# Patterns of Synchrony From Animal Gaits to Binocular Rivalry

Gateways to Emergent Behavior in Science and Society ICAM/SFI Workshop September 24, 2013

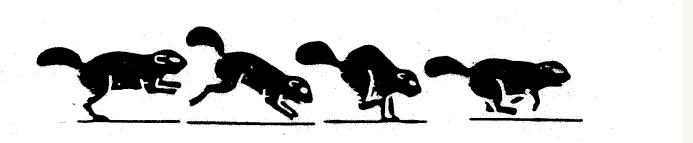
Marty Golubitsky

Mathematical Biosciences Institute
and

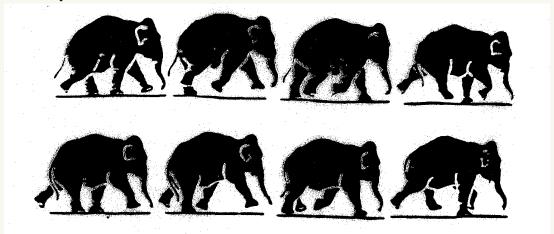
Department of Mathematics
Ohio State University

# **Quadruped Gaits**

Bound of the Siberian Souslik

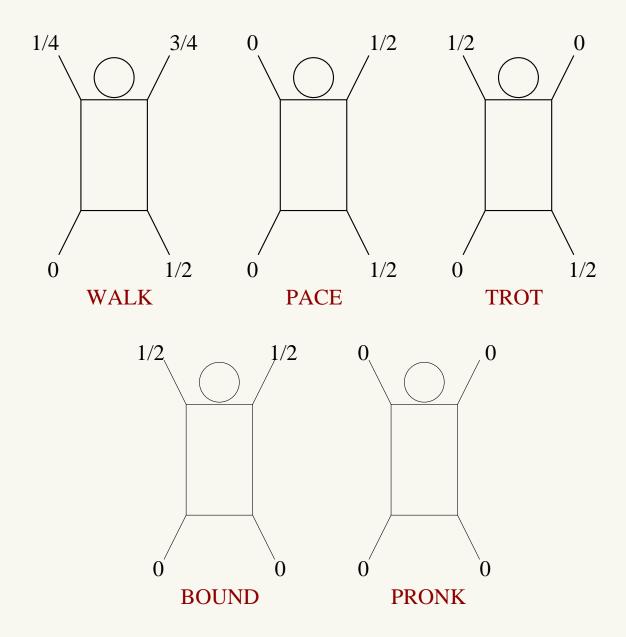


Amble of the Elephant



Trot of the Horse

# **Rigid Gait Phases for Quadruped Gaits**



### **Gait Symmetries / Central Pattern Generators**

| Gait | Spatio-temporal symmetries     |     |                              |  |
|------|--------------------------------|-----|------------------------------|--|
| Trot | (Left/Right, $\frac{1}{2}$ )   | and | (Front/Back, $\frac{1}{2}$ ) |  |
| Pace | (Left/Right, $\frac{1}{2}$ )   | and | (Front/Back, 0)              |  |
| Walk | (Figure Eight, $\frac{1}{4}$ ) |     |                              |  |

- Network of neurons (CPG) that produces gait rhythms
- Hodgkin Huxley (1952)
   Neuron modeled by system of differential equations
- Design simplest network that produces independent

walk, trot, pace

Collins and Stewart (1993); G., Stewart, Buono, and Collins (1999)

# **Rigid Phase-Shift Synchrony**

- Symmetry: sends solutions to solutions  ${f Z}_2$  symmetry
- Nodes oscillate in phase:  $x_2(t) = x_1(t)$ Nodes half-period out of phase:  $x_2(t) = x_1(t + \frac{1}{2}T)$

# **Rigid Phase-Shift Synchrony**

- Symmetry: sends solutions to solutions  ${f Z}_2$  symmetry
- Nodes oscillate in phase:  $x_2(t) = x_1(t)$ Nodes half-period out of phase:  $x_2(t) = x_1(t + \frac{1}{2}T)$
- Let x(t) be a hyperbolic T-periodic solution

$$H=\{\gamma\in\Gamma:\gamma\{x(t)\}=\{x(t)\}\}$$
 spatiotemporal symmetries  $\gamma\in H\Longrightarrow\theta\in[0,1)$  such that  $\gamma x(t)=x(t+\theta T)$ 

# **Rigid Phase-Shift Synchrony**

- Symmetry: sends solutions to solutions  ${f Z}_2$  symmetry
- Nodes oscillate in phase:  $x_2(t) = x_1(t)$ Nodes half-period out of phase:  $x_2(t) = x_1(t + \frac{1}{2}T)$
- Let x(t) be a hyperbolic T-periodic solution

$$H=\{\gamma\in\Gamma:\gamma\{x(t)\}=\{x(t)\}\}$$
 spatiotemporal symmetries  $\gamma\in H\Longrightarrow\theta\in[0,1)$  such that  $\gamma x(t)=x(t+\theta T)$ 

- H is rigid to equivariant perturbations
- Example:  $H = \mathbf{Z}_2(1\ 2); \quad \theta = 0 \quad \text{or} \quad \theta = \frac{1}{2}$

#### Two Identical Cells: Solutions via Hopf Bifurcation

$$\begin{array}{cccc}
 & \dot{x}_1 & = & f(x_1, x_2, \lambda) \\
 & \dot{x}_2 & = & f(x_2, x_1, \lambda) \\
 & 0 & = & f(0, 0, \lambda)
\end{array}$$

$$x_1, x_2 \in \mathbf{R}^k$$

$$\bullet \quad J(\lambda) = \left[ \begin{array}{cc} \alpha(\lambda) & \beta(\lambda) \\ \beta(\lambda) & \alpha(\lambda) \end{array} \right]; \quad \left[ \begin{array}{c} x \\ x \end{array} \right], \left[ \begin{array}{c} x \\ -x \end{array} \right] \text{ invariant subsp's}$$

