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Entropy and Information Measuring randomness and
dependence in bits

Entropy and Ergodicity Dynamical systems as information
sources, long-run randomness

Information and Inference The connection to statistics

Cover and Thomas (1991) is the best single book on
information theory.
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Entropy

The most fundamental notion in information theory
X = a discrete random variable, values from X
The entropy of X is

H[X ] ≡ −
∑
x∈X

Pr (X = x) log2 Pr (X = x)
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Proposition

H[X ] ≥ 0, and = 0 only when Pr (X = x) = 1 for some x

( EXERCISE)

Proposition

H[X ] is maximal when all X are equally probable, and then
H[X ] = log2 #X ( EXERCISE)

Proposition

H[f (X )] ≤ H[X ], equality if and only if f is 1-1
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Interpretations

H[X ] measures

how random X is
How variable X is
How uncertain we should be about X
“paleface” problem
consistent resolution leads to a completely subjective probability theory

but the more fundamental interpretation is description length
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Description Length

H[X ] = how concisely can we describe X?
Imagine X as text message:

in Reno
in Reno send money
in Reno divorce final
marry me?
in Reno send lawyers guns and money kthxbai

Known and finite number of possible messages (#X )
I know what X is but won’t show it to you
You can guess it by asking yes/no (binary) questions
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First goal: ask as few questions as possible

Starting with “is it y?” is optimal iff X = y
Can always achieve no worse than ≈ log2 #X questions
New goal: minimize the mean number of questions
Ask about more probable messages first
Still takes ≈ − log2 Pr (X = x) questions to reach x
Mean is then H[X ]

CSSS Information Theory



Entropy and Information
Entropy and Ergodicity

Relative Entropy and Statistics
References

Entropy
Description Length
Multiple Variables and Mutual Information
Continuous Variables
Relative Entropy

First goal: ask as few questions as possible
Starting with “is it y?” is optimal iff X = y

Can always achieve no worse than ≈ log2 #X questions
New goal: minimize the mean number of questions
Ask about more probable messages first
Still takes ≈ − log2 Pr (X = x) questions to reach x
Mean is then H[X ]

CSSS Information Theory



Entropy and Information
Entropy and Ergodicity

Relative Entropy and Statistics
References

Entropy
Description Length
Multiple Variables and Mutual Information
Continuous Variables
Relative Entropy

First goal: ask as few questions as possible
Starting with “is it y?” is optimal iff X = y
Can always achieve no worse than ≈ log2 #X questions

New goal: minimize the mean number of questions
Ask about more probable messages first
Still takes ≈ − log2 Pr (X = x) questions to reach x
Mean is then H[X ]

CSSS Information Theory



Entropy and Information
Entropy and Ergodicity

Relative Entropy and Statistics
References

Entropy
Description Length
Multiple Variables and Mutual Information
Continuous Variables
Relative Entropy

First goal: ask as few questions as possible
Starting with “is it y?” is optimal iff X = y
Can always achieve no worse than ≈ log2 #X questions
New goal: minimize the mean number of questions

Ask about more probable messages first
Still takes ≈ − log2 Pr (X = x) questions to reach x
Mean is then H[X ]

CSSS Information Theory



Entropy and Information
Entropy and Ergodicity

Relative Entropy and Statistics
References

Entropy
Description Length
Multiple Variables and Mutual Information
Continuous Variables
Relative Entropy

First goal: ask as few questions as possible
Starting with “is it y?” is optimal iff X = y
Can always achieve no worse than ≈ log2 #X questions
New goal: minimize the mean number of questions
Ask about more probable messages first

Still takes ≈ − log2 Pr (X = x) questions to reach x
Mean is then H[X ]

CSSS Information Theory



Entropy and Information
Entropy and Ergodicity

Relative Entropy and Statistics
References

Entropy
Description Length
Multiple Variables and Mutual Information
Continuous Variables
Relative Entropy

First goal: ask as few questions as possible
Starting with “is it y?” is optimal iff X = y
Can always achieve no worse than ≈ log2 #X questions
New goal: minimize the mean number of questions
Ask about more probable messages first
Still takes ≈ − log2 Pr (X = x) questions to reach x

Mean is then H[X ]

CSSS Information Theory



Entropy and Information
Entropy and Ergodicity

Relative Entropy and Statistics
References

Entropy
Description Length
Multiple Variables and Mutual Information
Continuous Variables
Relative Entropy

First goal: ask as few questions as possible
Starting with “is it y?” is optimal iff X = y
Can always achieve no worse than ≈ log2 #X questions
New goal: minimize the mean number of questions
Ask about more probable messages first
Still takes ≈ − log2 Pr (X = x) questions to reach x
Mean is then H[X ]

