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Quantifying limits to detection of early
warning for critical transitions
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Catastrophic regime shifts in complex natural systems may be averted through advanced
detection. Recent work has provided a proof-of-principle that many systems approaching a
catastrophic transition may be identified through the lens of early warning indicators such
as rising variance or increased return times. Despite widespread appreciation of the difficul-
ties and uncertainty involved in such forecasts, proposed methods hardly ever characterize
their expected error rates. Without the benefits of replicates, controls or hindsight, appli-
cations of these approaches must quantify how reliable different indicators are in avoiding
false alarms, and how sensitive they are to missing subtle warning signs. We propose a
model-based approach to quantify this trade-off between reliability and sensitivity and
allow comparisons between different indicators. We show these error rates can be quite
severe for common indicators even under favourable assumptions, and also illustrate how a
model-based indicator can improve this performance. We demonstrate how the performance
of an early warning indicator varies in different datasets, and suggest that uncertainty
quantification become a more central part of early warning predictions.

Keywords: early warning signals; tipping point; alternative stable states;
likelihood methods
1. INTRODUCTION

There is an increasing recognition of the importance of
regime shifts or critical transitions at a variety of scales
in ecological systems [1–6]. Many important ecosystems
may currently be threatened with collapse, including
corals [7], fisheries [8], lakes [6] and semi-arid ecosys-
tems [9]. Given the potential impact of these shifts on
the sustainable delivery of ecosystem services [10] and
the need for management to either avoid an undesirable
shift or else to adapt to novel conditions, it is important
to develop the ability to predict impending regime shifts
based on early warning signs.

A number of particular systems have demonstrated
the kinds of relationships that would produce regime
shifts, including dynamics of coral reefs [11], and
simple models of metapopulations with differing local
population sizes [12]. In cases like these, one sensible
approach to understanding whether a regime shift
would be likely to fit the model is to use either a time
series or else independent estimates of parameters.
More generally, with a good model of the system,
detail-oriented approaches could be useful [13]. In this
treatment, we focus on the situation where these more
detailed models are not available.

Indeed, for many ecological systems, specific models
are not available and general approaches are needed
[4,13] that do not depend on estimating the parameters
of a known model of a specific system. This has led to a
orrespondence (cboettig@ucdavis.edu).
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variety of approaches based on summary statistics
[6,14–19] that look for generic signs of impending
regime shifts. Here, we extend earlier work by providing
estimates of the ability of different potential indicators
to accurately signal impending regime shifts, and
develop new approaches that both are more efficient
and also lay bare some of the important assumptions
underlying attempts to find general warning signs of
regime shifts. We distinguish this question from the
extensive literature involving a change-point analysis
for the post hoc identification of if and when a regime
shift has occurred [20–22], which is of little use if the
goal is the advanced detection of the shift.

We begin by discussing the limitations of current
approaches that rely on summary statistics and provide
a description of assumptions through the introduction
of a model-based approach to detect early warning
signals. We then illustrate how stochastic differential
equation (SDE) models can be used to reflect the
uncertainty inherent in the detection of early warning
signals. We caution against paradigms that are not
useful for capturing uncertainty in a model-selection-
based approach, such as information criteria. Finally,
we use receiver-operating characteristics (ROC)
[23,24] as a way to illustrate the sensitivity that differ-
ent datasets and different indicators have in detecting
early warning signals and use this to explore a
number of examples. This approach provides a visual-
ization of the types of errors that arise and how one
can trade off between them, and is important for
framing the problem as one focused on prediction.
This journal is q 2012 The Royal Society
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2. THE SUMMARY STATISTICS
APPROACH

Foundational work on early warning signals has oper-
ated under the often-implicit assumption that the
system dynamics contain a saddle–node bifurcation
by looking for patterns that are associated with this
kind of transition. A saddle–node bifurcation occurs
when a parameter changes and a stable equilibrium
(node) and an unstable equilibrium (saddle) coalesce
and disappear. The system then moves to a more dis-
tant equilibrium. Guckenheimer & Holmes [25] or any
other textbook on dynamical systems will provide
precise definitions and further explanation.

Typical patterns used as warning signals include an
increasing trend in a summary statistic, such as var-
iance [14], autocorrelation [15,16], skew [17] and
spectral ratio [18]. While attractive for their simplicity,
such approaches must confront numerous challenges.
In this paper, we argue for a model-based approach to
warning signals, and describe how this can be done in
a way that best addresses these difficulties. We begin
by enumerating several of the difficulties encountered
in approaches lacking an explicit model.