 $\alpha =$  linear internal dynamics;  $\beta =$  linear coupling

• eigenvalues of J are eigenvalues of  $\alpha + \beta$  and  $\alpha - \beta$ 

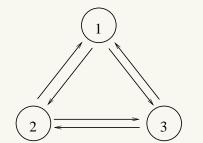
### Two Identical Cells: Solutions via Hopf Bifurcation

$$\begin{array}{cccc}
 & \dot{x}_1 & = & f(x_1, x_2, \lambda) \\
 & \dot{x}_2 & = & f(x_2, x_1, \lambda) \\
 & 0 & = & f(0, 0, \lambda)
\end{array}$$

$$x_1, x_2 \in \mathbf{R}^k$$

- $\bullet \quad J(\lambda) = \left[ \begin{array}{cc} \alpha(\lambda) & \beta(\lambda) \\ \beta(\lambda) & \alpha(\lambda) \end{array} \right]; \quad \left[ \begin{array}{c} x \\ x \end{array} \right], \left[ \begin{array}{c} x \\ -x \end{array} \right] \text{ invariant subsp's}$ 
  - $\alpha =$  linear internal dynamics;  $\beta =$  linear coupling
- eigenvalues of J are eigenvalues of  $\alpha + \beta$  and  $\alpha \beta$
- $\alpha + \beta$  critical: synchronous periodic solutions
- $\alpha \beta$  critical: half-period out of phase periodic solutions

# Three-Cell Bidirectional Ring: $\Gamma = \mathbf{D}_3$



$$\dot{x}_1 = f(x_1, x_2, x_3) 
\dot{x}_2 = f(x_2, x_3, x_1) \quad f(x_2, x_1, x_3) = f(x_2, x_3, x_1) 
\dot{x}_3 = f(x_3, x_1, x_2)$$

• Discrete rotating waves:  $H = \mathbb{Z}_3(1\ 2\ 3), \ \theta = \frac{1}{3}$ 

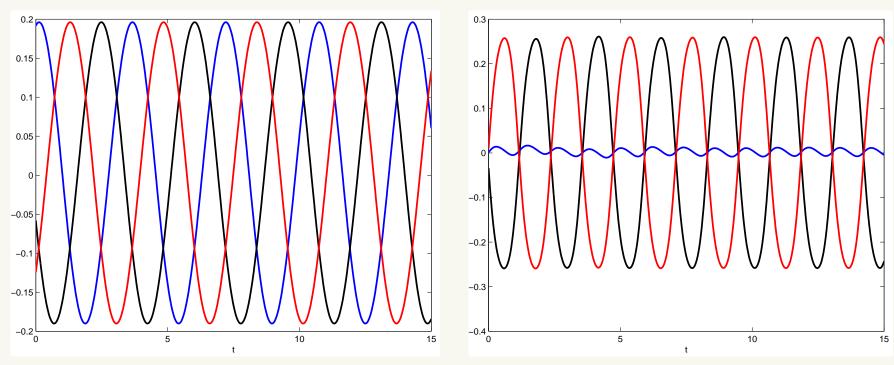
$$x_3(t) = x_2(t + \frac{1}{3}T) = x_1(t + \frac{2}{3}T)$$

• Out-of-phase periodic solutions:  $H = \mathbf{Z}_2(1\ 3), \ \theta = \frac{1}{2}$ 

$$x_3(t) = x_1 \left( t + \frac{1}{2}T \right)$$
 and  $x_2(t) = x_2 \left( t + \frac{1}{2}T \right)$ 

G. and Stewart (1986); van Gils and Valkering (1986)

#### Time Series and Phase Shifts



- Discrete Rotating Wave:  $x_3(t) = x_2(t + \frac{1}{3}T) = x_1(t + \frac{2}{3}T)$
- Out-of-phase:  $x_3(t) = x_1(t + \frac{1}{2}T)$  and  $x_2(t) = x_2(t + \frac{1}{2}T)$

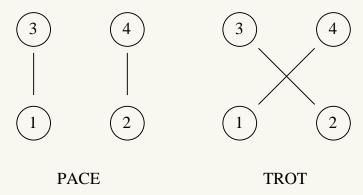
G. and Stewart (1986); van Gils and Valkering (1986)

#### Four Cells Do Not Suffice

Network produces walk. There is a four-cycle symmetry

$$(1\ 3\ 2\ 4)$$

Four-cycle permutes pace to trot

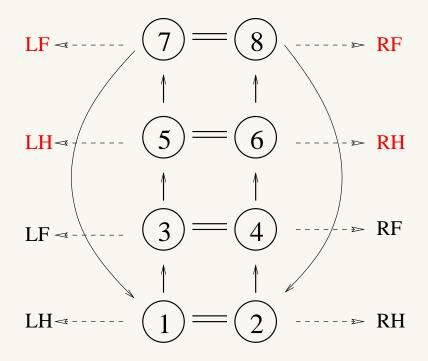


 CPG cannot be modeled by four-cell network where each cell gives rhythmic pulsing to one leg

G., Stewart, Buono, and Collins (1999)

# **Central Pattern Generators (CPG)**

- Use gait symmetries to construct network and rhythms
  - 1) walk  $\Longrightarrow$  four-cycle  $\omega$  in symmetry group
  - 2) pace or trot  $\Longrightarrow$  transposition  $\kappa$  in symmetry group
- Simplest network has  $\mathbf{Z}_4(\omega) \times \mathbf{Z}_2(\kappa)$  symmetry



