel’s website at URochester	



Bifurcations  
Qualitative changes in the dynamics caused by 
changes in parameters 

Bifurcations  
Qualitative changes in the dynamics caused by 
changes in parameters: 

•  Heart: pathology 

•  Eddy in creek: water level  

•  Olfactory bulb: smell 

•  Brain: blood chemicals 

•  etc. etc. 
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Bifurcations in the logistic map  

R=2.8	



R=3.3	



Note: in discrete time plots, it makes no sense to connect dots!!	


Plots from Strogatz	



R=3.3	



R=3.5	



Plots from Strogatz	



R=3.5	



R=3.9	



Plots from Strogatz	



Courtesy of Allison Brown; 
Chaos, in preparation.	



•  chaos 

•  veils/bands: places where chaotic attractor is dense (UPOs) 
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•  chaos 

•  veils/bands: places where chaotic attractor is dense (UPOs) 

•  period-doubling cascade @ low R 

Δ

Δ

Δ
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Feigenbaum number	


Universality! 
Feigenbaum number and many other interesting 
chaotic/dynamical properties hold for any 1D 
map with a quadratic maximum. 

Proof: renormalizations.  See Strogatz §10.7 

Don’t take this too far, though… 

•  chaos 

•  veils/bands: places where chaotic attractor is dense (UPOs) 

•  period-doubling cascade @ low R 

•  windows of order within the chaos, complete with their own 
period-doubling cascades (e.g., 3 to 6 to 12) 
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A bit more lore on periods and chaos 

•  Sarkovskii (1964) 
3, 5, 7, …3x2, 5x2, …3x22, 5x22, … 22, 2, 1 

 Yorke (1975) 

•  Metropolis et al. (1973) 

•  chaos 

•  veils/bands: places where chaotic attractor is dense (UPOs) 

•  period-doubling cascade @ low R 

•  windows of order within the chaos, complete with their 
own period-doubling cascades (e.g., 3 to 6 to 12) 

•  small copies of object embedded in it (fractal) 

  Fractals 
•  non-integer Hausdorff dimension 
•  self-similar 

Examples: Cantor set, coastlines, trees, lungs, clouds, drainage basins, … 

Images from Gleick 

www.youtube.com/watch?v=G_GBwuYuOOs!

  The Mandelbrot set Fractals in computer graphics	



Matthew Ward, WPI	


davis.wpi.edu/~matt/courses/fractals/trees.html!
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From Strogatz	



Fractals in 
maps 

Newton’s method	


 on x   - 1 = 0	

4	



Fractals and chaos… 

 The connection: many (most) chaotic systems have fractal 
state-space structure. 

But not “all.” 

•  discrete time systems:  

•  time proceeds in clicks 

•  “maps” 

•  modeling tool: difference equation 

So far: mostly about maps. 

•  continuous time systems:  

•  time proceeds smoothly 

•  “flows” 

•  modeling tool: differential equations 

Next up: flows 

Attractors 

•  Attractors exist only in dissipative systems! 

•  Dissipation          contraction of state space under the influence of 
the dynamics 

•  Can still have chaos if no dissipation…just not chaotic attractors 

attractor 

basin of 
attraction 

boundary of basin of 
attraction 

W

V	



Conditions for chaos in 
continuous-time systems 

 Necessary: 

•  Nonlinear 

•  At least three state-space dimensions     (NB: only one needed in maps) 

Necessary and sufficient: 

•  “Nonintegrable” 

 i.e., cannot be solved in closed form 
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Concepts: review •  State variable 

•  State space 

•  Initial condition 

•  Trajectory 

•  Attractor 

•  Basin of attraction 

•  Transient 

•  Fixed point (un/stable) 

•  Bifurcation 

•  Parameter 

www.exploratorium.edu/
complexity/java/lorenz.html!

(Note: by Jim Crutchfield, who will be 
here next week)	



A Lorenz applet: 

J. Atm. Sci. 20:130	



•  Equations: 

x’ = a(y-x) 

y’ = rx -y -xz 

z’ = xy - bz 

(first three terms of a Fourier expansion of the Navier-Stokes eqns) 

?



