Information Theory

Cosma Shalizi

15 June 2010 Complex Systems Summer School

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의안

Entropy and Information Measuring randomness and dependence in bits

Entropy and Ergodicity Dynamical systems as information sources, long-run randomness

Information and Inference The connection to statistics

Cover and Thomas (1991) is the best single book on information theory.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

ă,

 $2Q$

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

 $2Q$

The most fundamental notion in information theory $X = a$ discrete random variable, values from X The **entropy of** *X* is

$$
H[X] \equiv -\sum_{x \in \mathcal{X}} \Pr(X = x) \log_2 \Pr(X = x)
$$

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロト イ押 トイヨ トイヨ トー

重。 $2Q$

Proposition

$H[X] \geq 0$, and = 0 *only when* $Pr(X = x) = 1$ *for some* x

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $(1 - 4)$ $(1 -$

重。 $2Q$

Proposition

$H[X] \geq 0$, and = 0 *only when* $Pr(X = x) = 1$ *for some* x *(*EXERCISE*)*

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロト イ団 トイヨ トイヨ トー

÷. QQ

Proposition

 $H[X] \geq 0$, and = 0 *only when* $Pr(X = x) = 1$ *for some* x *(*EXERCISE*)*

Proposition

H[*X*] *is maximal when all X are equally probable, and then* $H[X] = \log_2 \# \mathcal{X}$

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロト イ団 トイヨ トイヨ トー

÷. QQ

Proposition

 $H[X] \geq 0$, and = 0 *only when* $Pr(X = x) = 1$ *for some* x *(*EXERCISE*)*

Proposition

H[*X*] *is maximal when all X are equally probable, and then* $H[X] = \log_2 \# \mathcal{X}$ *(EXERCISE)*

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ 不優 トイヨメ イヨメー

÷. QQ

Proposition

 $H[X] \geq 0$, and = 0 *only when* $Pr(X = x) = 1$ *for some* x *(*EXERCISE*)*

Proposition

H[*X*] *is maximal when all X are equally probable, and then* $H[X] = \log_2 \# \mathcal{X}$ *(EXERCISE)*

Proposition

 $H[f(X)] \leq H[X]$, equality if and only if f is 1-1

[Entropy and Ergodicity](#page-67-0) [Relative Entropy and Statistics](#page-86-0) [References](#page-137-0)

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ 不優 おす 老人 すきあい

ă.

 299

Interpretations

[Entropy and Ergodicity](#page-67-0) [Relative Entropy and Statistics](#page-86-0) [References](#page-137-0)

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

K ロ ト K 何 ト K ヨ ト K ヨ ト

÷.

 2990

Interpretations

H[*X*] measures

how *random X* is

[Entropy and Ergodicity](#page-67-0) [Relative Entropy and Statistics](#page-86-0) [References](#page-137-0)

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

 2990

Interpretations

- how *random X* is
- How *variable X* is

[Entropy and Ergodicity](#page-67-0) [Relative Entropy and Statistics](#page-86-0) [References](#page-137-0)

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

 $2Q$

Interpretations

- how *random X* is
- How *variable X* is
- How *uncertain* we should be about *X*

[Entropy and Ergodicity](#page-67-0) [Relative Entropy and Statistics](#page-86-0) [References](#page-137-0)

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

 $2Q$

Interpretations

- how *random X* is
- How *variable X* is
- How *uncertain* we should be about *X* "paleface" problem

[Entropy and Ergodicity](#page-67-0) [Relative Entropy and Statistics](#page-86-0) [References](#page-137-0)

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ イ押 メイヨメ イヨメ

B

 $2Q$

Interpretations

H[*X*] measures

- how *random X* is
- How *variable X* is

How *uncertain* we should be about *X*

"paleface" problem

consistent resolution leads to a completely subjective probability theory

[Entropy and Ergodicity](#page-67-0) [Relative Entropy and Statistics](#page-86-0) [References](#page-137-0) **[Entropy](#page-2-0)** [Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

Interpretations

H[*X*] measures

- how *random X* is
- How *variable X* is

How *uncertain* we should be about *X*

"paleface" problem

consistent resolution leads to a completely subjective probability theory

but the more fundamental interpretation is **description length**

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

ă, QQ

[Description Length](#page-20-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

 $2Q$

Description Length

 $H[X] =$ how concisely can we describe X? Imagine *X* as text message:

[Description Length](#page-20-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

K ロ ト K 何 ト K ヨ ト K ヨ ト

÷.

 $2Q$

Description Length

 $H[X] =$ how concisely can we describe X? Imagine *X* as text message:

in Reno

[Description Length](#page-20-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

 $2Q$

Description Length

 $H[X] =$ how concisely can we describe X? Imagine *X* as text message:

> *in Reno in Reno send money*

[Description Length](#page-20-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

B

 $2Q$

Description Length

 $H[X] =$ how concisely can we describe X? Imagine *X* as text message:

> *in Reno in Reno send money in Reno divorce final*

[Description Length](#page-20-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

B

 $2Q$

Description Length

 $H[X] =$ how concisely can we describe X? Imagine *X* as text message:

> *in Reno in Reno send money in Reno divorce final marry me?*

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

 $2Q$

Description Length

 $H[X] =$ how concisely can we describe X? Imagine *X* as text message:

> *in Reno in Reno send money in Reno divorce final marry me? in Reno send lawyers guns and money kthxbai*

Known and finite number of possible messages ($\#\mathcal{X}$) I know what *X* is but won't show it to you You can guess it by asking yes/no (binary) questions

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $(1 - 4)$ $(1 -$

÷.

 299

First goal: ask as few questions as possible

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

 $2Q$

First goal: ask as few questions as possible Starting with "is it y ?" is optimal iff $X = y$

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 4 ロ } 4 6 } 4 \pm } 4 \pm }

÷.

 $2Q$

First goal: ask as few questions as possible Starting with "is it y ?" is optimal iff $X = y$ Can always achieve no worse than \approx log₂ #X questions

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 4 ロ } 4 6 } 4 \pm } 4 \pm }

ă,

 $2Q$

First goal: ask as few questions as possible Starting with "is it y ?" is optimal iff $X = y$ Can always achieve no worse than \approx log₂ #X questions New goal: minimize the *mean* number of questions

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

ă,

 $2Q$

First goal: ask as few questions as possible Starting with "is it y ?" is optimal iff $X = y$ Can always achieve no worse than \approx log₂ # χ questions New goal: minimize the *mean* number of questions Ask about more probable messages first

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

ă,

 $2Q$

First goal: ask as few questions as possible Starting with "is it y ?" is optimal iff $X = y$ Can always achieve no worse than \approx log₂ $\#\mathcal{X}$ questions New goal: minimize the *mean* number of questions Ask about more probable messages first Still takes $\approx -\log_2 \Pr(X = x)$ questions to reach *x*

[Entropy](#page-2-0)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

ă.

 $2Q$

First goal: ask as few questions as possible Starting with "is it y ?" is optimal iff $X = y$ Can always achieve no worse than \approx log₂ $\#\mathcal{X}$ questions New goal: minimize the *mean* number of questions Ask about more probable messages first Still takes $\approx -\log_2 \Pr(X = x)$ questions to reach *x* Mean is then *H*[*X*]

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロト イ団 トイヨ トイヨ トー

÷.

 $2Q$

Theorem

H[*X*] *is the minimum mean number of binary distinctions needed to describe X*

Units of *H*[*X*] are **bits**

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-32-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロト イ団 トイヨ トイヨ トー

÷.

 $2Q$

Multiple Variables — Joint Entropy

Joint entropy of two variables *X* and *Y*:

$$
H[X, Y] \equiv -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \Pr(X = x, Y = y) \log_2 \Pr(X = x, Y = y)
$$

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-32-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ 不優 トイヨメ イヨメー

÷.