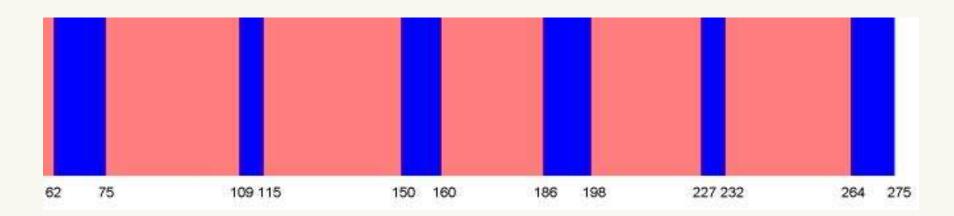
G., Stewart, Buono, and Collins (1999); Buono and G. (2001)

# Primary Gaits or Hopf Bifurcation from Stand: $H = \mathbf{Z}_4(\omega) \times \mathbf{Z}_2(\kappa)$

| Kernel of $H$                                        | Phase Diagram                                                                 | Gait  |
|------------------------------------------------------|-------------------------------------------------------------------------------|-------|
| $\mathbf{Z}_4(\omega) \times \mathbf{Z}_2(\kappa)$   | 0 0<br>0 0                                                                    | pronk |
| ${f Z}_4(\omega)$                                    | $\begin{array}{cc} 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{array}$            | pace  |
| ${f Z}_4(\kappa\omega)$                              | $     \begin{array}{ccc}                                   $                  | trot  |
| $\mathbf{Z}_2(\kappa) \times \mathbf{Z}_2(\omega^2)$ | $\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ 0 & 0 \end{array}$            | bound |
| ${f Z}_2(\kappa\omega^2)$                            | $\begin{array}{ccc} \frac{1}{4} & \frac{3}{4} \\ 0 & \frac{1}{2} \end{array}$ | walk  |
| ${f Z}_2(\kappa)$                                    | $\begin{array}{cc} 0 & 0 \\ \frac{1}{4} & \frac{1}{4} \end{array}$            | jump  |

G., Stewart, Buono, and Collins (2000)

# The Jump

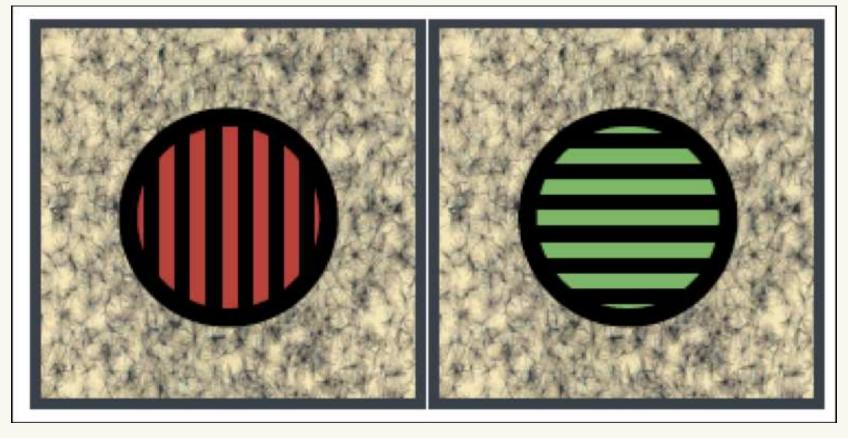


- Average Right Rear to Right Front = 31.2 frames
- Average Right Front to Right Rear = 11.4 frames
- $\bullet$   $\frac{31.2}{11.4} = 2.74$

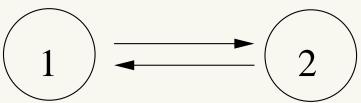
G., Stewart, Buono, and Collins (2000)

# Binocular Rivalry: Different Images Presented to Two Eyes

How does the brain deal with CONTRADICTORY information



Often modeled by two units



### **Simplest Rivalry Equations for Two Units**

• Units a and b consist of an activity variable  $*^E$  (firing rate) and a fatigue variable  $*^H$  (reduces activity on long time scale)

$$\begin{array}{rcl}
\varepsilon \dot{a}^{E} & = & -a^{E} + \mathcal{G} \left( I - \beta b^{E} - g a^{H} \right) \\
\dot{a}^{H} & = & a^{E} - a^{H} \\
\varepsilon \dot{b}^{E} & = & -b^{E} + \mathcal{G} \left( I - \beta a^{E} - g b^{H} \right) \\
\dot{b}^{H} & = & b^{E} - b^{H}
\end{array}$$

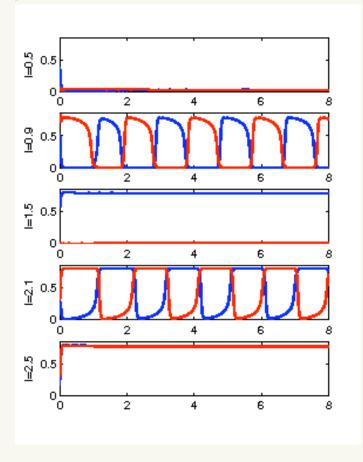
 $\begin{array}{l} \bullet \quad \mathcal{G} = \text{gain function} \\ \beta = \text{reciprocal inhibition} \\ I = \text{external signal strength} \\ g = \text{strength of reduction of } *^E \text{ by } *^H \\ \varepsilon \ll 1 \text{ is ratio of time scales on which } *^E \text{ and } *^H \text{ evolve} \\ \end{array}$ 

Laing and Chow (2002), Curtu, Shpiro, Rubin, and Rinzel (2008); Wilson (2009); Curtu (2010); Diekman, G., McMillen, and Wang (2012)