2.1. Hidden assumptions

The underlying assumption that the system contains
a saddle–node bifurcation can be easily overlooked
in common summary-statistics-based approaches. For
instance, variance may increase for reasons that do
not signal an approaching transition [26,27]. Alterna-
tively, variance may not increase as a bifurcation is
approached [28,29]. Some classes of sudden transitions
may exhibit no warning signals [30]. Like saddle–node
bifurcations, transcritical bifurcations involve an eigen-
value passing through zero, and exhibit the patterns of
critical slowing down and increased variance [5]. How-
ever, transcritical bifurcations involve a change in
stability of a fixed point, rather than the sudden dis-
appearance of a fixed point that has made critical
transitions so worrisome. While no approach will be
applicable to all classes of sudden transitions, it is cer-
tainly still useful to have an approach that detects
transitions driven by saddle–node bifurcations, which
have been found in many contexts [3].

Even when we can exclude or ignore other dynamics
and restrict ourselves to systems that can produce a
saddle-node bifurcation, approaches based on critical
slowing down or rising variance [4,6,15] must further
assume that a changing parameter has brought the
system closer to the bifurcation. This assumption
excludes at least three alternative explanations for the
transition in system behaviour. The first possibility is
that a large perturbation of the system state has moved
the system into the alternative basin of attraction [3].
This is an exogenous forcing that does not arise from
the system dynamics; so it is not the kind of event we
can expect to forecast. (An example might be a sudden
marked increase in fishing effort that pushes a harvested
population past a threshold.) The second scenario is a
purely noise-induced transition, a chance fluctuation
that happens to carry the system across the boundary
[31]. Livina et al. [28] indicate that such noise-induced
J. R. Soc. Interface
transitions cannot be predicted through early warning
signals—at least they are not expected to exhibit the
same early warning patterns of increased variance and
increased autocorrelation anticipated in the case of a
saddle–node bifurcation. The third scenario is that the
system does pass through a saddle–node bifurcation,
but rather than gradually and monotonically approach-
ing the critical point, the bifurcation parameter moves
in a rapid or highly nonlinear way, making the detection
of any gradual trend impossible.

2.2. Arbitrary windows

In addition to the assumption of a saddle–node bifur-
cation, the calculation of statistics that would be used
to detect an impending transition is subject to several
arbitrary choices. A basic difficulty arises from the
need to assume a time-series is ergodic: that averaging
over time is equivalent to averaging over replicate
realizations, while trying to test if it is not. Theoreti-
cally, the increasing trend in variance, autocorrelation
or other statistics is something that would be measured
across an ensemble—across replicates. As true replicates
are seldom available in systems for which developing
warning signals would be most desirable, typical
methods average across a single replicate using a
moving window in time. The selection of the size of
this window and whether and by how much to overlap
consecutive windows varies across the literature. Lenton
et al. [32] demonstrate that these differences can influ-
ence the results, and that the different choices each
carry advantages and disadvantages.

In addition to introducing the challenge of selecting
a window size, this ergodic assumption raises further
difficulties. While appropriate for a system that is
stationary, or changing slowly enough in the window
that it may appear stationary, the assumption is at
odds with the original hypothesis that the system is
approaching a saddle–node bifurcation.

Further, certain statistics such as the critical slowing
down measured by autocorrelation require data that is
evenly sampled in time. Interpolating from existing
data to create evenly spaced points is particularly proble-
matic, as this introduces an artificial autocorrelation into
the data.

2.3. No quantitative measures

Summary statistics typically invoke qualitative patterns
such as an increase in statistic x, rather than a quantitat-
ive measure of the early warning pattern. This makes
it difficult to compare between signals or to attribute a
statistical significance to the detection. Some authors
have suggested that Kendall’s correlation coefficient, t,
could be used to quantify an increase [16,33] in autocor-
relation or variance. Other measures of increase, such
as Pearson’s correlation coefficient, have also been pro-
posed [5], while most of the literature simply forgoes
quantifying the increase or estimating significance.
While adequate in experimental systems that can com-
pare patterns between controls and replicates [5,6], any
real-world application of these approaches must be
useful on a single time-series of observations. In these
cases, a quantitative definition of a statistically
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significant detection is essential. Without this, we have
no assurance that a purported detection is not, in fact,
a false positive. By focusing primarily on examples
known to be approaching a transition when testing warn-
ing signals, the probability of false positives has largely
been overlooked.