 $2Q$

Multiple Variables — Joint Entropy

Joint entropy of two variables *X* and *Y*:

$$
H[X, Y] \equiv -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \Pr(X = x, Y = y) \log_2 \Pr(X = x, Y = y)
$$

Entropy of joint distribution

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-32-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ イ押 メイヨメ イヨメ

B

 QQ

Multiple Variables — Joint Entropy

Joint entropy of two variables *X* and *Y*:

$$
H[X, Y] \equiv -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \Pr(X = x, Y = y) \log_2 \Pr(X = x, Y = y)
$$

Entropy of joint distribution

This is the minimum mean length to describe both *X* and *Y*

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ イ押 メイヨメ イヨメ

B

 QQ

Multiple Variables — Joint Entropy

Joint entropy of two variables *X* and *Y*:

$$
H[X, Y] \equiv -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \Pr(X = x, Y = y) \log_2 \Pr(X = x, Y = y)
$$

Entropy of joint distribution

This is the minimum mean length to describe both *X* and *Y*

$$
H[X, Y] \geq H[X]
$$

\n
$$
H[X, Y] \geq H[Y]
$$

\n
$$
H[X, Y] \leq H[X] + H[Y]
$$

\n
$$
H[f(X), X] = H[X]
$$

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

 $2Q$

Conditional Entropy

Entropy of conditional distribution:

$$
H[X|Y=y] \equiv -\sum_{x \in \mathcal{X}} \Pr(X = x|Y = y) \log_2 \Pr(X = x|Y = y)
$$

Average over *y*:

$$
H[X|Y] \equiv \sum_{y \in \mathcal{Y}} \Pr(Y = y) H[X|Y = y]
$$

On average, how many bits are needed to describe *X*, *after Y* is given?

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

 299

$$
H[X|Y] = H[X, Y] - H[Y]
$$

"text completion" principle Note: $H[X|Y] \neq H[Y|X]$, in general

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

 $2Q$

$$
H[X|Y] = H[X, Y] - H[Y]
$$

"text completion" principle Note: $H[X|Y] \neq H[Y|X]$, in general **Chain rule**:

$$
H[X_1^n] = H[X_1] + \sum_{t=1}^{n-1} H[X_{t+1} | X_1^t]
$$

Describe one variable, then describe 2nd with 1st, 3rd with first two, etc.
[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ イ押 メイヨメ イヨメ

G.

 $2Q$

Mutual Information

Mutual information between *X* and *Y*

$$
I[X; Y] \equiv H[X] + H[Y] - H[X, Y]
$$

How much shorter is the *actual* joint description than the sum of the individual descriptions?

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ イ押 メイヨメ イヨメ

ă.

 $2Q$

Mutual Information

Mutual information between *X* and *Y*

$$
I[X; Y] \equiv H[X] + H[Y] - H[X, Y]
$$

How much shorter is the *actual* joint description than the sum of the individual descriptions? Equivalent:

$$
I[X; Y] = H[X] - H[X|Y] = H[Y] - H[Y|X]
$$

How much can I shorten my description of either variable by using the other?

[Entropy](#page-2-0) [Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 QQ

Mutual Information

Mutual information between *X* and *Y*

$$
I[X; Y] \equiv H[X] + H[Y] - H[X, Y]
$$

How much shorter is the *actual* joint description than the sum of the individual descriptions? Equivalent:

$$
I[X; Y] = H[X] - H[X|Y] = H[Y] - H[Y|X]
$$

How much can I shorten my description of either variable by using the other?

 $0 < I[X; Y] < \min H[X], H[Y]$

 $I[X; Y] = 0$ if and only if X and Y are stati[stic](#page-37-0)[all](#page-39-0)[y](#page-35-0) [i](#page-36-0)[n](#page-1-0)[d](#page-2-0)[e](#page-66-0)[p](#page-49-0)ende[nt](#page-0-0).

[Entropy and Information](#page-2-0) [Entropy and Ergodicity](#page-67-0)

[Relative Entropy and Statistics](#page-86-0) [References](#page-137-0) **[Description Length](#page-15-0)** [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

÷.

 299

How much can we learn about what was sent from what we receive? *I*[*X*; *Y*] イロト イ押 トイヨ トイヨ トー

[Entropy and Information](#page-2-0)

[Entropy and Ergodicity](#page-67-0) [Relative Entropy and Statistics](#page-86-0) [References](#page-137-0) [Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

メロトメ 御 トメ 差 トメ 差 トー

 \equiv 990

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

G.

 $2Q$

Historically, this is the origin of information theory: sending coded messages efficiently (Shannon, 1948)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ イ押 メイヨメ イヨメ

G.

 $2Q$

Historically, this is the origin of information theory: sending coded messages efficiently (Shannon, 1948)

Stephenson (1999) is a historical dramatization with silly late-1990s story tacked on

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ イ押 メイヨメ イヨメ

ă.

 $2Q$

Historically, this is the origin of information theory: sending coded messages efficiently (Shannon, 1948) Stephenson (1999) is a historical dramatization with silly late-1990s story tacked on **channel capacity** $C = \max I[X; Y]$ as we change distribution of

X

[Entropy](#page-2-0) [Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ イ押 メイヨメ イヨメ

ă.

 $2Q$

Historically, this is the origin of information theory: sending coded messages efficiently (Shannon, 1948)

Stephenson (1999) is a historical dramatization with silly late-1990s story tacked on **channel capacity** $C = \max I[X; Y]$ as we change distribution of *X*

Any rate of information transfer < *C* can be achieved with arbitrarily small error rate, *no matter what the noise* No rate > *C* can be achieved without error

[Entropy](#page-2-0) [Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

4 ロ) (何) (日) (日)

ă.

 $2Q$

Historically, this is the origin of information theory: sending coded messages efficiently (Shannon, 1948)

Stephenson (1999) is a historical dramatization with silly late-1990s story tacked on **channel capacity** $C = \max I[X; Y]$ as we change distribution of *X*

Any rate of information transfer < *C* can be achieved with arbitrarily small error rate, *no matter what the noise* No rate > *C* can be achieved without error *C* is also related to the value of information in gambling (Poundstone, 2005)

[Entropy](#page-2-0) [Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ イ押 メイヨメ イヨメ

ă.

 $2Q$

Historically, this is the origin of information theory: sending coded messages efficiently (Shannon, 1948)

Stephenson (1999) is a historical dramatization with silly late-1990s story tacked on **channel capacity** $C = \max I[X; Y]$ as we change distribution of *X*

Any rate of information transfer < *C* can be achieved with arbitrarily small error rate, *no matter what the noise* No rate > *C* can be achieved without error *C* is also related to the value of information in gambling (Poundstone, 2005) This is *not* the only model of communication! (Sperber and

Wilson, 1995, 1990)

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ 不優 トイヨメ イヨメー

G.

 $2Q$

Conditional Mutual Information

$$
I[X; Y|Z] = H[X|Z] + H[Y|Z] - H[X, Y|Z]
$$

How much extra information do *X* and *Y* give, over and above what's in *Z*?

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

4 ロ) (何) (日) (日)

G.

 $2Q$

Conditional Mutual Information

$$
I[X; Y|Z] = H[X|Z] + H[Y|Z] - H[X, Y|Z]
$$

How much extra information do *X* and *Y* give, over and above what's in *Z*? $X \perp \!\!\! \perp Y | Z$ if and only if $I[X; Y|Z] = 0$

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

 $2Q$

Conditional Mutual Information

$$
I[X; Y|Z] = H[X|Z] + H[Y|Z] - H[X, Y|Z]
$$

How much extra information do *X* and *Y* give, over and above what's in *Z*? $X \perp \!\!\! \perp Y$ *Z* if and only if *I*[*X*; *Y*|*Z*] = 0

Markov property is completely equivalent to

$$
I[X_{t+1}^{\infty}; X_{-\infty}^{t-1}|X_t] = 0
$$

Markov property is really about information flow

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-55-0) [Relative Entropy](#page-56-0)

イロメ 不優 トイヨメ イヨメー

G.

