

- discrete time systems:
 - time proceeds in clicks
 - "maps"
 - modeling tool: difference equation

Conditions for chaos in continuous-time systems

Necessary:

Nonlinear

• At least three state-space dimensions (NB: only one needed in maps)

Necessary and sufficient:

• "Nonintegrable"

i.e., cannot be solved in closed form

Concepts: review

- State variableState space
- Initial condition
- Trajectory
- Attractor
- Basin of attraction
- Transient
- Fixed point (un/stable)
- Bifurcation
- Parameter

Attractors

- Four types:
- fixed points
- limit cycles (aka periodic orbits)
- quasiperiodic orbits
- chaotic attractors

A nonlinear system can have any number of attractors, of all types, sprinkled around its state space

Their basins of attraction (plus the basin boundaries) partition the state space

And there's no way, *a priori*, to know where they are, how many there are, what types, etc.

Attractors

• Quasi-periodic orbit...

Poincare recurrence	
Crutchfield et al.	