

allocation systems

- Prior Appropriation
- 🦲 Riparian
- Combined

Water Conservation in Las Vegas

Brelsford & Abbott, *Ecological Econ.* 2016 Brelsford & De Bacco, *NETS.* 2018 Brelsford & Abbott, [in review]

Charleston

Next years allocation is based on this years consumption

Boulder City got scared:
Opened the fire hydrants at night in December 1990

160

Charleston

Next years allocation is based on this years consumption

Boulder City got scared:
Opened the fire hydrants at night in December 1990

(160)

Feb 14th, 1991: Valentines

Day Massacre

Charleston

Next years allocation is based on this years consumption

Boulder City got scared:
Opened the fire hydrants at night in December 1990

(160)

Feb 14th, 1991: Valentines

Day Massacre

June 27th, 1991: Southern Nevada Water Authority was created.

Charleston

Next years allocation is based on this years consumption

Boulder City got scared:
Opened the fire hydrants at night in December 1990

(160)

Feb 14th, 1991: Valentines

Day Massacre

June 27th, 1991: Southern Nevada Water Authority was created.

1993: Return Flow Credit Established

Las Vegas' per capita water consumption fell dramatically in the 1990s and 2000s.

How can we identify the most important drivers of our observed decline in water consumption?

Semi Log Regressions

with a rich set of fixed effects, temporal dummy variables and controls related to home characteristics, weather, and neighborhood

Gelbach's Decomposition

uses estimates of omitted variable bias to define the relative importance of various covariates

through scenario development

What did we find?

Building efficient infrastructure during new construction is the single biggest driver of reduced consumption.

How do we measure how effective the WSL program is?

Event Study

- Used to ensure that WSL driven water savings accrue at the time of the landscape change
- This compares the seasonal water comparison for the new landscape, age τ to water consumption the year it was installed.

$$c_{it} = a + \sum_{k=-15}^{k=11} \beta_k [\tau_{it} = k]_{it} + \gamma_t + \zeta_b + \epsilon_{it}$$

Difference in Differences

- Used to estimate the gallons saved per meter converted.
- This compares CHANGES in consumption during the landscape change to CHANGES in consumption for households with static landscapes.

$$c_{it} = \zeta_i + \gamma_t + \beta_0 a_{it} + \beta_1 \kappa_{it} + \epsilon_{it}$$

through quasi-experimental econometric methods.

What did we find?

Large and durable water savings across seasons.

How can we test for the existence of Peer Effects in WSL Participation?

1) WSL participants

$$P(t_{iE} = t_i > 0 | \alpha, \mu, \{t_{kE}\}_{k \in \partial i}) = I_{x_i^0 = S} \left[\prod_{t=1}^{t_i - 1} (1 - \mu_i^t) \prod_{k \in \partial i | t_{kI} < t_i - 1} (1 - \alpha)^{t_i - \tau_{kiI} - 1} \right] \times \left[1 - (1 - \mu_i^{t_i}) (1 - \alpha)^{n_i} \right]$$

2) Non-Participants

$$P(t_{iE} = \infty | \alpha, \mu, \{t_{kE}\}_{k \in \partial i}) = \mathbb{I}_{x_i^0 = S} \prod_{t=1}^T (1 - \mu_i^t) \prod_{k \in \partial i | t_{kI} < T} (1 - \alpha)^{T - \tau_{kiI}}$$

3) Joint Probability for All Homes

$$P(\bar{t}|\alpha, \mu) = \prod_{i \in V | x_i^T = S} P(t_{iE} = \infty | \alpha, \mu, \{t_{kE}\}_{k \in \partial i}) \prod_{i \in V | x_i^T \neq S} P(t_{iE} = t_i > 0 | \alpha, \mu, \{t_{kE}\}_{k \in \partial i})$$

We model participation like it's an epidemic

What did we find?

Non-zero transmission probabilities across most neighborhoods

Models that allow peer effects fit the data better than models which don't

 Landscape change is a small but measureable component of Las Vegas' overall decline in residential water consumption.

 WSL landscape conversions save meaningful amounts of water.

There is evidence of a peer influence in WSL participation.

Strategies for Analysis of Coupled Socio-Hydrological Systems

Map by Tim Gulden using ORNL Landscan Global Dat Published in Florida, the Atlantic. (2005)

Individual Neighborhood City Region

Social Scale

Individuals Probabilistic, Empirical or **Agent Based Models** Brelsford & De Bacco. NETS (2018)

Cities

Nations

Individual Neighborhood City Region

Individuals Probabilistic, Empirical or **Agent Based Models** Brelsford & De Bacco. NETS (2018)

Cities

Nations

Urban Scaling Theory

PREDICTABLE CITIES

Data from 360 US metropolitan areas show that metrics such as wages and crime scale in the same way with population size.

Bettencourt & West. Nature (2010)

Individual Neighborhood City Region

Social Scale

Individuals

Probabilistic, Empirical or Agent Based Models

Brelsford & De Bacco. NETS (2018)

Cities

Urban Analysis and Stakeholder Engagement

Societal Goals: The urban future we want

McPhearson, Iwaniec, & Bai. Crnt. Opn. in Envi. Sust. (2016)

Nations

Urban Scaling Theory

PREDICTABLE CITIES

Data from 360 US metropolitan areas show that metrics such as wages and crime scale in the same way with population size.

Bettencourt & West. Nature (2010)

Individual

Neighborhood

City

Region

Social Scale

