Extensions to Shannon Entropy

- ullet One of the requirements on the Shannon entropy H that is used to derive it is that H is independent of the way we group probabilities.
- Let's state this more precisely. We'll do so via an example.
- Consider the random variable *X* that can take on three outcomes, *a*, *b*, and *c*:
- Pr(a) = 1/2, Pr(b) = 1/2, and Pr(c) = 1/4.
- It turns out that H[X] = 3/2.
- We can also view this as follows: Y can be a or Z, each with probability 1/2. And Z can be b or c with probability 1/2.
- H[Y] = 1, and H[Z] = 1.
- $H[X] = H[Y] + \frac{1}{2}H[Z]$.
- \bullet This last condition is an example of requiring H be independent of the way we group probabilities.

David P. Feldman

http://hornacek.coa.edu/dave

SFI CSSS, Beijing China, July 2007: Rényi and other extensions to Shannon

Rényi Entropies: Properties and Comments

- *H_q* is a non-increasing function of *q*.
- H_1 is the Shannon entropy.
- H_0 is the topological entropy, the log of the number of states.
- There are coding theorems for Rényi entropy. Campbell. Information and Control. 8:423. 1966; Aggarwal and Bansal, arXiv.cs.IT/0607029. 2006.

Rényi and Thermodynamics

• The Rényi entropy allows one to apply the formalism of thermodynamics to any probability distribution. q plays a role similar to inverse temperature.

Rényi Entropy

- Let's relax the condition that H be independent of grouping.
- But still require that the entropy of independent variables be additive:

$$Pr(X, Y) = Pr(X)Pr(Y) \implies$$

 $H[X, Y] = H[X] + H[Y]$

• The result is a one-parameter family, the Rényi entropies:

$$H_q \equiv \frac{1}{q-1} \log_2 \sum_i p_i^q \ . \tag{1}$$

• This can be rewritten in the following, slightly less odd-looking way.

$$H_q = \frac{1}{q-1} \log_2 \sum_i p_i p_i^{q-1} . {2}$$

$$H_q = \frac{1}{q-1} \log_2 \langle p_i^{q-1} \rangle . \tag{3}$$

David P. Feldman http://hornacek.coa.edu/dave

SFI CSSS, Beijing China, July 2007: Rényi and other extensions to Shannon

Escort Distributions

• Given a set of probabilities, we can always make a new set of probabilities as follows:

$$p_i \longrightarrow \frac{p_i^{\beta}}{Z}$$
.

- β is a number that acts like 1/Temperature.
- $\beta = 1$: initial distribution
- $\beta = 0$: all states equally likely $\Rightarrow T = \infty$.
- ullet $\beta=\infty$: only most probable state remains. This is the T=0 "ground state."
- ullet $\beta=-\infty$: only least probable state remains. This is the $T=0^-$ "anti-ground" state.
- Loosely speaking, the Rényi entropy can be thought of the average surprise of the escort distribution with $\beta = q - 1$.
- ullet The parameter eta allows one to probe different regions of the distribution.

Thermodynamic Formalism

- The ideas on the previous slide can be extended in an elegant and fun way to apply thermodynamics to any probability distribution.
- This goes by many names; thermodynamic formalism, S(u), $f(\alpha)$, multifractals, fluctuation spectrum, large deviation theory.
- This is a well developed, well understood approach. It is very enticing and very cool.
- In my experience, this approach doesn't speak directly to complexity or pattern, largely because thermodynamics doesn't have direct measures of complexity.
- For example, a biased coin (i.e. no correlations), has a "multifractal spectrum."
- This doesn't meant the multifractals are uninteresting. They are a natural way of quantifying the frequency with which deviations from typical behavior occurs.

David P. Feldman

http://hornacek.coa.edu/dave

David P. Feldman

http://hornacek.coa.edu/dave

SFI CSSS, Beijing China, July 2007: Rényi and other extensions to Shannon

Tsallis Entropy

Define the following generalized entropy

$$S_q \equiv \frac{1 - \sum_i p^q}{q - 1} \,. \tag{4}$$

- This q is not the same as Rényi's q.
- S_q has the property that if $\Pr(X,Y) = \Pr(X)\Pr(Y)$, then:

$$S_q[X,Y] = S_q[X] + S_q[Y] + (1-q)S_q[X]S_q[Y] .$$
(5)

- I.e., S_a is not additive for independent events.
- One can generate a statistical mechanics and thermodynamics using Eq. (4) as a starting point.

Thermodynamic Formalism References

There are many confusing things written about the thermodynamic formalism. Some clear references:

- Young and Crutchfield. Chaos, Solitons, and Fractals. 4:5. 1993.
- Beck and Schlögl, Thermodynamics of Chaotic Systems. Cambridge University Press. 1993.

Note: If you wish to estimate the fluctuation spectrum S(u), a good way to do it is to first estimate the ϵ -machine and then calculate S(u). Numerically calculating S(u) directly can be inaccurate. See Young and Crutchfield.

SFI CSSS, Beijing China, July 2007: Rényi and other extensions to Shannon

Tsallis Entropy: Doubts and Concerns

- However, it is hard to see how a non-additive entropy can be physical.
- ullet It has been claimed that S_q works well for systems with strong correlations. But it seems to me that the non-additivity creates spurious correlations rather than measuring correlations that are really there.
- My sense is that q is basically a fitting parameter. I don't know that it has a clear physical or mathematical meaning.
- Overall, I don't understand why Tsallis entropy is a big deal. I think this is the position of most, but by no means all, physicists.

Tsallis Entropy, references

But... you should read the papers and decide for yourself.

Some reviews:

David P. Feldman

- Tsallis. Physica D, 193:3. 2004.
 http://arxiv.org/cond-mat/0403012.
- Tsallis, et al. arXiv.org/cond-mat/0309093.2003.
- Tsallis and Brigatti, *Continuum Mechanics & Thermodynamics*, **16**:223 arXiv.org/cond-mat/0305606.2004.

http://hornacek.coa.edu/dave

Some strenuous (and entertaining) critiques, and responses:

- Grassberger. Physical Review Letters, 95. 140601. 2005.
 http://arxiv.org/cond-mat/0508110
- Responses to Grassberger:
 - Robledo. arxiv.org/cond-mat/0510293
 - Tsallis. arxiv.org/cond-mat/0511213

Nauenberg. Physical Review E. 67:036114. 2003.
 arxiv.org/cond-mat/0210561

- Responses to Nauenberg and discussion:
 - Tsallis. *Physical Review E.* **69**:038102. 2004. arxiv.org/cond-mat/0304696
 - Nauenberg. Physical Review E. 69:038102. 2004 arxiv.org/cond-mat/0305365

See also:

• www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm for an extensive bibliography on Tsallis entropy.

David P. Feldman http://hornacek.coa.edu/dave