6/5/12	



8	



•  State variables: 

  x convective intensity 

  y temperature 

  z deviation from linearity in the 
vertical convection profile 

•  Parameters: 

  a Prandtl number - fluids property 

  r  Rayleigh number - related to ΔT 

  b aspect ratio of the fluid sheet 

x’ = 16(y-x) 

y’ = 45x -y -xz 

z’ = xy - 4z 

©  2006 Jos Leys and Etienne Ghys; www.josleys.com	
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Maybe add Donny’s Lorenz 
movie here?	



•  See student work folder in directory above	



Courtesy of Donny 
Warbritton	



Attractors 

 Four types: 

•  fixed points 

•  limit cycles (aka periodic orbits) 

•  quasiperiodic orbits 

•  chaotic attractors 

A nonlinear system can have any number of attractors, of all 
types, sprinkled around its state space 

Their basins of attraction (plus the basin boundaries) partition the 
state space 

And there’s no way, a priori, to know where they are, how many 
there are, what types, etc. 

Attractors 

•  Fixed point 
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Attractors 

•  Limit cycle 

Attractors 

•  Quasi-periodic orbit… 

“Strange” or chaotic attractors 

•  often fractal 

•  covered densely by trajectories  

•  exponential divergence of 
neighboring trajectories… 

Lyapunov exponents 

•  nonlinear analogs of eigenvalues: one λ for each 
dimension 

Lyapunov exponents: summary 

•  nonlinear analogs of eigenvalues: one λ for each 
dimension 

•  negative λ  compress state space; positive λ  stretch it 

•  Σλ  < 0 for dissipative systems 

•  long-term average in definition; biggest one dominates as 
t  infinity 

•  positive λ is a signature of chaos  

•  λ  are same for all ICs in one basin  

i	



i	

 i	



i	



“Strange” or chaotic attractors: 

•  exponential divergence of 
neighboring trajectories 

•  often fractal 

•  covered densely by trajectories 

•  contain an infinite number of 
“unstable periodic orbits”… 
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©  2006 Jos Leys and Etienne Ghys; www.josleys.com	



Unstable periodic 
orbits (UPOs) 

Bradley/Mantilla, Chaos 12:596	



©  2006 Jos Leys and Etienne Ghys; www.josleys.com	



Attractor “bones”… 

Poincare 
recurrence 

Crutchfield et al.	


Chaos 255:46	



The rest of today… 

•  Lunch (cafeteria downstairs) 

•  Dynamics Lab I:  (here) 

•  Meet here at 1:30pm  

•  Bring your laptop, if you have one here 

•  Lab handouts on the CSSS wiki 

•  3pm — Intro to student projects (here) 

•  4:15pm — Start thinking & talking about those 
projects! 
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Different timestep	



Lorenz, Physica D 35:229	



Different arithmetic 	



N. Ross Ph.D. thesis, Ucolorado, 2008	



Different solver algorithm…	



Need to look up what paper these came from…	
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Moral: numerical methods can run 
amok in “interesting” ways… 

•  can cause distortions,  bifurcations, etc. 

•  and these look a lot like real, physical dynamics… 

•  source: algorithms, arithmetic system, timestep, etc. 

•  Q: what could you do to diagnose whether your results 
included spurious numerical dynamics? 

Moral: numerical methods can run 
amok in “interesting” ways… 

•  can cause distortions,  bifurcations, etc. 

•  and these look a lot like real, physical dynamics… 

•  source: algorithms, arithmetic system, timestep, etc. 

•  Q: what could you do to diagnose whether your results 
included spurious numerical dynamics? 

•  change the timestep 

•  change the method 

•  change the arithmetic 

So ODE solvers make mistakes.  

…and chaotic systems are sensitively 
dependent on initial conditions…. 

…??!?	



Shadowing lemma  

Every* noise-added trajectory on a chaotic attractor is 
shadowed by a true trajectory. 

Important: this is for state noise, not parameter noise. 

(*) Caveat: not if the noise bumps the trajectory out of the 
basin 

Solving PDEs 

www.tecplot.com!