 $2Q$

What About Continuous Variables?

Differential entropy:

$$
H(X) \equiv -\int dx p(x) \log_2 p(x)
$$

where *p* has to be the probability density function

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-55-0) [Relative Entropy](#page-56-0)

イロメ 不優 トイヨメ イヨメー

G.

 $2Q$

What About Continuous Variables?

Differential entropy:

$$
H(X) \equiv -\int dx p(x) \log_2 p(x)
$$

where *p* has to be the probability density function $H(X) < 0$ entirely possible

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-55-0) [Relative Entropy](#page-56-0)

イロメ イ押 メイヨメ イヨメ

G.

 $2Q$

What About Continuous Variables?

Differential entropy:

$$
H(X) \equiv -\int dx p(x) \log_2 p(x)
$$

where *p* has to be the probability density function $H(X) < 0$ entirely possible Differential entropy *varies* under 1-1 maps (e.g. coordinate changes)

[Entropy](#page-2-0) [Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-55-0) [Relative Entropy](#page-56-0)

イロメ イ押 メイヨメ イヨメ

B

 $2Q$

What About Continuous Variables?

Differential entropy:

$$
H(X) \equiv -\int dx p(x) \log_2 p(x)
$$

where *p* has to be the probability density function $H(X) < 0$ entirely possible Differential entropy *varies* under 1-1 maps (e.g. coordinate changes)

Joint and conditional entropy definitions carry over

[Entropy](#page-2-0) [Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-55-0) [Relative Entropy](#page-56-0)

イロメ イ押 メイヨメ イヨメ

ă.

 $2Q$

What About Continuous Variables?

Differential entropy:

$$
H(X) \equiv -\int dx p(x) \log_2 p(x)
$$

where *p* has to be the probability density function $H(X) < 0$ entirely possible Differential entropy *varies* under 1-1 maps (e.g. coordinate changes)

Joint and conditional entropy definitions carry over Mutual information definition carries over

[Entropy](#page-2-0) [Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

4 ロ) (何) (日) (日)

 $2Q$

What About Continuous Variables?

Differential entropy:

$$
H(X) \equiv -\int dx p(x) \log_2 p(x)
$$

where *p* has to be the probability density function

 $H(X) < 0$ entirely possible

Differential entropy *varies* under 1-1 maps (e.g. coordinate changes)

Joint and conditional entropy definitions carry over Mutual information definition carries over

MI *is* non-negative and invariant under 1-1 maps

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

4 ロ) (何) (日) (日)

B

 $2Q$

Relative Entropy

P, $Q =$ two distributions on the same space X

$$
D(P||Q) \equiv \sum_{x \in \mathcal{X}} P(x) \log_2 \frac{P(x)}{Q(x)}
$$

Or, if X is continuous,

$$
D(P||Q) \equiv \int_{\mathcal{X}} dx \ p(x) \log_2 \frac{p(x)}{q(x)}
$$

Or, if you like measure theory,

$$
D(P \| Q) \equiv \int dP(\omega) \log_2 \frac{dP}{dQ}(\omega)
$$

a.k.a. **Kullback-Leibler divergence**

[Entropy and Information](#page-2-0)

[Entropy and Ergodicity](#page-67-0) [Relative Entropy and Statistics](#page-86-0) [References](#page-137-0) [Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロト イ団 トイヨ トイヨ トー

重。 299

Relative Entropy Properties

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロト イ団 トイヨ トイヨ トー

÷.

 $2Q$

Relative Entropy Properties

$D(P||Q) \geq 0$, with equality if and only if $P = Q$

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメイ部メイ君メイ君メー

G.

 $2Q$

Relative Entropy Properties

$D(P||Q) \geq 0$, with equality if and only if $P = Q$ $D(P||Q) \neq D(Q||P)$, in general

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ イ押メ イヨメ イヨメー

ă. QQ

Relative Entropy Properties

 $D(P||Q) > 0$, with equality if and only if $P = Q$ $D(P||Q) \neq D(Q||P)$, in general $D(P||Q) = \infty$ if *Q* gives probability zero to something with positive *P* probability (*P* not dominated by *Q*)

[Entropy](#page-2-0) [Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ イ押メ イヨメ イヨメー

ă.

 $2Q$

Relative Entropy Properties

 $D(P||Q) > 0$, with equality if and only if $P = Q$ $D(P||Q) \neq D(Q||P)$, in general $D(P||Q) = \infty$ if *Q* gives probability zero to something with positive *P* probability (*P* not dominated by *Q*) Invariant under 1-1 maps

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロト イ団 トイヨ トイヨ トー

G. QQ

Joint and Conditional Relative Entropies

P, *Q* now distributions on X, Y

 $D(P||Q) = D(P(X)||Q(X)) + D(P(Y|X)||Q(Y|X))$

where

$$
D(P(Y|X)||Q(Y|X)) = \sum_{x} P(x)D(P(Y|X=x)||Q(Y|X=x))
$$

=
$$
\sum_{x} P(x) \sum_{y} P(y|x) \log_2 \frac{P(y|x)}{Q(y|x)}
$$

and so on for more than two variables

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロト イ押 トイヨ トイヨ トー

÷.

 $2Q$

Relative entropy can be the basic concept

$$
H[X] = \log_2 m - D(P||U)
$$

where $m = \#\mathcal{X}$, $U =$ uniform dist on \mathcal{X} , $P =$ dist of X

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $(1 - 4)$ $(1 -$

G.

 $2Q$

Relative entropy can be the basic concept

$$
H[X]=\log_2 m - D(P\|U)
$$

where $m = \#\mathcal{X}$, $U =$ uniform dist on \mathcal{X} , $P =$ dist of X

$$
I[X; Y] = D(J \| P \otimes Q)
$$

where $P =$ dist of X , $Q =$ dist of Y , $J =$ joint dist

[Entropy](#page-2-0) [Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

 $2Q$

Relative Entropy and Miscoding

Suppose real distribution is *P* but we think it's *Q* and we use that for coding

Our average code length (**cross-entropy**) is

$$
-\sum_{x} P(x) \log_2 Q(x)
$$

But the optimum code length is

$$
-\sum_{x} P(x) \log_2 P(x)
$$

Difference is relative entropy Relative entropy is the extra description length from getting the distribution wrong K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ⊁

[Description Length](#page-15-0) [Multiple Variables and Mutual Information](#page-29-0) [Continuous Variables](#page-50-0) [Relative Entropy](#page-56-0)

イロメ イ押 メイヨメ イヨメ

 $2Q$

Basics: Summary

 $Entropy = minimum mean description length$; variability of the random quantity

Mutual information $=$ reduction in description length from using dependencies

Relative entropy $=$ excess description length from quessing the wrong distribution

[Information Sources](#page-70-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Information Sources

 $X_1, X_2, \ldots, X_n, \ldots$ a sequence of random variables $X_s^t = (X_s, X_{s+1}, \ldots X_{t-1}, X_t)$ Any sort of random process process will do

4 ロ) (何) (日) (日)

 2990

G.