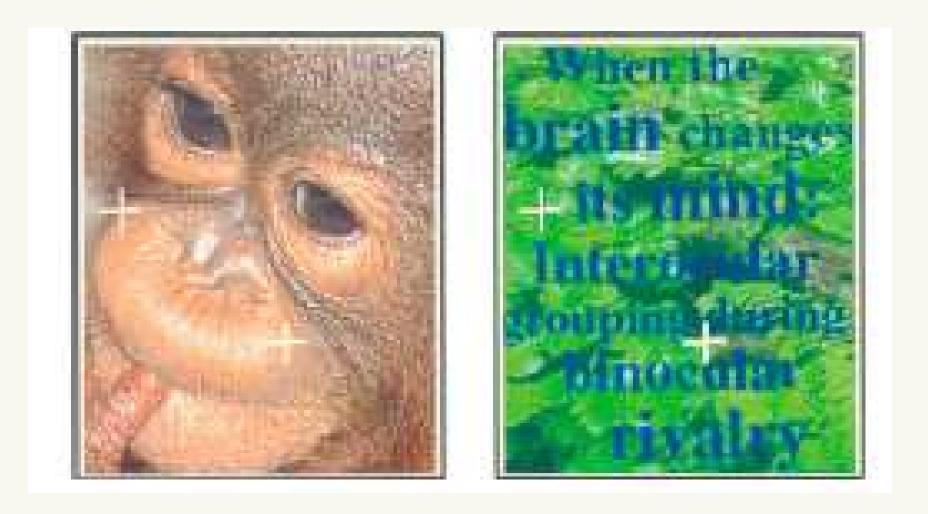
#### **Two Unit Model Solution Types**

#### Three types of states:

- Fusion = equilibria in which units have equal values
   Rigid fused states forced by symmetry
- Winner-Take-All = equilibria with different activity levels
- Rivalry = two units oscillate in periods of dominance
   Rigid rivalry forced by symmetry



# **Kovács First Experiment: Conventional Monkey and Text**



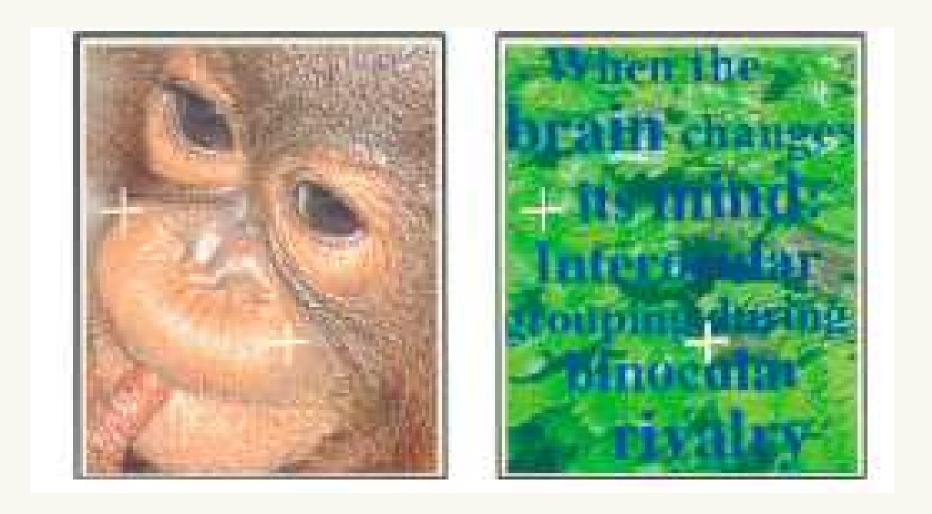
Kovács, Papathomas, Yang, and Fehér (1996)

# Kovács Second Experiment: Scrambled Monkey and Text



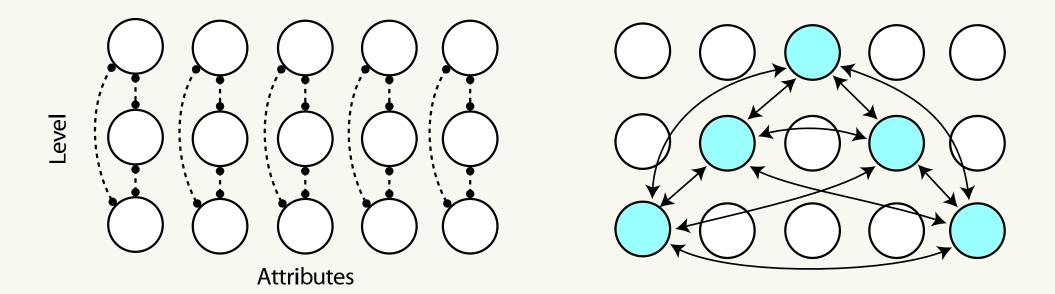
Kovács, Papathomas, Yang, and Fehér (1996)

# **Scrambled Monkey and Text: Interocular Groupings**



Kovács, Papathomas, Yang, and Fehér (1996)

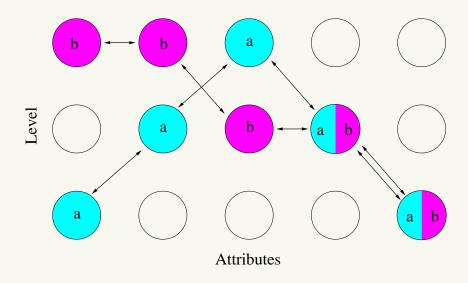
# Wilson's Model for Generalized Rivalry



- Columns represent attributes; rows represent level of attribute
- (L) Inhibition between nodes in column (dashed lines)
- (R) Excitation between nodes in **learned** pattern (solid lines)

Wilson (2008, 2009)

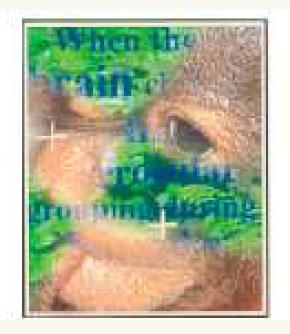
#### **Two Learned Patterns** *a* **and** *b*

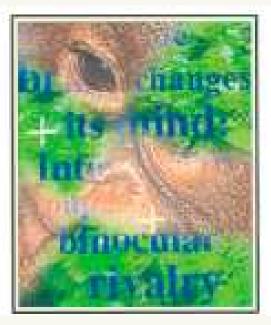


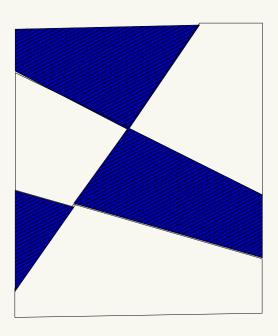
- Learned pattern: one node from each attribute column Excitation between nodes in learned pattern
- Derived Patterns: Patterns that are not learned

