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Three Take Away Messages

#1 Pitfall

#2 Paradigm




#1: PITFALL
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IP Aliasing Problem [willinger et al. 2009]
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Figure 2. The IP alias resolution problem.
Paraphrasing Fig. 4 of [50], traceroute does
not list routers (boxes) along paths but IP
addresses of input interfaces (circles), and
alias resolution refers to the correct mapping
of interfaces to routers to reveal the actual
topology. In the case where interfaces 1 and 2
are aliases, (b) depicts the actual topology
while (a) yields an “inflated” topology with
more routers and links than the real one.




IP Aliasing Problem [wil

inger et al. 2009]
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Figure 3. The IP alias resolution problem in practice. This is re-produced from [48] and shows a
comparison between the Abilene/Internet2 topology inferred by Rocketfuel (left) and the actual
topology (top right). Rectangles represent routers with interior ovals denoting interfaces. The
histograms of the corresponding node degrees are shown in the bottom right plot. © 2008 ACM,



ENTITY RESOLUTION

Indrajit Bhattacharya

Collective Entity Resolution in Relational Data, Bhattacharya & Getoor, Transactions on
Knowledge Discovery & Data Mining (TKDD), 2007

A Latent Dirichlet Model for Unsupervised Entity Resolution,
Bhattacharya & Getoor, SIAM Conference on Data Mining (SDM) , 2006
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#2: PARADIGM




GRAPH IDENTIFICATION

Joint work with Galileo Namata‘ and Stanley Kok




® ® © \\ealth of Data

o Inundated with data describing networks
o But much of the data is
noisy and incomplete
at WRONG level of abstraction for analysis



Transformation

Output Graph

Input Graph

Appropriate for further

analysis
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Motivation: Different Semantics
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® ® @ Graph ldentification

o Goal:
Given an input graph infer an output graph
o Consists of three major components:
Entity Resolution (ER): Infer the set of nodes
Link Prediction (LP): Infer the set of edges
Collective Classification (CC): Infer the node labels

o Problem: The components are intra and inter-
dependent
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Graph ldentification
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Graph ldentification
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*What's involved?
*Entity Resolution (ER): Map input graph nodes to output graph nodes




Graph ldentification
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Graph ldentification
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*What's involved?
*Entity Resolution (ER): Map input graph nodes to output graph nodes
Link Prediction (LP): Predict existence of edges in output graph
*Node Labeling (NL): Infer the labels of nodes in the output graph




Problem Dependencies

e Most work looks at these tasks in isolation

* In graph identification they are:
— Evidence-Dependent — Inference depend on observed input graph
e.g., ER depends on input graph
— Intra-Dependent — Inference within tasks are dependent
e.g., NL prediction depend on other NL predictions
— Inter-Dependent — Inference across tasks are dependent
e.g., LP depend on ER and NL predictions




Challenge

e How to perform graph identification given:
— Multiple diverse tasks involved
— Large number of dependencies

e Solution:

— lterative approach using Coupled Collective Classifiers




Problem Setup

e Random Variables:y=rUlUn
* Entity resolution: r = {r;}
— Binary variable r; = 1 iff V;and V, are co-referent
* Link prediction: | = {l;;}
— Binary vari .= 1iff edge from V,toV; in the output graph

Quadratic in
number of nodes?

oting the label of a node V. in the output graph
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Problem Definition

Define a joint distribution over these random
variables,y =rulUn

P(y) = % exp <Z ¢c(yc)>

ceC
Represent as a Iog Iinear combination

Py —eXp wa

feFyey
Given evidence x, graph identification problem can
be defined via conditional Markov network

P(y|x) = —eXp wa (x£,¥¢))




Problem Definition

Define a joint distribution over these random

variables,y =rulUn
Intr{ctable!!!
' e’

Represent as

P

Given evidenteux ‘™ identification problem can
be defined via conditional Markov network

P(ylx) = —eXP wa (xf,¥7))




C3 Approach

e We perform inference by:

— Using a two-tiered iterative approach based on
approximation:

P(r,I,n | x) (HP (rly\r,x HP lly\l,x) HP nly\n, X)

rer lel nen

~ 1l

yerulun

eXp (Zfé}":yéyf wg - f(Xf’ yf))
Z(yr\y,x)

— Assume weights of the features across the tasks are distinct
to use standard classifiers (e.g., SVM, logistic regression) for
prediction within each iteration




Feature Functions

Rich set of features supported

— Attribute and relational similarity measures
— Structural properties and path existence

— Aggregates over set of values

Local Features fl°c@l: computed based solely on evidence
e.g., fir(V,,V;) = Cosine similarity of observed attributes of V;and V,

Relational Features f¢': computed based on inferred values
within tasks

e.g., fy (V)) = Proportion of V. observed neighbors with predicted label L

and among tasks (coupling the classifiers)

e.g., fy (V.) = Proportion of V, predicted neighbors with predicted label L

e



C3 Inference Variants

Basic Model (C3)

— At each iteration, assign most probable value, recompute features.
Repeat until convergence

Simulated Annealing (C3-SA)

— For iteration i, with probability = (i/maxlteration), assign to variables
to most likely value. Otherwise, sample value from probability
distribution.

Cautious Inference (C3-Cl)

— At every iteration, commit only the top
K = ((i/maxlteration)*numPerTask) most confident values

Gibbs Sampling (C3-GS)

— Sample value from probability distribution. After “burn-in” period,
count number of times each value is sampled for each random
variable. Assign random variable to most frequently assigned value.