Section 

Plane of section	



Trajectory	
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Not the same thing as a projection! The driven damped pendulum 

trajectory	

 Poincare section	



0.3	

 0.4	



0.5	

 0.6	



What bifurcations look like on a Poincare section 

The Lorenz attractor 

Cantor set!  	


(remember: not always…)	



?	



What about a section of a UPO? 
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Aside: finding UPOs 

•  Section	


•  Look for close returns	


•  Cluster	


•  Average	


•  See Gunaratne, So papers	



Computing sections 

•  If you’re slicing in state space: use the “inside-
outside” function	



•  If you’re slicing in time: use modulo on the 
timestamp	



Time-slice sections of periodic orbits: 
some thought experiments 

•  pendulum rotating @ 1 Hz and strobe @ 1 Hz? 

•  pendulum rotating @ 1 Hz and strobe @ 2 Hz? 

•  pendulum rotating @ 1 Hz and strobe @ 3 Hz? 

•  pendulum rotating @ 1 Hz and strobe @ 1/2 Hz? 

•  pendulum rotating @ 1 Hz and strobe @ π Hz? (or 
some other irrational) 

Stability, λ, and the un/stable 
manifolds 

These λ & manifolds play a role in 
control of chaos… 
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Lyapunov exponents: 

•  one λ for each dimension; Σλ < 0 for dissipative systems 

•  λ are same for all ICs in one basin  

•  negative λ compress state space along stable manifolds  

•  positive λ stretch it along unstable manifolds 

•  biggest one (λ1) dominates as t      infinity 

•  positive λ  is a signature of chaos 

•  calculating them:  
•  From equations: eigenvalues of the variational matrix (see variational system 
notes on CSCI5446 course webpage; see link from Liz’s homepage.) 

•  From data: various algorithms that are hideously sensitive to numerics, 
noise, data length, & algorithmic parameters… 

1	



Calculating λ (& other invariants) from data  

•  A good reference: Kantz & Schreiber, Nonlinear 
Time Series Analysis (Abarbanel’s book is also very 
good)	



•  Associated software: TISEAN 	


www.mpipks-dresden.mpg.de/~tisean!

Kantz’s algorithm: 

1.  Choose point K	


2.  Look at the points around it	


3.  Measure how far they are from K	


4.  Average those distances	


5.  Watch how that average grows with time (Δn)	


6.  Take the log, normalize over time  S(Δn)	


7.  Repeat for lots of points K and average the S(Δn)	
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If you’re lucky: 

 The slope of the scaling region—iff one exists—is the λ1	



S(Δn)	



Δn	



Calculating λ (& other invariants) from data  

•   Be careful!  TISEAN has lots of knobs and its 
results are incredibly sensitive to their values!	



•  Use your dynamics knowledge to understand & 
use those knobs intelligently	



•  Look at the plot; do not blindly fit a regression 
line to something that has no scaling region	



Fractal dimension: 

•  Capacity    

•  Box counting   

•  Correlation   (d2 in TISEAN) 

•  Lots of others:  
•  Kth nearest neighbor 

•  Similarity 

•  Information 

•  Lyapunov 

•  … 

•  See Chapter 6 and §11.3 of Kantz & Schreiber 

We’ve been assuming that we can 
measure all the state variables… 

x	



y	



z	



y	


x	



z	



But often you can’t. 

x	
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How to undo a projection? Delay-coordinate embedding 

“reinflate” that squashed data to get a topologically 
identical copy of the original thing. 

Reconstruction space x(t+τ)	



x	



x(t+2τ)	



x(t)	


embed	



Mechanics 

 x 	

 t	


1.3 	

 0.1	


1.2 	

 0.2	


1.0 	

 0.3	


0.8 	

 0.4	


1.1 	

 0.5	


1.4 	

 0.6	


1.6 	

 0.7	



x(t+τ)	



x(t+2τ)	



x(t)	



1.3	



1.0	



1.1	



τ = 0.2	


m = 3	



 x 	

 t	


1.3 	

 0.1	


1.2 	

 0.2	


1.0 	

 0.3	


0.8 	

 0.4	


1.1 	

 0.5	


1.4 	

 0.6	


1.6 	

 0.7	



x(t+τ)	



x(t+2τ)	



x(t)	



τ = 0.2	


m = 3	



TISEAN’s delay command does this	



Measure just the x 
coordinate…	
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…and then embed:	


Takens* theorem 

* Whitney, Mane, …	


Note: the measured quantity must be a smooth, 

generic function of at least one state variable, 
and must be uniformly sampled in time.  	