Diekman, G., McMillen, and Wang (2012, 2013)

# **Rivalry in Monkey and Text**

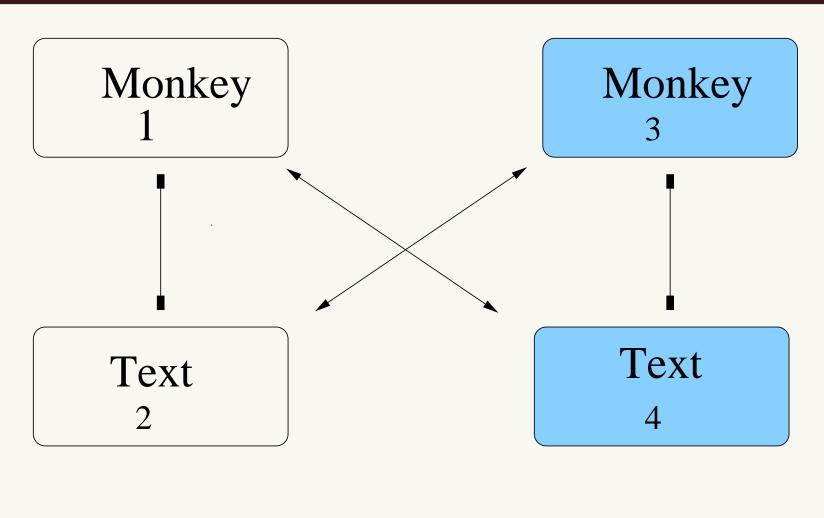






Kovács, Papathomas, Yang, and Fehér (1996)

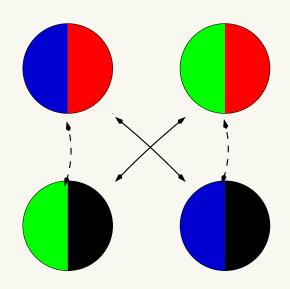
# Wilson Network for Second Kovacs Experiment



WHITE AREA

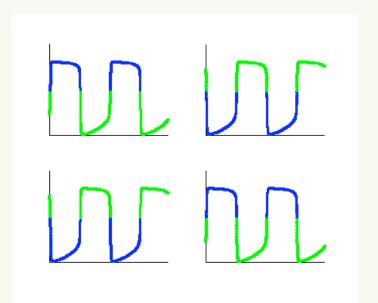
BLUE AREA

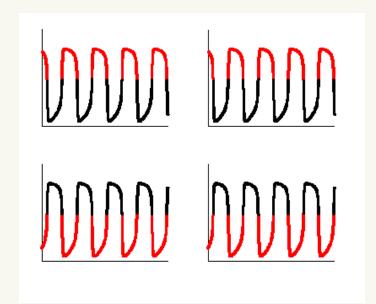
#### 2 Attributes; 2 Levels; 2 Learned Patterns; 2 Derived Patterns



- $x_1^E > x_2^E$  and  $x_3^E > x_4^E$  (whole monkey; derived, RED)
- $x_1^E > x_2^E$  and  $x_4^E > x_3^E$  (mixed image; learned, BLUE)
- $x_2^E > x_1^E$  and  $x_3^E > x_4^E$  (mixed image; learned, GREEN)
- $x_2^E>x_1^E$  and  $x_4^E>x_3^E$  (all text; derived, BLACK)

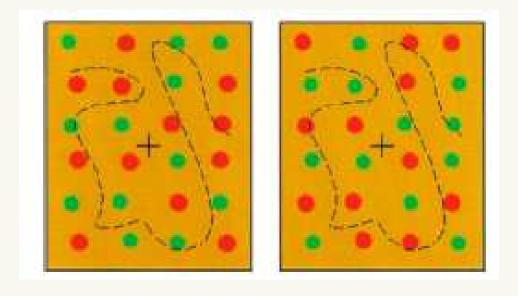
#### Patterns in Wilson Model of Kovacs Second Experiment



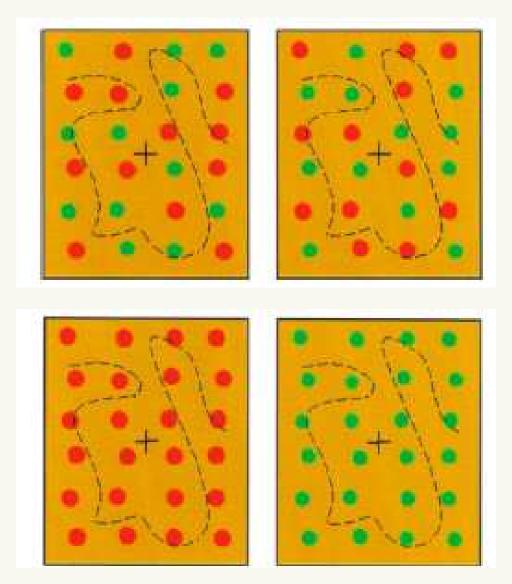


- 2 learned patterns: BLUE and GREEN
  - 2 **derived** patterns: RED and BLACK
- Rivalry: BLUE-GREEN (learned); BLACK-RED (derived)

