

Learning, development and plasticity

Josh Tenenbaum

Department of Brain and Cognitive Sciences Computer Science and AI Lab (CSAIL)

The really hard problems

I think

Group

H=1 Li=7

Na=23

K=39

'eriod

Π

Ca=40 Cu=63 Zn=65

Be=9.4 B=11

ш

Mg=24 Al=27.3 Si=28

?=44

?=68

IV

C=12

Ti=48

?=72

Rb=85 Sr=87 ?Yt=88 Zr=90 Nb=94 Mo=96 ?=100 Ag=108Cd=112 In=113 Sn=118 Sb=122 Te=125 J=127

V

N=14

P=31

V=51

VI

As=75 Se=78 Br=80

O=16 | F=19

S=32 Cl=35.5

Cr=52 Mn=55

VII

Two cultures

"Nature" Innate structured representations Grounded in cognition

versus

"Nurture" Statistical learning, plasticity Grounded in the brain

Recent causes for optimism

New models from machine learning, AI

Structured statistical models

Probabilities defined over structured representations: graphs, causal networks, grammars, predicate logic.

 Multilevel (hierarchical) statistical models
Inference at multiple levels of abstraction and multiple timescales.

Flexible statistical models

Hypothesis spaces grow as new data are encountered.

- New technologies
 - "Supercomputers" on the desktop, grid computing
 - Life-size datasets for modeling cognitive development
 - Mainstream functional MRI

Probabilistic scene parsing

Probabilistic scene parsing

Learning domain structures

Learning domain structures

O'Connor

White

Breyer

Rehnauist

Scalia

Learning causal theories

Learning to act

Mean payoff

Concepts learned: Clear, Inhand Topstack Above Height ...

The grand challenge

Cognitive science of human learning

Design of artificial learning systems

Brain structures and mechanisms that support learning