For the right τ and enough dimensions, the 
embedded dynamics are diffeomorphic to (have same 
topology as) the original state-space dynamics. 

Diffeomorphisms and topology 

Diffeomorphic: mapping from the one to the other 
is differentiable and has a differentiable inverse. 

What that means:  

•   qualitatively the same shape 

•   have same dynamical invariants (e.g., λ) 

Picking τ  

TISEAN contains tools that help you do this (e.g., mutual)	



Picking m  

 m > 2d: sufficient to ensure no 
crossings in reconstruction space: 

…may be overkill. 

“Embedology” paper: m > 2 dbox  
 (box-counting dimension) 

TISEAN contains tools that help you do this (e.g., false_nearest)	



 λ = 1.06	



bzip2 dynamics on an 
Intel Core2	



 τ = 194, m = 10	



Mytkowicz et al., Chaos 19:033124 

NLTSA* of computer performance 
dynamics                       * nonlinear time-series analysis	
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 λ = 0.07	



 τ = 973, m = 12	



Mytkowicz et al., Chaos 19:033124 

bzip2 dynamics on an 
Intel Pentium 4	

  λ = 0.04	



 τ = 930, m = 8	



Mytkowicz et al., Chaos 19:033124 

povray dynamics on 
an Intel Core2	



Caveat: need enough data…	



Theorem (Takens):  for τ>0 and m > 2d, 
reconstructed trajectory is diffeomorphic to 
the true trajectory 

Conditions: evenly sampled in time 

If Δt is not uniform Interspike interval embedding 

 idea: lots of systems generate spikes — 
hearts, nerves, etc. 

 if you assume that the spikes are the result of 
an integrate-and-fire system, then the Δt 
has a one-to-one correspondence to some 
state variable’s integrated value… 

 in which case the Takens theorem still holds. 

 (with the Δts as state variables) 

Sauer Chaos 5:127 

What if we measured time-series data 
from a roulette wheel? 

x	



The Eudaemonic Pie	


(or The Newtonian Casino)	



1.3 	

	


1.2 	

	


1.0 	

	


0.8 	

	


1.1 	

	


1.4 	

	


1.6 	

	



Local-linear patch 
models	



embed	
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The Santa Fe competition  

•  Weigend & Gershenfeld, 1992 

•   put a bunch of data sets up on an ftp server 

•   and invited all comers to predict their future 

•   chronicled in Time Series Prediction: 
Forecasting the Future and Understanding the 
Past, Santa Fe Institute, 1993 (from which the images on 
the following half-dozen slides were reproduced)	



The Santa Fe competition: data  

•  Laboratory laser 

•  Medical data (sleep apnea) 

•  Currency rate exchange 

•  RK4 on some chaotic ODE 

•  Intensity of some star 

•  A Bach fugue 

Embedding + patch models:  (Sauer)  

Neural net:  (Wan)  Further out: 

Sauer	



Wan	
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Lorenz’s method of analogues	



Using kLMA to predict computer dynamics	



column_major 
cache misses	



RMSPE = 11.566	


(.07% of the average)	



Garland/Bradley Intelligent Data Analysis 2011 
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Noise… 

Linear filtering: a bad idea if the system is chaotic 

Nonlinear alternatives:  

•  use the stable and unstable manifold structure 
on a chaotic attractor… 

Farmer & Sidorowich, in Evolution, Learning and 
Cognition, World Scientific, 1983	



Idea:  
•  If you have a model of the system, you can 

simulate what happens to each point in 
forward and backward time 

•  If your system has transverse stable and 
unstable manifolds, that does useful things to 
the noise balls 

•  Since all three versions of that data should be 
identical at the middle time, can average them 

•          noise reduction! 

•  Works best if manifolds are perpendicular, but 
requires only transversality 

Results: 

Farmer & Sidorowich, in Evolution, Learning and 
Cognition, World Scientific, 1983	