CSSS Information Theory



Entropy and Information
Entropy and Ergodicity

Relative Entropy and Statistics
References

Entropy
Description Length
Multiple Variables and Mutual Information
Continuous Variables
Relative Entropy

Theorem
H[X ] is the minimum mean number of binary distinctions
needed to describe X

Units of H[X ] are bits

source

X

binary-coded message

length H[X]
receiver
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Multiple Variables — Joint Entropy

Joint entropy of two variables X and Y :

H[X ,Y ] ≡ −
∑
x∈X

∑
y∈Y

Pr (X = x ,Y = y) log2 Pr (X = x ,Y = y)

Entropy of joint distribution
This is the minimum mean length to describe both X and Y

H[X ,Y ] ≥ H[X ]

H[X ,Y ] ≥ H[Y ]

H[X ,Y ] ≤ H[X ] + H[Y ]

H[f (X ),X ] = H[X ]
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Conditional Entropy

Entropy of conditional distribution:

H[X |Y = y ] ≡ −
∑
x∈X

Pr (X = x |Y = y) log2 Pr (X = x |Y = y)

Average over y :

H[X |Y ] ≡
∑
y∈Y

Pr (Y = y) H[X |Y = y ]

On average, how many bits are needed to describe X , after Y
is given?
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H[X |Y ] = H[X ,Y ]− H[Y ]

“text completion” principle
Note: H[X |Y ] 6= H[Y |X ], in general

Chain rule:

H[X n
1 ] = H[X1] +

n−1∑
t=1

H[Xt+1|X t
1]

Describe one variable, then describe 2nd with 1st, 3rd with first
two, etc.
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Mutual Information

Mutual information between X and Y

I[X ; Y ] ≡ H[X ] + H[Y ]− H[X ,Y ]

How much shorter is the actual joint description than the sum of
the individual descriptions?

Equivalent:

I[X ; Y ] = H[X ]− H[X |Y ] = H[Y ]− H[Y |X ]

How much can I shorten my description of either variable by
using the other?

0 ≤ I[X ; Y ] ≤ min H[X ],H[Y ]

I[X ; Y ] = 0 if and only if X and Y are statistically independent
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noise

channel decoder
source

X
encoder

receiver

Y

How much can we learn about what was sent from what we
receive? I[X ; Y ]
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Historically, this is the origin of information theory: sending
coded messages efficiently (Shannon, 1948)
Stephenson (1999) is a historical dramatization with silly late-1990s story tacked on

channel capacity C = max I[X ; Y ] as we change distribution of
X
Any rate of information transfer < C can be achieved with
arbitrarily small error rate, no matter what the noise
No rate > C can be achieved without error
C is also related to the value of information in gambling
(Poundstone, 2005)
This is not the only model of communication! (Sperber and
Wilson, 1995, 1990)
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Conditional Mutual Information

I[X ; Y |Z ] = H[X |Z ] + H[Y |Z ]− H[X ,Y |Z ]

How much extra information do X and Y give, over and above
what’s in Z?

X |= Y |Z if and only if I[X ; Y |Z ] = 0
Markov property is completely equivalent to

I[X∞t+1; X t−1
−∞|Xt ] = 0

Markov property is really about information flow
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What About Continuous Variables?

Differential entropy:

H(X ) ≡ −
∫

dxp(x) log2 p(x)

where p has to be the probability density function

H(X ) < 0 entirely possible
Differential entropy varies under 1-1 maps (e.g. coordinate
changes)
Joint and conditional entropy definitions carry over
Mutual information definition carries over
MI is non-negative and invariant under 1-1 maps
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changes)
Joint and conditional entropy definitions carry over

Mutual information definition carries over
MI is non-negative and invariant under 1-1 maps
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Relative Entropy

P, Q = two distributions on the same space X

D(P‖Q) ≡
∑
x∈X

P(x) log2
P(x)

Q(x)

Or, if X is continuous,

D(P‖Q) ≡
∫
X

dx p(x) log2
p(x)

q(x)

Or, if you like measure theory,

D(P‖Q) ≡
∫

dP(ω) log2
dP
dQ

(ω)

a.k.a. Kullback-Leibler divergence
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Relative Entropy Properties

D(P‖Q) ≥ 0, with equality if and only if P = Q
D(P‖Q) 6= D(Q‖P), in general
D(P‖Q) =∞ if Q gives probability zero to something with
positive P probability (P not dominated by Q)
Invariant under 1-1 maps
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Joint and Conditional Relative Entropies