[Information Sources](#page-70-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Information Sources

 $X_1, X_2, \ldots, X_n, \ldots$ a sequence of random variables $X_s^t = (X_s, X_{s+1}, \ldots X_{t-1}, X_t)$ Any sort of random process process will do Sequence of messages Successive outputs of a stochastic system

4 ロ) (何) (日) (日)

ă. QQ

[Information Sources](#page-70-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Information Sources

 $X_1, X_2, \ldots, X_n, \ldots$ a sequence of random variables $X_s^t = (X_s, X_{s+1}, \ldots X_{t-1}, X_t)$ Any sort of random process process will do Sequence of messages Successive outputs of a stochastic system *Need not* be from a communication channel e.g., successive states of a dynamical system

4 ロ) (何) (日) (日)

 $2Q$

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Information Sources

 $X_1, X_2, \ldots, X_n, \ldots$ a sequence of random variables $X_s^t = (X_s, X_{s+1}, \ldots X_{t-1}, X_t)$ Any sort of random process process will do Sequence of messages Successive outputs of a stochastic system *Need not* be from a communication channel e.g., successive states of a dynamical system or *coarse-grained* observations of the dynamics

4 ロ) (何) (日) (日)

 $2Q$

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Definition (Strict or Strong Stationarity)

for any $k > 0$, $T > 0$, for all $w \in \mathcal{X}^k$

$$
\Pr\left(X_1^k = w\right) = \Pr\left(X_{1+T}^{k+T} = w\right)
$$

i.e., the distribution is invariant over time

イロト イ団 トイヨ トイヨ トー

G.

 $2Q$
[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Law of large numbers for stationary sequences

Theorem (Ergodic Theorem)

If X is stationary, then the empirical distribution converges

$$
\hat{P}_n \rightarrow \rho
$$

for some limit ρ*, and for all nice functions f*

$$
\frac{1}{n}\sum_{t=1}^n f(X_t) \to \mathsf{E}_{\rho}\left[f(X)\right]
$$

but ρ may be random and depend on initial conditions one ρ per attractor

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

B

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Entropy rate, a.k.a. **Shannon entropy rate**, a.k.a. **metric entropy rate**

$$
h_1 \equiv \lim_{n \to \infty} H[X_n | X_1^{n-1}]
$$

How many extra bits to we need to describe the next observation (in the limit)?

Theorem

*h*¹ *exists for any stationary process (and some others)*

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

ă. QQ

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Examples of entropy rates

$$
H[X_n|X_1^{n-1}] = H[X_1] = h_1
$$

Markov $H[X_n|X_1^{n-1}] = H[X_n|X_{n-1}] = H[X_2|X_1] = h_1$
 k^{th} -order Markov $h_1 = H[X_{k+1}|X_1^k]$

 Ξ

 299

イロメ 不優 メイ君 メイ君 メー

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Using chain rule, can re-write h_1 as

$$
h_1=\lim_{n\to\infty}\frac{1}{n}H[X_1^n]
$$

description length per unit time

メロメメ 御きメ ミカメ モド

÷.

 2990

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Topological Entropy Rate

 $W_n \equiv$ number of allowed words of length *n* $\equiv \#\{w \in \mathcal{X}^n : \Pr(X_1^n = w) > 0\}$ $log_2 W_n \equiv$ **topological entropy topological entropy rate**

$$
h_0=\lim_{n\to\infty}\frac{1}{n}\log_2 W_n
$$

 $H[X_1^n] = \log_2 W_n$ if and only if each word is equally probable \bigcirc Otherwise $H[X_1^n] < \log_2 W_n$

イロメ 不優 トメ ヨ メ ス ヨ メー

ă.

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Metric vs. Topological Entropy Rates

 h_0 = growth rate in # allowed words, counting all equally h_1 = growth rate, counting more probable words more heavily

 4 ロ } 4 6 } 4 \pm } 4 \pm }

ă.

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Metric vs. Topological Entropy Rates

 h_0 = growth rate in # allowed words, counting all equally h_1 = growth rate, counting more probable words more heavily *effective* number of words

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

ă.

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Metric vs. Topological Entropy Rates

 h_0 = growth rate in # allowed words, counting all equally h_1 = growth rate, counting more probable words more heavily *effective* number of words So:

$$
h_0\geq h_1
$$

イロメ イ押 メイヨメ イヨメ

ă.

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Metric vs. Topological Entropy Rates

 h_0 = growth rate in # allowed words, counting all equally h_1 = growth rate, counting more probable words more heavily *effective* number of words So:

$h_0 > h_1$

2 *^h*¹ = *effective* # of choices of how to go on

4 ロ) (何) (日) (日)

ă.

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

 \equiv

 QQ

KS Entropy Rate

 h_1 = growth rate of mean description length of *trajectories* Chaos needs $h_1 > 0$ Coarse-graining deterministic dynamics, each partition β has its own $h_1(\mathcal{B})$

Kolmogorov-Sinai (KS) entropy rate:

$$
h_{KS} = \sup_{\mathcal{B}} h_1(\mathcal{B})
$$

Theorem

If G is a generating partition, then $h_{KS} = h_1(\mathcal{G})$

hKS is the *asymptotic randomness* of the dynamical system or, the rate at which the symbol sequence provides *new information* about the initial condition イロト 不優 ト 不思 ト 不思 トー

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Entropy Rate and Lyapunov Exponents

In general (Ruelle's inequality),

$$
h_{KS} \leq \sum_{i=1}^d \lambda_i \mathbf{1}_{x>0}(\lambda_i)
$$

If the invariant measure is smooth, this is equality (Pesin's identity)

イロメ イ押 メイヨメ イヨメ

B

 QQ

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Asymptotic Equipartition Property

When n is large, for any word x_1^n , either

$$
\Pr\left(X_1^n=x_1^n\right)\approx 2^{-nh_1}
$$

or

$$
\Pr\left(X_1^n=x_1^n\right)\approx 0
$$

More exactly, it's almost certain that

$$
-\frac{1}{n}\log\Pr\left(X_{1}^{n}\right)\rightarrow h_{1}
$$

This is the **entropy ergodic theorem** or **Shannon-MacMillan-Breiman theorem**

イロメ イ押 メイヨメ イヨメ

B

 QQ

[Entropy and Information](#page-2-0) [Entropy and Ergodicity](#page-67-0) [Relative Entropy and Statistics](#page-86-0) [References](#page-137-0) [Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Relative entropy version:

$$
-\frac{1}{n}\log Q_\theta(X_1^n) \to h_1 + d(P \| Q_\theta)
$$

where

$$
d(P||Q_{\theta}) = \lim_{n \to \infty} \frac{1}{n} D(P(X_1^n)||Q_{\theta}(X_1^n))
$$

Relative entropy AEP implies entropy AEP

4 ロ) (何) (日) (日)

÷.

 2990

[Information Sources](#page-67-0) [Entropy Rates](#page-73-0) [Entropy Rates and Dynamics](#page-81-0) [Asymptotic Equipartition](#page-83-0)

Entropy and Ergodicity: Summary

 h_1 is the growth rate of the entropy, or number of choices made in continuing the trajectory Measures instability in dynamical systems

Typical sequences have probabilities shrinking at the entropy rate

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

[Sampling and Large Deviations](#page-87-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

 4 ロ } 4 6 } 4 \pm } 4 \pm }

 $2Q$

э

Relative Entropy and Sampling; Large Deviations

 X_1, X_2, \ldots, X_n all IID with distribution P ${\sf Empirical\ distribution} \equiv \hat{P}_n$ Law of large numbers (LLN): $\hat{P}_n \rightarrow P$

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

4 ロ) (何) (日) (日)

 QQ

Relative Entropy and Sampling; Large Deviations

 X_1, X_2, \ldots, X_n all IID with distribution *P* ${\sf Empirical\ distribution} \equiv \hat{P}_n$ Law of large numbers (LLN): $\hat{P}_n \rightarrow P$