Expectation Maximation (C3-EM)
— Retrain relational classifiers at each iteration




Evaluation

Evaluation using four real world datasets
— Enron, Discourse, Cora, Citeseer
— http://www.cs.umd.edu/projects/lings/c3/

Email Communication and Social Network

— Networks manually annotated from Enron dataset

— Email Network: 211 email nodes, 2837 communication edges

— Social Network: 146 person nodes, 139 managerial edges, 7 labels

— Problem: Given email communication network, infer the social network
Discourse Opinion Network

— Networks from Somasundaran et al. (2009)

— Co-Occurrence Network: 4606 opinion nodes, 22925 co-occurrence edges

— Opinion Reinforcement Network: 4606 opinion nodes, 3920 objects, 1045
reinforcement edges, 3 labels

Vary amount of annotations (Low, Medium, High)

e



Evaluation

e C(Citation Networks
— Cora — 2708 paper nodes, 5428 citation edges, 7 labels
— Citeseer — 3312 paper nodes, 4732 citation edges, 6 labels
— Generate reference, link, and attribute noise
e Vary amount of noise (Low, Medium, High)

— Problem: Given noisy “extracted” network, infer the citation
network

e Vary amount of annotations (Low, Medium, High)




Algorithms

C3: using SVM with linear kernel for classifiers

e Component of Graph Alignment, Identification, and Analysis (GAIA)
software library http://lings.cs.umd.edu/gaia

LOCAL: only the local features

INTRA: relational classifiers using only features
capturing intra-dependencies

PIPELINE: relational classifiers in a pipeline
— Perform tasks sequentially (evaluate all possible orderings)

— PIPELINE* results for the best performing order

MLN: Markov Logic Networks (Richardson and
Domingos, 2006)




Results (Avg F1 performance)

Citeseer (Vary Noise Level)| Cora (Vary Noise Level) Enron |Discourse
Low Medium High Low Medium High
Low LOCAL 0.800 0.736 0.657 0.827 0.756 0.645 0.425 0.361
INTRA 0.843 0.792 0.745 0.900 0.854 0.798 0.516 0.648
PIPELINE* | 0.871 0.834 0.793 0.939 0.911 0.878 0.559 0.706
MLN 0.677 0.673 0.663 0.570 0.560 0.591 0.137 0.320
c: 0.882 0.853 0.819 0.950 0.928 0.899 0.550 0.729
Medium [LOCAL 0.786 0.725 0.648 0.821 0.747 0.639 0.363 0.309
INTRA 0.833 0.782 0.730 0.889 0.840 0.778 0.465 0.545
PIPELINE* | 0.853 0.816 0.768 0.921 0.888 0.849 0.509 0.604
MLN 0.425 0.534 0.563 0.456 0.519 0.470 0.143 0.217
(o 0.861 0.828 0.782 0.934 0.900 0.862 0.515 0.658
High LOCAL 0.775 0.716 0.633 0.800 0.734 0.626 0.398 0.232
INTRA 0.816 0.770 0.708 0.868 0.816 0.741 0.448 0.351
PIPELINE* | 0.831 0.795 0.743 0.895 0.861 0.811 0.479 0.419
MLN 0.216  0.222 0.228 0.190 0.211 0.216 0.096 0.143
c: 0.835 0.801 0.750 0.902 0.869 0.819 0.479 0.483
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Average Runtime Performance

— 1000.0
E 1000 - —
E 100 —— | — | —
g 10 - — L ol L .
g o1
Learning Time Inference Time Total Time

w LOCAL 1.8 0.5 2.3

W INTRA 4.6 8.4 13.0

.. PIPELINE* 29.7 46.1 75.8

w MLN 761.7 183.6 945.5

wC3 5.2 21.5 26.7

w C3-EM 71.6 23.7 95.3

C3-SA 5.2 25.0 30.1

C3-Cl 5.2 10.6 15.8

C3-GS 5.2 728.2 733.4

e Average runtime (in minutes) over a set of Cora experiments
— Number of random variables: |R| = 70000, |L| = 35000, |[N| = 5900
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#3: VIEW




Visual Analytics

e Combining rich statistical inference models with
visual interfaces that support knowledge
discovery and understanding

 Because the statistical confidence in any of our
inferences may be low, important to be able to
have a human in the loop, to understand and
validate results, and to provide feedback

e Especially for graph and network data, a well-

chosen visual representation, suited to the
inference task at hand, can improve the accuracy
and confidence of user input
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Three Viz Tools
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G-Pare: Comparative Analysis of Uncertain Graphs
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® ® ® Node Visualization

q

B Theory
[ Neural Networks

« Model 1 prediction: “Neural Networks”
Model 2 prediction: “Theory”

« Model 1is more confident in its prediction
than Model 2

e Distributions of the two models vary
significantly

« Model 1's prediction matches the ground
truth



Case Study: Citation Network

 Data set from Citeseer digital Library

— 2120 publications with 3757 citation links
— 3703 word vocabulary
— Label indicating the topic of a paper

e Comparing two models for predicting the
publication’s topic

— Model 1 2 (SVM) using only document content
— Model 2 - (Majority) using neighboring nodes’ topics




Case Study: Citation Network

Observations

— Tabular view shows Model 2’s predictions are skewed
towards two topics

— Network view shows large areas where the nodes are two-
tone, where Model 2 is making the same incorrect
prediction

< e
1:|_-._.«-_.-:|__,,f

By filtering cases where Model 1 is correct \L,éi
and Model 2 is incorrect, we discover areas -L\L,f ,L{
of flooding (propagation of error) A«/L




Conclusion

o Pitfall: Be sure that you are analyzing the right

network!

Paradigm: : Benefit in viewing analysis of noisy &
incomplete data as statistical inference. Graph
Identification is the process of inferring a ‘correct’
output graph from noisy input.

* View: Visual tools for comparative analytics are

important for understanding and having confidence
in models




Thanks!

http://www.cs.umd.edu/lings
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