P, Q now distributions on X ,Y

D(P‖Q) = D(P(X )‖Q(X )) + D(P(Y |X )‖Q(Y |X ))

where

D(P(Y |X )‖Q(Y |X )) =
∑

x

P(x)D(P(Y |X = x)‖Q(Y |X = x))

=
∑

x

P(x)
∑

y

P(y |x) log2
P(y |x)

Q(y |x)

and so on for more than two variables
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Relative entropy can be the basic concept

H[X ] = log2 m − D(P‖U)

where m = #X , U = uniform dist on X , P = dist of X

I[X ; Y ] = D(J‖P ⊗Q)

where P = dist of X , Q = dist of Y , J = joint dist
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Relative Entropy and Miscoding

Suppose real distribution is P but we think it’s Q and we use
that for coding
Our average code length (cross-entropy) is

−
∑

x

P(x) log2 Q(x)

But the optimum code length is

−
∑

x

P(x) log2 P(x)

Difference is relative entropy
Relative entropy is the extra description length from getting the
distribution wrong
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Basics: Summary

Entropy = minimum mean description length; variability of the
random quantity
Mutual information = reduction in description length from using
dependencies
Relative entropy = excess description length from guessing the
wrong distribution
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Information Sources

X1,X2, . . .Xn, . . . a sequence of random variables
X t

s = (Xs,Xs+1, . . .Xt−1,Xt )
Any sort of random process process will do

Sequence of messages
Successive outputs of a stochastic system
Need not be from a communication channel
e.g., successive states of a dynamical system
or coarse-grained observations of the dynamics
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Definition (Strict or Strong Stationarity)

for any k > 0, T > 0, for all w ∈ X k

Pr
(

X k
1 = w

)
= Pr

(
X k+T

1+T = w
)

i.e., the distribution is invariant over time
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Law of large numbers for stationary sequences

Theorem (Ergodic Theorem)

If X is stationary, then the empirical distribution converges

P̂n → ρ

for some limit ρ, and for all nice functions f

1
n

n∑
t=1

f (Xt )→ Eρ [f (X )]

but ρ may be random and depend on initial conditions
one ρ per attractor
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Entropy Rate

Entropy rate, a.k.a. Shannon entropy rate, a.k.a. metric
entropy rate

h1 ≡ lim
n→∞

H[Xn|X n−1
1 ]

How many extra bits to we need to describe the next
observation (in the limit)?

Theorem
h1 exists for any stationary process (and some others)
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Examples of entropy rates
IID H[Xn|X n−1

1 ] = H[X1] = h1

Markov H[Xn|X n−1
1 ] = H[Xn|Xn−1] = H[X2|X1] = h1

k th-order Markov h1 = H[Xk+1|X k
1 ]
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Using chain rule, can re-write h1 as

h1 = lim
n→∞

1
n

H[X n
1 ]

description length per unit time
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Topological Entropy Rate

Wn ≡ number of allowed words of length n
≡ #

{
w ∈ X n : Pr

(
X n

1 = w
)
> 0

}
log2 Wn ≡ topological entropy
topological entropy rate

h0 = lim
n→∞

1
n

log2 Wn

H[X n
1 ] = log2 Wn if and only if each word is equally probable

Otherwise H[X n
1 ] < log2 Wn
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Metric vs. Topological Entropy Rates

h0 = growth rate in # allowed words, counting all equally
h1 = growth rate, counting more probable words more heavily

effective number of words
So:

h0 ≥ h1

2h1 = effective # of choices of how to go on
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KS Entropy Rate

h1 = growth rate of mean description length of trajectories
Chaos needs h1 > 0
Coarse-graining deterministic dynamics, each partition B has
its own h1(B)
Kolmogorov-Sinai (KS) entropy rate:

hKS = sup
B

h1(B)

Theorem
If G is a generating partition, then hKS = h1(G)

hKS is the asymptotic randomness of the dynamical system
or, the rate at which the symbol sequence provides new
information about the initial condition
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Entropy Rate and Lyapunov Exponents

In general (Ruelle’s inequality),

hKS ≤
d∑

i=1

λi1x>0(λi)

If the invariant measure is smooth, this is equality (Pesin’s
identity)
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Asymptotic Equipartition Property

When n is large, for any word xn
1 , either

Pr (X n
1 = xn

1 ) ≈ 2−nh1

or
Pr (X n

1 = xn
1 ) ≈ 0

More exactly, it’s almost certain that

−1
n

log Pr (X n
1 )→ h1

This is the entropy ergodic theorem or
Shannon-MacMillan-Breiman theorem
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Relative entropy version:

−1
n

log Qθ(X n
1 )→ h1 + d(P‖Qθ)

where
d(P‖Qθ) = lim

n→∞

1
n

D(P(X n
1 )‖Qθ(X n

1 ))

Relative entropy AEP implies entropy AEP
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Entropy and Ergodicity: Summary

h1 is the growth rate of the entropy, or number of choices made
in continuing the trajectory
Measures instability in dynamical systems
Typical sequences have probabilities shrinking at the entropy
rate
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Relative Entropy and Sampling; Large Deviations

X1,X2, . . .Xn all IID with distribution P
Empirical distribution ≡ P̂n
Law of large numbers (LLN): P̂n → P

Theorem (Sanov)

−1
n

log2 Pr
(

P̂n ∈ A
)
→ argmin

Q∈A
D(Q‖P)

or, for non-mathematicians,

Pr
(

P̂n ≈ Q
)
≈ 2−nD(Q‖P)
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Sanov’s theorem is part of the general theory of large
deviations:

Pr(fluctuations away from law of large numbers)→ 0
exponentially in n

rate functon generally a relative entropy

More on large devations: Bucklew (1990); den Hollander (2000)
LDP explains statistical mechanics; see Touchette (2008), or
talk to Eric Smith
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Relative Entropy and Hypothesis Testing

Testing P vs. Q
Optimal error rate (chance of guessing Q when really P) goes
like

Pr (error) ≈ 2−nD(Q‖P)

For dependent data, substitute sum of conditional relative entropies for nD

More exact statement:

1
n

log2 Pr (error)→ −D(Q‖P)

For dependent data, substitute sum conditional relative entropy rate for D

The bigger D(Q‖P), the easier is to test which is right
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Method of Maximum Likelihood

Fisher (1922)
Data = X with true distribution = P
Model distributions = Qθ, θ = parameter
Look for the Qθ which best describes the data
Likelihood at θ is probability of generating the data
Qθ(x) ≡ L(θ)
Estimate θ by maximizing likelihood, equivalently log-likelihood
L(θ) ≡ log Qθ(x)

θ̂ ≡ argmax
θ

L(θ) = argmax
θ

n∑
t=1

log Qθ(xt |x t−1
1 )
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Maximum likelihood and relative entropy

Suppose we want the Qθ which will best describe new data
Optimal parameter value is

θ∗ = argmin
θ

D(P‖Qθ)

If P = Qθ0 for some θ0, then θ∗ = θ0 (true parameter value)
Otherwise θ∗ is the pseudo-true parameter value
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θ∗ = argmin
θ

∑
x

P(x) log2
P(x)

Qθ(x)

= argmin
θ

∑
x

P(x) log2 P(x)− P(x) log2 Qθ(x)

= argmin
θ
−HP [X ]−

∑
x

P(x) log2 Qθ(x)

= argmin
θ
−
∑

x

P(x) log2 Qθ(x)

= argmax
θ

∑
x

P(x) log2 Qθ(x)

This is the expected log-likelihood
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We don’t know P but we do have P̂n
For IID case

θ̂ = argmax
θ

n∑
t=1

log Qθ(xt )

= argmax
θ

1
n

n∑
t=1

log2 Qθ(xt )

= argmax
θ

∑
x

P̂n(x) log2 Qθ(x)

So θ̂ comes from approximating P by P̂n
θ̂ → θ∗ because P̂n → P
Non-IID case (e.g. Markov) similar, more notation
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Relative Entropy and Log Likelihood

In general:

−H[X ]− D(P‖Q) = expected log-likelihood of Q
−H[X ] = optimal expected log-likelihood (ideal model)
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Why Maximum Likelihood?

1 The inherent compelling rightness of the optimization
principle

(a bad answer)
2 Generally consistent: θ̂ converges on the optimal value

(as we just saw)
3 Generally efficient: converges faster than other consistent

estimators

(2) and (3) are really theorems of probability theory
let’s look a bit more at efficiency
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Fisher Information

Fisher: Taylor-expand L to second order around maximum

Fisher information matrix

Fuv (θ0) ≡ −Eθ0

 ∂2 log Qθ0(X )

∂θu∂θv

∣∣∣∣∣
θ=θ0


F ∝ n (for IID, Markov, etc.)
Variance of θ̂ = F−1 (under some regularity conditions)
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The Information Bound

Theorem (Cramér-Rao)

F−1 is the minimum variance for any unbiased estimator

because uncertainty in θ̂ depends on curvature at maximum
leads to a whole information geometry, with F as the metric
tensor (Amari et al., 1987; Kass and Vos, 1997; Kulhavý, 1996;
Amari and Nagaoka, 1993/2000)
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Relative Entropy and Fisher Information