Theorem (Sanov)

$$
-\frac{1}{n}\log_2\Pr\left(\hat{P}_n\in A\right)\to\mathop{\rm argmin}\limits_{Q\in A}D(Q\|P)
$$

or, for non-mathematicians,

$$
\Pr\left(\hat{P}_n \approx Q\right) \approx 2^{-nD(Q||P)}
$$

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ト K 伊 ト K ヨ ト K

 $2Q$

Sanov's theorem is part of the general theory of **large deviations**:

Pr(fluctuations away from law of large numbers) $\rightarrow 0$ exponentially in *n* rate functon generally a relative entropy

More on large devations: Bucklew (1990); den Hollander (2000) LDP explains statistical mechanics; see Touchette (2008), or talk to Eric Smith

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-91-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

 4 ロ } 4 6 } 4 \pm } 4 \pm }

È. $2Q$

Relative Entropy and Hypothesis Testing

Testing *P* vs. *Q* Optimal error rate (chance of guessing *Q* when really *P*) goes like

 $\Pr\left(\text{error}\right) \approx 2^{-nD(Q\|P)}$

For dependent data, substitute sum of conditional relative entropies for *nD*

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-91-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

4 ロ) (何) (日) (日)

È. QQ

Relative Entropy and Hypothesis Testing

Testing *P* vs. *Q* Optimal error rate (chance of guessing *Q* when really *P*) goes like

 $\Pr\left(\text{error}\right) \approx 2^{-nD(Q\|P)}$

For dependent data, substitute sum of conditional relative entropies for *nD* More exact statement:

$$
\frac{1}{n}\log_2\Pr\left(\text{error}\right)\rightarrow-D(Q\|P)
$$

For dependent data, substitute sum conditional relative entropy rate for *D*

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

4 ロ) (何) (日) (日)

 QQ

Relative Entropy and Hypothesis Testing

Testing *P* vs. *Q* Optimal error rate (chance of guessing *Q* when really *P*) goes like

 $\Pr\left(\text{error}\right) \approx 2^{-nD(Q\|P)}$

For dependent data, substitute sum of conditional relative entropies for *nD* More exact statement:

$$
\frac{1}{n}\log_2\Pr\left(\text{error}\right)\rightarrow-D(Q\|P)
$$

For dependent data, substitute sum conditional relative entropy rate for *D* The bigger *D*(*Q*k*P*), the easier is to test which is right

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

イロメ イ押 メイヨメ イヨメ

 $2Q$

Method of Maximum Likelihood

Fisher (1922) Data $=$ *X* with true distribution $=$ *P* Model distributions = Q_{θ} , θ = parameter Look for the Q_{θ} which best describes the data **Likelihood** at θ is probability of generating the data $Q_{\theta}(x) \equiv \mathcal{L}(\theta)$ Estimate θ by maximizing likelihood, equivalently log-likelihood $\mathcal{L}(\theta) \equiv \log Q_{\theta}(x)$

$$
\widehat{\theta} \equiv \underset{\theta}{\text{argmax}} \mathcal{L}(\theta) = \underset{\theta}{\text{argmax}} \sum_{t=1}^{n} \log Q_{\theta}(x_t | x_1^{t-1})
$$

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

イロメ イ押 メイヨメ イヨメ

ă.

 $2Q$

Maximum likelihood and relative entropy

Suppose we want the *Q*^θ which will best describe *new* data Optimal parameter value is

$$
\theta^* = \operatornamewithlimits{argmin}_\theta D(P \| Q_\theta)
$$

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

4 ロ) (何) (日) (日)

B

 $2Q$

Maximum likelihood and relative entropy

Suppose we want the Q_{θ} which will best describe *new* data Optimal parameter value is

$$
\theta^* = \operatornamewithlimits{argmin}_\theta D(P \| Q_\theta)
$$

If $P = Q_{\theta_0}$ for some θ_0 , then $\theta^* = \theta_0$ (true parameter value)

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

 $2Q$

Maximum likelihood and relative entropy

Suppose we want the Q_{θ} which will best describe *new* data Optimal parameter value is

$$
\theta^* = \operatornamewithlimits{argmin}_\theta D(P \| Q_\theta)
$$

If $P = Q_{\theta_0}$ for some θ_0 , then $\theta^* = \theta_0$ (true parameter value) Otherwise θ ∗ is the **pseudo-true** parameter value

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

4 ロ) (何) (日) (日)

÷.

 299

$$
\theta^* = \underset{\theta}{\text{argmin}} \sum_{x} P(x) \log_2 \frac{P(x)}{Q_{\theta}(x)}
$$

\n
$$
= \underset{\theta}{\text{argmin}} \sum_{x} P(x) \log_2 P(x) - P(x) \log_2 Q_{\theta}(x)
$$

\n
$$
= \underset{\theta}{\text{argmin}} - H_P[X] - \sum_{x} P(x) \log_2 Q_{\theta}(x)
$$

\n
$$
= \underset{\theta}{\text{argmin}} - \sum_{x} P(x) \log_2 Q_{\theta}(x)
$$

\n
$$
= \underset{\theta}{\text{argmax}} \sum_{x} P(x) \log_2 Q_{\theta}(x)
$$

This is the *expected log-likelihood*

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ト K 何 ト K ヨ ト K ヨ ト

÷.

 $2Q$

We don't know *P* but we do have *P*ˆ *n* For IID case

$$
\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{t=1}^{n} \log Q_{\theta}(x_{t})
$$
\n
$$
= \underset{\theta}{\operatorname{argmax}} \frac{1}{n} \sum_{t=1}^{n} \log_{2} Q_{\theta}(x_{t})
$$
\n
$$
= \underset{\theta}{\operatorname{argmax}} \sum_{x} \hat{P}_{n}(x) \log_{2} Q_{\theta}(x)
$$

So $\hat{\theta}$ comes from approximating P by \hat{P}_n $\hat{\theta} \rightarrow \theta^*$ because $\hat{\mathsf{P}}_n \rightarrow \mathsf{P}$

Non-IID case (e.g. Markov) similar, more notation

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

 4 ロ } 4 6 } 4 \pm } 4 \pm }

B

 $2Q$

Relative Entropy and Log Likelihood

In general:

−*H*[*X*] − *D*(*P*k*Q*) = expected log-likelihood of *Q* −*H*[*X*] = optimal expected log-likelihood (ideal model)

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

メロメメ 御きメ ミカメ モド

÷.

 $2Q$

Why Maximum Likelihood?

¹ The inherent compelling rightness of the optimization principle

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

4 ロ) (何) (日) (日)

B

 $2Q$

Why Maximum Likelihood?

¹ The inherent compelling rightness of the optimization principle (a bad answer)

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

ă. QQ

Why Maximum Likelihood?

- ¹ The inherent compelling rightness of the optimization principle (a bad answer)
- 2 Generally **consistent**: $\widehat{\theta}$ converges on the optimal value

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

ă. QQ

Why Maximum Likelihood?

- ¹ The inherent compelling rightness of the optimization principle (a bad answer)
- 2 Generally **consistent**: $\hat{\theta}$ converges on the optimal value (as we just saw)

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ト K 御 ト K ヨ ト K

 $2Q$

Why Maximum Likelihood?

- ¹ The inherent compelling rightness of the optimization principle (a bad answer)
- 2 Generally **consistent**: $\hat{\theta}$ converges on the optimal value (as we just saw)
- ³ Generally **efficient**: converges faster than other consistent estimators

(2) and (3) are really theorems of probability theory let's look a bit more at efficiency

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-107-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

4 ロ) (何) (日) (日)

÷.

 $2Q$

Fisher Information

Fisher: Taylor-expand $\mathcal L$ to second order around maximum

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-107-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

イロメ イ押 メイヨメ イヨメ

 2990

B

Fisher Information

Fisher: Taylor-expand $\mathcal L$ to second order around maximum **Fisher information matrix**

$$
F_{uv}(\theta_0) \equiv -\mathbf{E}_{\theta_0} \left[\left. \frac{\partial^2 \log Q_{\theta_0}(X)}{\partial \theta_u \partial \theta_v} \right|_{\theta = \theta_0} \right]
$$

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-107-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

イロメ イ押 メイヨメ イヨメ

÷.