# **Third Kovacs Experiment: Scrambled Disc Patterns**

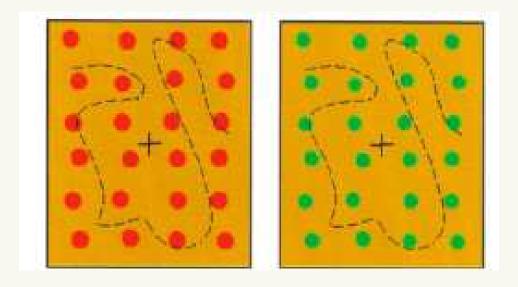


# **Third Kovacs Experiment: Scrambled Disc Patterns**

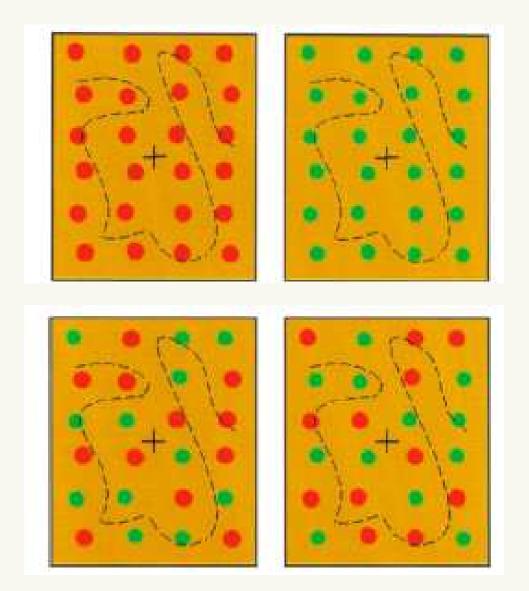


Kovács, Papathomas, Yang, and Fehér (1996)

# **Fourth Kovacs Experiment: Conventional Disc Patterns**



# **Fourth Kovacs Experiment: Conventional Disc Patterns**



Kovács, Papathomas, Yang, and Fehér (1996)

# **Tong's Simplified Rivalry Between Disc Patterns**

Rivalry between two learned patterns



Tong, Meng, and Blake (2006)

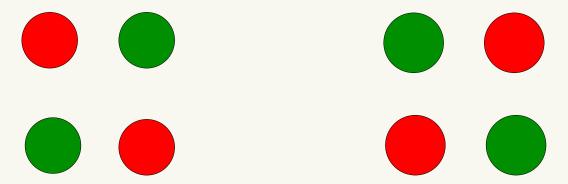
# **Tong's Simplified Rivalry Between Disc Patterns**

Rivalry between two learned patterns



#### Tong, Meng, and Blake (2006)

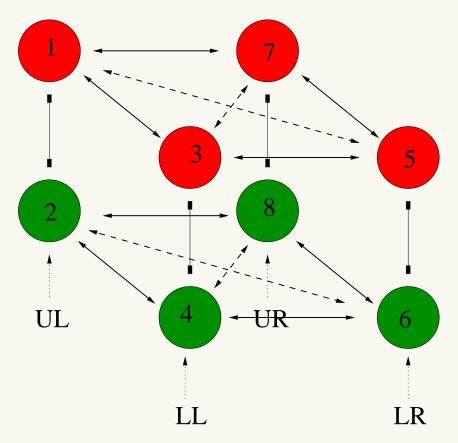
Rivalry between two derived patterns should also be observed



# **Rivalry Network for Conventional Tong Experiment**

Two learned patterns: RED and GREEN

Symmetry group  $\Gamma = \mathbf{D}_4 \times \mathbf{Z}_2(\rho)$ 



Diekman, G., and Wang (2013)

# **Patterns in Conventional Tong Experiment (1)**

.

Rivalry between learned patterns

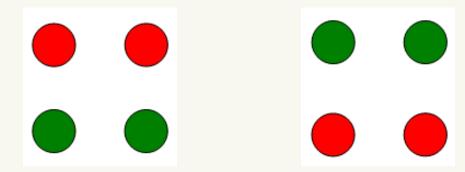


Rivalry between derived patterns

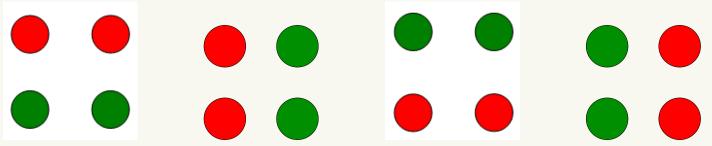


# **Patterns in Conventional Tong Experiment (2)**

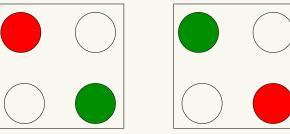
Adjacent colors



Adjacent colors rotate by 90° in quarter period



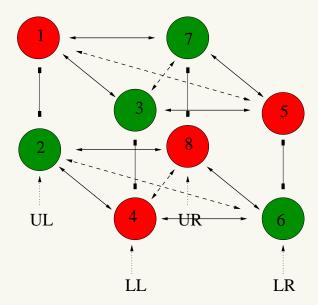
Two dots on diagonal alternate between; other two dots are fused



### Wilson Network for Scrambled Tong Experiment



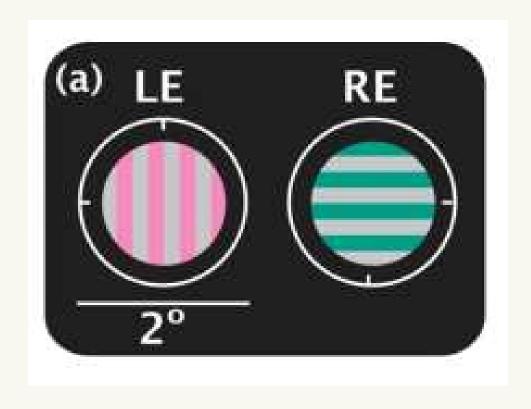
Learned Images in simplification of scrambled *colored dot* experiment