Fuv (θ0) ≡ −Eθ0

 ∂2 log Qθ0(X )

∂θu∂θv

∣∣∣∣∣
θ=θ0


=

∂2

∂θu∂θv
D(Qθ0‖Qθ)

∣∣∣∣
θ=θ0

Fisher information is how quickly the relative entropy grows with
small changes in parameters

D(θ0‖θ0 + ε) ≈ εT F ε+ O(‖ε‖3)

Intuition: “easy to estimate” = “easy to reject sub-optimal
values”
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Maximum Entropy: A Dead End

Given constraints on expectation values of functions
E [g1(X )] = c1,E [g2(X )] = c2, . . .E [gq(X )] = cq

P̃ME ≡ argmax
P

H[P] : ∀i , EP [gi(X )] = ci

= argmax
P

H[P]−
q∑

i=1

λi(EP [gi(X )]− ci)

with Lagrange multipliers λi chosen to enforce the constraints
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Solution: Exponential Families

Generic solution:

P(x) =
e−

Pq
i=1 βi gi (x)∫

dxe−
Pq

i=1 βi gi (x)
=

e−
Pq

i=1 βi gi (x)

Z (β1, β2, . . . βq)

again β enforces constraints
Physics: canonical ensemble with extensive variables gi and
intensive variables βi
Statistics: exponential family with sufficient statistics gi and
natural parameters βi
If we take this family of distributions as basic, MLE is β such
that E [gi(X )] = gi(x), i.e., mean = observed
Best discussion of the connection is still Mandelbrot (1962)
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The Method of Maximum Entropy

Calculate sample statistics gi(x)

Assume that the distribution of X is the one which maximizes
the entropy under those constraints
i.e., the MLE in the exponential family with those sufficient
statistics
Refinement: Minimum relative entropy , minimize divergence
from a reference distribution — also leads to an exponential
family but with a prefactor of the base density
Update distributions under new data by minimizing relative
entropy
Often said to be the “least biased” estimate of P, or the one
which makes “fewest assumptions”
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About MaxEnt

MaxEnt has lots of devotees who basically think it’s the answer
to everything

And it sometimes works, because
1 Exponential families often decent approximations, MLE is

cool but not everything is an exponential family
2 Conditional large deviations principle (Csiszár, 1995): if P̂

is constrained to lie in a convex set A, then

−1
n

log Pr
(

P̂ ∈ B|P̂ ∈ A
)
→ inf

Q∈B∩A
D(Q‖P)− D(Q‖A)

so P̂ is exponentially close to argminQ∈A D(Q‖P)
but the conditional LDP doesn’t always hold
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Updating by minimizing relative entropy can disagree with
Bayes’s rule (Seidenfeld, 1979, 1987; Grünwald and Halpern,
2003)

, contra claims by physicists
The “constraint rule” is certainly not required by logic or
probability (Seidenfeld, 1979, 1987; Uffink, 1995, 1996)
MaxEnt (or MinRelEnt) is not the best rule for coming up with a
prior distribution to use with Bayesian updating; all such rules
suck (Kass and Wasserman, 1996)
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Minimum Description Length Inference

Rissanen (1978, 1989)

Chose a model to concisely describe the data
maximum likelihood minimizes description length of the data
. . . but you need to describe the model as well!
Two-part MDL:

D2(x , θ,Θ) = − log2 Qθ(x) + C(θ,Θ)

θ̂MDL = argmin
θ∈Θ

D2(x , θ,Θ)

D2(x ,Θ) = D2(x , θ̂MDL,Θ)

where C is a coding scheme for the parameters
CSSS Information Theory
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Must fix coding scheme before seeing the data (EXERCISE:
why?)
By AEP

n−1D2 → h1 + argmin
θ∈Θ

d(P‖Qθ)

still for finite n the coding scheme matters
(One-part MDL exists but would take too long)
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Why Use MDL?

1 The inherent compelling rightness of the optimization
principle

2 Good properties: for reasonable sources, if the parametric
complexity

COMP(Θ) = log
∑

w∈X n

argmax
θ∈Θ

Qθ(w)

is small — if there aren’t all that many words which get
high likelihoods — then if MDL did well in-sample, it will
generalize well to new data from the same source

See Grünwald (2005, 2007) for much more
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Information and Statistics: Summary

Relative entropy controls large deviations
Relative entropy = ease of discriminating distributions
Easy discrimination⇒ good estimation
Large deviations explains why MaxEnt works when it does
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