 $2Q$

Fisher Information

Fisher: Taylor-expand $\mathcal L$ to second order around maximum **Fisher information matrix**

$$
F_{uv}(\theta_0) \equiv -\mathbf{E}_{\theta_0} \left[\left. \frac{\partial^2 \log Q_{\theta_0}(X)}{\partial \theta_u \partial \theta_v} \right|_{\theta = \theta_0} \right]
$$

 $F \propto n$ (for IID, Markov, etc.)

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

イロメ イ押 メイヨメ イヨメ

ă. QQ

Fisher Information

Fisher: Taylor-expand $\mathcal L$ to second order around maximum **Fisher information matrix**

$$
F_{uv}(\theta_0) \equiv -\mathbf{E}_{\theta_0} \left[\left. \frac{\partial^2 \log Q_{\theta_0}(X)}{\partial \theta_u \partial \theta_v} \right|_{\theta = \theta_0} \right]
$$

 $F \propto n$ (for IID, Markov, etc.) Variance of $\hat{\theta} = F^{-1}$ (under some regularity conditions)
[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

 $2Q$

The Information Bound

Theorem (Cramér-Rao)

F −1 *is the minimum variance for any unbiased estimator*

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 2990

ă,

The Information Bound

Theorem (Cramér-Rao)

F −1 *is the minimum variance for any unbiased estimator*

because uncertainty in $\hat{\theta}$ depends on curvature at maximum

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

 $2Q$

The Information Bound

Theorem (Cramér-Rao)

F −1 *is the minimum variance for any unbiased estimator*

because uncertainty in $\hat{\theta}$ depends on curvature at maximum leads to a whole **information geometry**, with *F* as the metric tensor (Amari *et al.*, 1987; Kass and Vos, 1997; Kulhavý, 1996; Amari and Nagaoka, 1993/2000)

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

 $2Q$

Relative Entropy and Fisher Information

$$
F_{uv}(\theta_0) = -\mathbf{E}_{\theta_0} \left[\frac{\partial^2 \log Q_{\theta_0}(X)}{\partial \theta_u \partial \theta_v} \Big|_{\theta = \theta_0} \right]
$$

=
$$
\frac{\partial^2}{\partial \theta_u \partial \theta_v} D(Q_{\theta_0} || Q_{\theta}) \Big|_{\theta = \theta_0}
$$

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

 QQ

Relative Entropy and Fisher Information

$$
F_{uv}(\theta_0) = -\mathbf{E}_{\theta_0} \left[\frac{\partial^2 \log Q_{\theta_0}(X)}{\partial \theta_u \partial \theta_v} \Big|_{\theta = \theta_0} \right]
$$

=
$$
\frac{\partial^2}{\partial \theta_u \partial \theta_v} D(Q_{\theta_0} || Q_{\theta}) \Big|_{\theta = \theta_0}
$$

Fisher information is how quickly the relative entropy grows with small changes in parameters

$$
D(\theta_0\|\theta_0+\epsilon) \approx \epsilon^{\mathcal{T}}\mathcal{F}\epsilon + O(\|\epsilon\|^3)
$$

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

 $2Q$

Relative Entropy and Fisher Information

$$
F_{uv}(\theta_0) = -\mathbf{E}_{\theta_0} \left[\frac{\partial^2 \log Q_{\theta_0}(X)}{\partial \theta_u \partial \theta_v} \bigg|_{\theta = \theta_0} \right]
$$

=
$$
\frac{\partial^2}{\partial \theta_u \partial \theta_v} D(Q_{\theta_0} || Q_{\theta}) \bigg|_{\theta = \theta_0}
$$

Fisher information is how quickly the relative entropy grows with small changes in parameters

$$
D(\theta_0 \|\theta_0 + \epsilon) \approx \epsilon^T \mathcal{F} \epsilon + O(\|\epsilon\|^3)
$$

Intuition: "easy to estimate" = "easy to reject sub-optimal values" K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ⊁

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-115-0) [Minimum Description Length](#page-133-0)

K ロ ト K 伺 ト K ヨ ト K ヨ ト

÷.

 $2Q$

Maximum Entropy: A Dead End

Given *constraints* on expectation values of functions **E**[$g_1(X)$] = c_1 , **E** [$g_2(X)$] = c_2 , . . . **E** [$g_q(X)$] = c_q

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ト K 何 ト K ヨ ト K ヨ ト

B

 $2Q$

Maximum Entropy: A Dead End

Given *constraints* on expectation values of functions **E**[$g_1(X)$] = c_1 , **E** [$g_2(X)$] = c_2 , ... **E** [$g_q(X)$] = c_q

$$
\tilde{P}_{ME} \equiv \underset{P}{\text{argmax}} H[P] : \forall i, \mathbf{E}_P[g_i(X)] = c_i
$$
\n
$$
= \underset{P}{\text{argmax}} H[P] - \sum_{i=1}^q \lambda_i (\mathbf{E}_P[g_i(X)] - c_i)
$$

with **Lagrange multipliers** λ*ⁱ* chosen to enforce the constraints

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

 QQ

Solution: Exponential Families

Generic solution:

$$
P(x) = \frac{e^{-\sum_{i=1}^{q} \beta_i g_i(x)}}{\int dx e^{-\sum_{i=1}^{q} \beta_i g_i(x)}} = \frac{e^{-\sum_{i=1}^{q} \beta_i g_i(x)}}{Z(\beta_1, \beta_2, \ldots \beta_q)}
$$

again β enforces constraints

Physics: **canonical ensemble** with extensive variables *gⁱ* and intensive variables β*ⁱ*

Statistics: **exponential family** with sufficient statistics *gⁱ* and natural parameters β*ⁱ*

If we take this family of distributions as basic, MLE is β such that $\mathbf{E}[g_i(X)] = g_i(x)$, i.e., mean = observed

Best discussion of the connection is still Mandelbrot (1962[\)](#page-115-0) **K ロ ト K 何 ト K ヨ ト**

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

メロメメ 御きメ ミカメ モド

÷.

 $2Q$

The Method of Maximum Entropy

Calculate sample statistics *gi*(*x*)

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

 $2Q$

э

The Method of Maximum Entropy

Calculate sample statistics *gi*(*x*) Assume that the distribution of *X* is the one which maximizes the entropy under those constraints

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

 $2Q$

э

The Method of Maximum Entropy

Calculate sample statistics *gi*(*x*) Assume that the distribution of *X* is the one which maximizes the entropy under those constraints i.e., the MLE in the exponential family with those sufficient statistics

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロメ K 御 メ K 君 メ K 君 X

 $2Q$

The Method of Maximum Entropy

Calculate sample statistics *gi*(*x*)

Assume that the distribution of *X* is the one which maximizes the entropy under those constraints

i.e., the MLE in the exponential family with those sufficient statistics

Refinement: **Minimum relative entropy** , minimize divergence from a reference distribution — also leads to an exponential family but with a prefactor of the base density

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

 $2Q$

The Method of Maximum Entropy

Calculate sample statistics *gi*(*x*)

Assume that the distribution of *X* is the one which maximizes the entropy under those constraints

i.e., the MLE in the exponential family with those sufficient statistics

Refinement: **Minimum relative entropy** , minimize divergence from a reference distribution — also leads to an exponential family but with a prefactor of the base density Update distributions under new data by minimizing relative entropy

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

 $2Q$

The Method of Maximum Entropy

Calculate sample statistics *gi*(*x*)