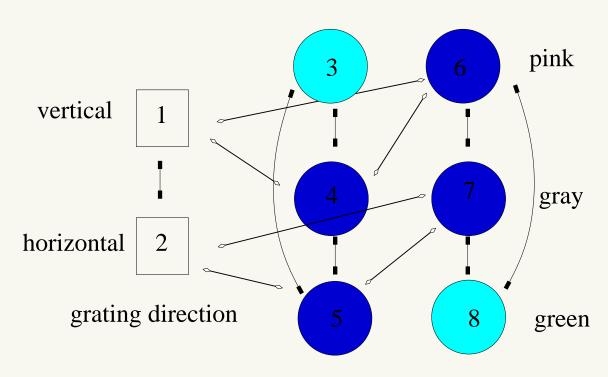
Network corresponding to simplified scrambled experiment

• Symmetry group is  $\mathbf{D}_4 \times \mathbf{Z}_2(\rho)$ Learned & derived interchanged with conventional experiment

# Shevell, St. Clair, and Hong (2008)



#### Wilson Network for Shevell, St. Clair, and Hong



left / top color right / bottom color

### **Symmetries**

$$\rho = (1\ 2)(4\ 5)(6\ 7) 
\tau = (3\ 8)(4\ 6)(5\ 7) 
\rho\tau = (1\ 2)(3\ 8)(4\ 7)(5\ 6) 
\rho = -1 = \rho\tau; \tau = +1$$

#### Fusion States

Gray-Pink 
$$\leftrightarrow$$
 Green-Gray if  $x_3^E < x_4^E = x_5^E$  Pink-Green if  $x_3^E > x_4^E = x_5^E$ 

Maximally fused states =  $\{x_1 = x_2; x_3 = x_8; x_4 = x_5 = x_6 = x_7\}$ 

## Shevell, St. Clair & Hong 2008 Observed Percepts



Percepts observers reported during experiments

# **Synchrony and Synchrony Subspaces**

#### RIGID PHASE-SHIFT SYNCHRONY

•  $X(t) = (x_1(t), \dots, x_n(t))$  exhibits partial synchrony if

$$x_c(t) = x_d(t)$$

for two nodes c and d.

polydiagonal = subspace

 $\Delta = \{x : x_c = x_d \text{ for some subset of pairs of cells } c, d\}$ 

• **synchrony subspace** = polydiagonal flow-invariant ∀ admissibles

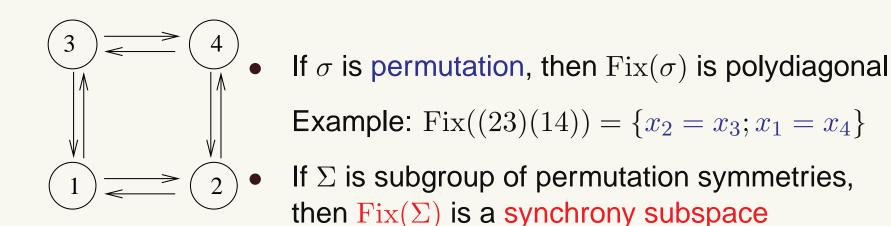
All solutions in a synchrony subspace exhibit partial synchrony

# **Synchrony Subspaces from Network Symmetry**

- $\sigma$  is a symmetry of  $\dot{X}=F(X)$  if it maps solutions to solutions Equivalent to  $F(\sigma x)=\sigma F(x)$
- $\operatorname{Fix}(\Sigma) = \{x \in \mathbf{R}^n : \sigma x = x \mid \forall \sigma \in \Sigma \}$  is flow-invariant Proof:  $F(x) = F(\sigma x) = \sigma F(x)$

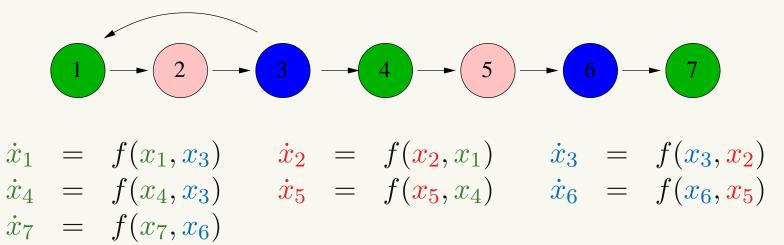
# **Synchrony Subspaces from Network Symmetry**

- $\sigma$  is a symmetry of X = F(X) if it maps solutions to solutions Equivalent to  $F(\sigma x) = \sigma F(x)$
- $\operatorname{Fix}(\Sigma) = \{x \in \mathbf{R}^n : \sigma x = x \mid \forall \sigma \in \Sigma \}$  is flow-invariant Proof:  $F(x) = F(\sigma x) = \sigma F(x)$



### **Balanced Colorings**

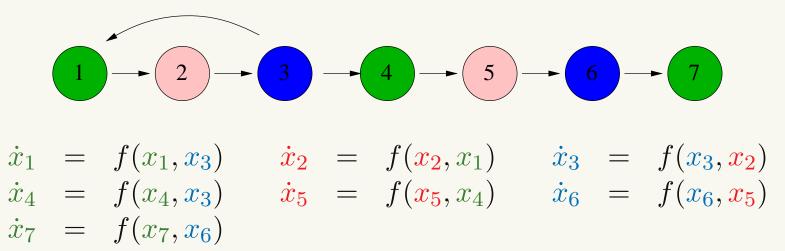
Synchrony subspaces do not have to be fixed-point subspaces



•  $\Delta = \{x : x_1 = x_4 = x_7; \ x_2 = x_5; \ x_3 = x_6\}$  is flow-invariant

#### **Balanced Colorings**

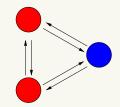
Synchrony subspaces do not have to be fixed-point subspaces



- $\Delta = \{x : x_1 = x_4 = x_7; \ x_2 = x_5; \ x_3 = x_6\}$  is flow-invariant
- ullet Color cells the same color if cell coord's in polydiagonal  $\Delta$  are equal
- Coloring is balanced if all cells with same color receive equal number of inputs from cells of a given color
- Theorem 1: synchrony subspace ← balanced