2.4. Problematic null models

Specifying an appropriate null model is also difficult.
Non-parametric null hypotheses seem to require the
fewest assumptions but in fact can be the most proble-
matic. For instance, the standard non-parametric
hypothesis test with Kendall’s t rank correlation co-
efficient assumes only that the two variables are
independent, but this is an assumption that is violated
by the very experimental design: temporal correlations
will exist in any finely enough sampled time series,
and moving windows introduce temporal correlations
in the statistics. Under such a test, any adequately
large dataset will find a significant result, regardless
of whether a warning signal exists. A similar problem
arises when the points in the time series are reordered
to create a null hypothesis—this destroys the natural
autocorrelation in the time series. More promising para-
metric null models have been proposed, such as
autoregressive models in Dakos et al. [16], bringing us
closer to a model-based approach with explicit assump-
tions. Others have looked for alternative summary
statistics where reasonable null models are more readily
available, such as Seekkell et al.’s [19] proposal to test
for conditional heteroscedasticity.

2.5. Summary-statistic approaches have less
statistical power

Methods for the detection of early warning signals
are continually challenged by inadequate data
[4,6,15–17,34–36]. Despite the widespread recognition
of the need for large datasets, there have been very
few quantitative studies of power to determine how
much data are required [37], how often a particular
method would produce a false alarm or fail to detect a
signal, and which tests will be the most powerful or sen-
sitive. The Neyman–Pearson lemma demonstrates
that the most powerful test between hypotheses com-
pares the likelihood that the data were produced
under each [38]. Such likelihood calculations require a
model-based approach.
3. A MODEL-BASED APPROACH

Model-based approaches are beginning to play a larger
role in early warning signal detection, though we have
not as yet seen the direct fitting and simulation of
models to compare hypotheses. Although choosing
appropriate models without system-specific knowledge
is challenging, much can be accomplished by framing
the implicit assumptions into equations. Lade & Gross
[13] introduce the idea of generalized models for early
warning signals, and Kuehn [39] presents normal
forms for bifurcation processes that can give rise to criti-
cal transitions. Carpenter & Brock [40] and Dakos et al.
J. R. Soc. Interface
[29] start by assuming that the dynamics obey a generic
SDE, but use this only to derive or define the summary
statistics of interest.

In this section, we outline how the detection of early
warning signals may be thought of as a problem of
model choice. We next show that generic models can
be constructed under the assumptions discussed earlier
and estimated from the data in a maximum-likelihood
framework. We highlight the disadvantages of compar-
ing these estimates by information criteria, and instead
introduce a simulation or bootstrapping approach
rooted in Cox [41] and McLachlan [42] that character-
izes the rate of missed detections and false alarms
expected in the estimate.
3.1. Early warning signals as model choice

It may be useful to think of the detection of early warn-
ing signals as a problem of model choice rather than one
of pattern recognition. The model choice approach
attempts to frame each of the possible scenarios as
structurally different equations, each with unknown
parameters that must be estimated from the data.
In any model choice problem, it is important to identify
the goal of the exercise—such as the ability to general-
ize, to imitate reality or to predict [43]. In this case,
generality is more important than realism or predictive
capability: we will write down a general model that is
capable of approximating a wide class of models in
which regime shifts are characterized by a saddle–
node bifurcation, and a second generic model that is
capable of representing the behaviour of such systems
when they are not approaching a bifurcation. These
may be thought of as the hypothesis and null hypothesis,
though they are in fact compound hypotheses, as we must
first estimate the model parameters from the data. In this
approach, it is not assumed that ‘reality’ is included in
the models being tested, but that one of the models is a
better approximation of the true dynamics than the
other. System whose dynamics violate the assumptions
common to both models, such as in the examples of
Hastings & Wysham [30] where systems exhibit sudden
transitions without warning, fall outside the set of cases
where this approach would be valid; though the inability
of either model to match the system dynamics could be an
indication of such a violation.
3.2. Models

In the neighbourhood of a bifurcation, a system can be
transformed into its normal form by a change of vari-
ables to facilitate analysis [25]. The normal form
[25,39] for the saddle–node bifurcation is

dx
dt
¼ rt � x2: ð3:1Þ

where x is the state variable and rt our bifurcation par-
ameter. We have added a subscript t to the bifurcation
parameter as a reminder that it is the value which may
be slowly varying in time and consequently moving the
system closer to a critical transition or regime shift [4].
Transforming this canonical form to allow for an arbi-
trary mean in the state variable u, the system near