Assume that the distribution of *X* is the one which maximizes the entropy under those constraints

i.e., the MLE in the exponential family with those sufficient statistics

Refinement: **Minimum relative entropy** , minimize divergence from a reference distribution — also leads to an exponential family but with a prefactor of the base density Update distributions under new data by minimizing relative

entropy

Often said to be the "least biased" estimate of *P*, or the one which makes "fewest assumptions"

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

B

 $2Q$

About MaxEnt

MaxEnt has lots of devotees who basically think it's the answer to everything

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

イロメ イ押 メイヨメ イヨメ

ă,

 $2Q$

About MaxEnt

MaxEnt has lots of devotees who basically think it's the answer to everything And it sometimes works, because

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

ă,

 $2Q$

About MaxEnt

MaxEnt has lots of devotees who basically think it's the answer to everything And it sometimes works, because

¹ Exponential families often decent approximations, MLE is cool

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ⊁ K 伊 ⊁ K ヨ ⊁ K ヨ

 $2Q$

About MaxEnt

MaxEnt has lots of devotees who basically think it's the answer to everything And it sometimes works, because

¹ Exponential families often decent approximations, MLE is cool but not everything is an exponential family

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ト K 何 ト K ヨ ト K ヨ

 $2Q$

About MaxEnt

MaxEnt has lots of devotees who basically think it's the answer to everything And it sometimes works, because

- ¹ Exponential families often decent approximations, MLE is cool but not everything is an exponential family
- ² Conditional large deviations principle (Csiszár, 1995): if *P*ˆ is constrained to lie in a convex set *A*, then

$$
-\frac{1}{n}\log\Pr\left(\hat{P}\in B|\hat{P}\in A\right)\rightarrow\inf_{Q\in B\cap A}D(Q\|P)-D(Q\|A)
$$

so \hat{P} is exponentially close to argmin_{*Q∈A*} $D(Q||P)$

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

 Ω

About MaxEnt

MaxEnt has lots of devotees who basically think it's the answer to everything And it sometimes works, because

- ¹ Exponential families often decent approximations, MLE is cool but not everything is an exponential family
- ² Conditional large deviations principle (Csiszár, 1995): if *P*ˆ is constrained to lie in a convex set *A*, then

$$
-\frac{1}{n}\log\Pr\left(\hat{P}\in B|\hat{P}\in A\right)\rightarrow\inf_{Q\in B\cap A}D(Q\|P)-D(Q\|A)
$$

so \hat{P} is exponentially close to argmin_{*Q∈A*} $D(Q||P)$ but the conditional LDP doesn't alway[s h](#page-127-0)[ol](#page-129-0)[d](#page-122-0)

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

ă,

 $2Q$

Updating by minimizing relative entropy can disagree with Bayes's rule (Seidenfeld, 1979, 1987; Grünwald and Halpern, 2003)

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

ă,

 $2Q$

Updating by minimizing relative entropy can disagree with Bayes's rule (Seidenfeld, 1979, 1987; Grünwald and Halpern, 2003) , *contra* claims by physicists

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

 $2Q$

Updating by minimizing relative entropy can disagree with Bayes's rule (Seidenfeld, 1979, 1987; Grünwald and Halpern, 2003) , *contra* claims by physicists The "constraint rule" is certainly not required by logic or probability (Seidenfeld, 1979, 1987; Uffink, 1995, 1996)

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

 $2Q$

Updating by minimizing relative entropy can disagree with Bayes's rule (Seidenfeld, 1979, 1987; Grünwald and Halpern, 2003) , *contra* claims by physicists The "constraint rule" is certainly not required by logic or probability (Seidenfeld, 1979, 1987; Uffink, 1995, 1996) MaxEnt (or MinRelEnt) is not the best rule for coming up with a prior distribution to use with Bayesian updating; all such rules suck (Kass and Wasserman, 1996)

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

 $2Q$

Minimum Description Length Inference

Rissanen (1978, 1989)

Chose a model to concisely describe the data maximum likelihood minimizes description length of the *data* . . . but you need to describe the model as well! Two-part MDL:

$$
\mathcal{D}_2(x, \theta, \Theta) = -\log_2 Q_{\theta}(x) + C(\theta, \Theta)
$$

\n
$$
\widehat{\theta}_{MDL} = \underset{\theta \in \Theta}{\text{argmin}} \mathcal{D}_2(x, \theta, \Theta)
$$

\n
$$
\mathcal{D}_2(x, \Theta) = \mathcal{D}_2(x, \widehat{\theta}_{MDL}, \Theta)
$$

where *C* is a **coding scheme** for the para[me](#page-132-0)[te](#page-134-0)[rs](#page-132-0)

[Entropy and Information](#page-2-0) [Entropy and Ergodicity](#page-67-0) [Relative Entropy and Statistics](#page-86-0) [References](#page-137-0) [Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

Must fix coding scheme before seeing the data (EXERCISE: why?) By AEP

$$
n^{-1}\mathcal{D}_2 \rightarrow h_1 + \operatornamewithlimits{argmin}_{\theta \in \Theta} d(P \| Q_\theta)
$$

still for finite *n* the coding scheme matters (One-part MDL exists but would take too long)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

ă,

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

 \equiv

 $2Q$

Why Use MDL?

- **1** The inherent compelling rightness of the optimization principle
- ² Good properties: for reasonable sources, if the **parametric complexity**

$$
\mathsf{COMP}(\Theta)=\mathsf{log}\sum_{\mathsf{w}\in\mathcal{X}^n}\mathsf{argmax}\ Q_\theta(\mathsf{w})
$$

is small — if there aren't all that many words which get high likelihoods — then if MDL did well in-sample, it will generalize well to new data from the same source

See Grünwald (2005, 2007) for much mor[e](#page-134-0) $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Sampling and Large Deviations](#page-86-0) [Hypothesis Testing](#page-89-0) [Maximum Likelihood Estimation](#page-92-0) [Fisher Information and Estimation Uncertainty](#page-104-0) [Maximum Entropy: A Dead End](#page-114-0) [Minimum Description Length](#page-133-0)

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

 $2Q$

Information and Statistics: Summary

Relative entropy controls large deviations Relative entropy $=$ ease of discriminating distributions Easy discrimination \Rightarrow good estimation Large deviations explains why MaxEnt works when it does

Amari, Shun-ichi, O. E. Barndorff-Nielsen, Robert E. Kass, Steffe L. Lauritzen and C. R. Rao (1987). *Differential Geometry in Statistical Inference*, vol. 10 of *Institute of Mathematical Statistics Lecture Notes-Monographs Series*. Hayward, California: Institute of Mathematical Statistics. URL [http:](http://projecteuclid.org/euclid.lnms/1215467056)

[//projecteuclid.org/euclid.lnms/1215467056](http://projecteuclid.org/euclid.lnms/1215467056).

Amari, Shun-ichi and Hiroshi Nagaoka (1993/2000). *Methods of Information Geometry*. Providence, Rhode Island: American Mathematical Society. Translated by Daishi Harada. As *Joho Kika no Hoho*, Tokyo: Iwanami Shoten Publishers.

Bucklew, James A. (1990). *Large Deviation Techniques in Decision, Simulation, and Estimation*. New York: Wiley-Interscience. イロメ イ押 メイヨメ イヨメ

B

Cover, Thomas M. and Joy A. Thomas (1991). *Elements of Information Theory*. New York: Wiley.

Csiszár, Imre (1995). "Maxent, Mathematics, and Information Theory." In *Maximum Entropy and Bayesian Methods: Proceedings of the Fifteenth International Workshop on Maximum Entropy and Bayesian Methods* (Kenneth M. Hanson and Richard N. Silver, eds.), pp. 35–50. Dordrecht: Kluwer Academic.

den Hollander, Frank (2000). *Large Deviations*. Providence, Rhode Island: American Mathematical Society.