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

# **Quotient Networks with Self-Coupling & Multiarrows**



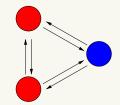
Synchrony subspace Fix(1 2) in bidirectional ring

$$\dot{x}_1 = f(x_1, x_2, x_3)$$
 $\dot{x}_2 = f(x_2, x_3, x_1)$  where  $f(x, y, z) = f(x, z, y)$ 
 $\dot{x}_3 = f(x_3, x_1, x_2)$ 

Quotient network:



### **Quotient Networks with Self-Coupling & Multiarrows**



Synchrony subspace Fix(1 2) in bidirectional ring

$$\dot{x}_1 = f(x_1, x_2, x_3)$$
 $\dot{x}_2 = f(x_2, x_3, x_1)$  where  $f(x, y, z) = f(x, z, y)$ 
 $\dot{x}_3 = f(x_3, x_1, x_2)$ 

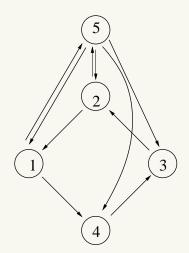
Quotient network:

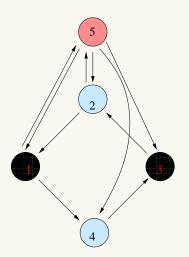


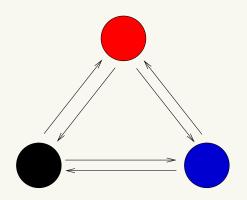
- Cell network with synchrony subspace leads to quotient network
- Theorem 2: Admissible ODE restricts to quotient admissible ODE
   Quotient admissible ODE lifts to admissible ODE

G., Stewart, and Török (2005)

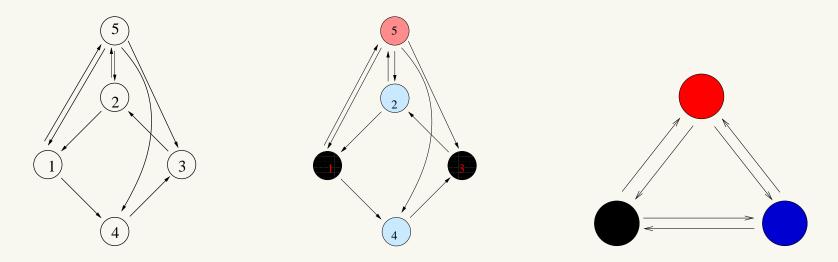
# **Asymmetric Network; Symmetric Quotient**



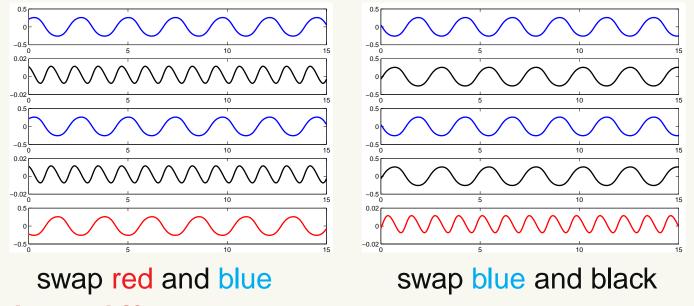




# **Asymmetric Network; Symmetric Quotient**



• Quotient is bidirectional 3-cell ring with S<sub>3</sub> symmetry



Rigid phase shift; no symmetry

# **Rigid Phase-Shift** ⇔ **Pattern of Phase-Shift Synchrony**

**Theorem 3:** Assume network is **transitive**.

Nonzero **rigid** phase-shift synchrony if and only if phase-shift forced by **symmetry on quotient network** 

• Let Z(t) be the periodic solution. Quotient network corresponds to the synchrony subspace

$$\Delta_Z = \{x_i = x_j \quad \text{if} \quad z_i(t) = z_j(t) \ \forall t\}$$

Stewart and Parker (2008, 2009); G., Romano and Wang (2010, 2011)

# Thanks

| Luciano Buono  | UOIT                | Gaits                          |
|----------------|---------------------|--------------------------------|
| Jim Collins    | Boston University   | Gaits                          |
| Ian Stewart    | Warwick             | Gaits, Phase-Shift Synchrony   |
| David Romano   | Grinnell            | Phase-Shift Synchrony          |
| Yunjiao Wang   | Texas Southern      | Phase-Shift Synchrony, Rivalry |
| Tyler McMillen | Cal State Fullerton | Rivalry                        |
| Casey Diekman  | NJIT                | Rivalry                        |

#### **Wilson Networks**

Coupled cell networks have nodes and arrows & equivalence classes of nodes and arrows. Wilson network = coupled cell network such that

- (a) Nodes partition into **attribute columns**:  $C = A_1 \cup \cdots \cup A_m$  where all nodes in an attribute column are cell equivalent. *Example*: Attribute might be color of a dot
- (b) Pattern = choice of one node in each attribute column Learned patterns given; other patterns derived Binocular rivalry has two learned patterns
- (c) Two types of arrows: *inhibitory* and *excitatory* 
  - Nodes in same attribute column connected by inhibitory arrow
  - Nodes in same learned pattern connected by excitatory arrow
  - Inhibitory arrows and excitatory arrows are not arrow equivalent

Wilson considers networks where nodes are cell equivalent, inhibitory arrows are arrow equivalent, and excitatory arrows are arrow equivalent

## **Rivalry Networks**

#### A rivalry network is a Wilson network such that

- (a) Attributes partition into **attribute types**Nodes in attribute equivalent columns are cell equivalent
  Inhibitory arrows are equivalent iff have equivalent attributes
- (b) **Feature** is property of pairs of nodes in different attribute columns Excitatory arrows equivalent iff connect nodes with same features

#### **Examples**:

- Dot experiments have distance feature: assigns to pair of nodes distance between dots
   Arrows can be equivalent only if connect equidistant nodes
- Dot experiments have color feature
   Excitatory arrows connecting nodes of same color and arrows connecting nodes of different colors are not equivalent