Fisher, R. A. (1922). "On the Mathematical Foundations of Theoretical Statistics." *Philosophical Transactions of the Royal Society A*, **222**: 309–368. URL

[http://digital.library.adelaide.edu.au/coll/](http://digital.library.adelaide.edu.au/coll/special/fisher/stat_math.html) [special/fisher/stat_math.html](http://digital.library.adelaide.edu.au/coll/special/fisher/stat_math.html).

Grünwald, Peter (2005). "A Tutorial Introduction to the Minimum Description Length Principle." In *Advances in Minimum Description Length: Theory and Applications* (P. Grünwald and I. J. Myung and M. Pitt, eds.). Cambridge, Massachusetts: MIT Press. URL

<http://arxiv.org/abs/math.ST/0406077>.

- Grünwald, Peter D. (2007). *The Minimum Description Length Principle*. Cambridge, Massachusetts: MIT Press.
- Grünwald, Peter D. and Joseph Y. Halpern (2003). "Updating Probabilities." *Journal of Artificial Intelligence Research*, **19**: 243–278. [doi:10.1613/jair.1164.](http://dx.doi.org/10.1613/jair.1164)

Kass, Robert E. and Paul W. Vos (1997). *Geometrical Foundations of Asymptotic Inference*. New York: Wiley. Kass, Robert E. and Larry Wasserman (1996). "The Selection of Prior Distributions by Formal Rules." *[Jou](#page-138-0)[rn](#page-140-0)[a](#page-135-0)[l](#page-136-0) [of](#page-137-0)[th](#page-133-0)[e](#page-144-0)*

American Statistical Association, **91**: 1343–1370. URL [http:](http://www.stat.cmu.edu/~kass/papers/rules.pdf)

[//www.stat.cmu.edu/~kass/papers/rules.pdf](http://www.stat.cmu.edu/~kass/papers/rules.pdf).

- Kulhavý, Rudolf (1996). *Recursive Nonlinear Estimation: A Geometric Approach*, vol. 216 of *Lecture Notes in Control and Information Sciences*. Berlin: Springer-Verlag.
- Mandelbrot, Benoit (1962). "The Role of Sufficiency and of Estimation in Thermodynamics." *Annals of Mathematical Statistics*, **33**: 1021–1038. URL [http:](http://projecteuclid.org/euclid.aoms/1177704470)

[//projecteuclid.org/euclid.aoms/1177704470](http://projecteuclid.org/euclid.aoms/1177704470).

Poundstone, William (2005). *Fortune's Formula: The Untold Story of the Scientific Betting Systems That Beat the Casinos and Wall Street*. New York: Hill and Wang. Rissanen, Jorma (1978). "Modeling by Shortest Data Description." *Automatica*, **14**: 465–471. ÷.

 2990

— (1989). *Stochastic Complexity in Statistical Inquiry*. Singapore: World Scientific.

Seidenfeld, Teddy (1979). "Why I Am Not an Objective Bayesian: Some Reflections Prompted by Rosenkrantz." *Theory and Decision*, **11**: 413–440. URL

[http://www.hss.cmu.edu/philosophy/seidenfeld/](http://www.hss.cmu.edu/philosophy/seidenfeld/relating%20to%20other%20probability%20and%20statistical%20issues/Why%20I%20Am%20Not%20an%20Objective%20B.pdf) [relating%20to%20other%20probability%20and%](http://www.hss.cmu.edu/philosophy/seidenfeld/relating%20to%20other%20probability%20and%20statistical%20issues/Why%20I%20Am%20Not%20an%20Objective%20B.pdf) [20statistical%20issues/Why%20I%20Am%20Not%](http://www.hss.cmu.edu/philosophy/seidenfeld/relating%20to%20other%20probability%20and%20statistical%20issues/Why%20I%20Am%20Not%20an%20Objective%20B.pdf) [20an%20Objective%20B.pdf](http://www.hss.cmu.edu/philosophy/seidenfeld/relating%20to%20other%20probability%20and%20statistical%20issues/Why%20I%20Am%20Not%20an%20Objective%20B.pdf).

— (1987). "Entropy and Uncertainty." In *Foundations of Statistical Inference* (I. B. MacNeill and G. J. Umphrey, eds.), pp. 259–287. Dordrecht: D. Reidel. URL [http://www.hss.cmu.edu/philosophy/seidenfeld/](http://www.hss.cmu.edu/philosophy/seidenfeld/relating%20to%20other%20probability%20and%20statistical%20issues/Entropy%20and%20Uncertainty%20(revised).pdf) [relating%20to%20other%20probability%20and%](http://www.hss.cmu.edu/philosophy/seidenfeld/relating%20to%20other%20probability%20and%20statistical%20issues/Entropy%20and%20Uncertainty%20(revised).pdf)

[20statistical%20issues/Entropy%20and%](http://www.hss.cmu.edu/philosophy/seidenfeld/relating%20to%20other%20probability%20and%20statistical%20issues/Entropy%20and%20Uncertainty%20(revised).pdf) [20Uncertainty%20\(revised\).pdf](http://www.hss.cmu.edu/philosophy/seidenfeld/relating%20to%20other%20probability%20and%20statistical%20issues/Entropy%20and%20Uncertainty%20(revised).pdf).

- Shannon, Claude E. (1948). "A Mathematical Theory of Communication." *Bell System Technical Journal*, **27**: 379–423. URL [http://cm.bell-labs.com/cm/ms/](http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html) [what/shannonday/paper.html](http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html). Reprinted in Shannon and Weaver (1963).
- Shannon, Claude E. and Warren Weaver (1963). *The Mathematical Theory of Communication*. Urbana, Illinois: University of Illinois Press.
- Sperber, Dan and Deirdre Wilson (1990). "Rhetoric and Relevance." In *The Ends of Rhetoric: History, Theory, Practice* (David Wellbery and John Bender, eds.), pp. 140–155. Stanford: Stanford University Press. URL

<http://dan.sperber.com/rhetoric.htm>[.](#page-137-0) $2Q$ — (1995). *Relevance: Cognition and Communication*. Oxford: Basil Blackwell, 2nd edn.

- Stephenson, Neal (1999). *Cryptonomicon*. New York: Avon Books.
- Touchette, Hugo (2008). "The Large Deviations Approach to Statistical Mechanics." E-print, arxiv.org. URL <http://arxiv.org/abs/0804.0327>.
- Uffink, Jos (1995). "Can the Maximum Entropy Principle be Explained as a Consistency Requirement?" *Studies in History and Philosophy of Modern Physics*, **26B**: 223–261. URL [http://www.phys.uu.nl/~wwwgrnsl/jos/](http://www.phys.uu.nl/~wwwgrnsl/jos/mepabst/mepabst.html) [mepabst/mepabst.html](http://www.phys.uu.nl/~wwwgrnsl/jos/mepabst/mepabst.html).
- — (1996). "The Constraint Rule of the Maximum Entropy Principle." *Studies in History and Philos[op](#page-142-0)[hy](#page-144-0) [o](#page-135-0)[f](#page-136-0) [M](#page-137-0)[o](#page-132-0)[d](#page-133-0)[e](#page-144-0)[rn](#page-85-0)* $2Q$
[Entropy and Information](#page-2-0) [Entropy and Ergodicity](#page-67-0) [Relative Entropy and Statistics](#page-86-0) [References](#page-137-0)

Physics, **27**: 47–79. URL [http://www.phys.uu.nl/](http://www.phys.uu.nl/~wwwgrnsl/jos/mep2def/mep2def.html) [~wwwgrnsl/jos/mep2def/mep2def.html](http://www.phys.uu.nl/~wwwgrnsl/jos/mep2def/mep2def.html).

イロト イ団 トイヨ トイヨ トー

 2990 重。