4 Early warning for critical transitions C. Boettiger and A. Hastings

 on August 6, 2012rsif.royalsocietypublishing.orgDownloaded from 
the bifurcation looks like dx=dt ¼ rt � ðu� xÞ2, with
fixed point x̂ ¼ ffiffiffiffi

rt
p þ u ¼: fðrtÞ. We expand around

the fixed point and express as an SDE [44]:

dX ¼ ffiffiffiffi
rt
p ðfðrtÞ � XtÞdt þ s

ffiffiffiffiffiffiffiffiffiffiffi
fðrtÞ

p
dBt ; ð3:2Þ

where Bt is the standard Brownian motion. This
expression captures the behaviour of the system near
the stable point as it approaches the bifurcation. Allow-
ing the stochastic term to scale with the square root of f
follows from the assumption that of an internal-noise
process, such as demographic stochasticity, that arises
in deriving the SDE from a Markov process, see
Kampen [45] or Black & McKane [46]. The square
root could be removed for an external noise process,
such as environmental noise. In practice, it will be diffi-
cult to discriminate between the square root and linear
scaling in these applications, because the average value
of the state changes little before the bifurcation.

As we discussed earlier, in this paradigm we must
include an assumption on how the bifurcation parameter,
rt, is changing. We assume a gradual, monotonic change
that we approximate to first order:

rt ¼ r0 �mt: ð3:3Þ

Detecting accelerating or otherwise nonlinear
approaches to the bifurcation will generally require
more power. When the underlying system is not chan-
ging, rt is constant (m ¼ 0) and equation (3.2) will
reduce to a simple Ornstein–Uhlenbeck (OU) process,

dXt ¼ rðu� XtÞdt þ s dBt : ð3:4Þ

This is the continuous time analogue of the first-
order autoregressive model considered as a null model
elsewhere [16,47].

3.3. Likelihood calculations

The probability PðX jMÞ of the data X given the model
M is the product of the probability of observing each
point in the time series given the previous point and
the length of the interval,

logPðX jMÞ ¼
X

i

logPðxijxi�1; tiÞ: ð3:5Þ

For (3.2) or (3.4), it is sufficient [44] to solve the
moment equations for mean and variance, respectively,

d
dt

EðxjMÞ ¼ f ðxÞ ð3:6Þ

and

d
dt

V ðxjMÞ ¼ �@xf ðxÞV ðxjMÞ þ gðxÞ2: ð3:7Þ

For the OU process, we can solve this in closed
form over an interval of time ti between subsequent
observations

EðxijM ¼ OUÞ ¼ Xi�1e�rti þ uð1� e�rtiÞ ð3:8Þ

and

V ðxijM ¼ OUÞ ¼ s2

2r
ð1� e�2rtiÞ: ð3:9Þ
J. R. Soc. Interface
For the time-dependent model, we have analytic
forms only for the dynamical equations of these
moments from equation (3.7), which we must integrate
numerically over each time interval. The moments of
equation (3.2) are given by

d
dt

EðxijM ¼ LSNÞ ¼ 2
ffiffiffiffiffiffiffiffi
rðtÞ

p
ð
ffiffiffiffiffiffiffiffi
rðtÞ

p
þ u� xiÞ ð3:10Þ

and

d
dt

V ðxijM ¼ LSNÞ ¼ �2
ffiffiffiffiffiffiffiffi
rðtÞ

p
V ðxiÞ þ s2ð

ffiffiffiffiffiffiffiffi
rðtÞ

p
þ uÞ:

ð3:11Þ

These are numerically integrated using lsoda
routine available in R for the likelihood calculation.

3.4. Comparing models

Likelihood methods form the basis of much of modern
statistics in both Frequentist and Bayesian paradigms.
The ability to evaluate likelihoods directly by compu-
tation has made it possible to treat cases that do not
conform to traditional assumptions more directly. The
basis of likelihood comparisons has its roots in the
Neyman–Pearson Lemma, which essentially asserts
that comparing likelihoods is the most powerful test of
a choice between two hypotheses [38], and motivates
tests from the simple likelihood ratio test up through
modern model adequacy methods.

The hypotheses considered here are more challenging
than the original lemma provides for, as they are com-
posite in nature: they specify two model forms (stable
and changing stability) but with model parameters
that must be first estimated from the data. Comparing
models whose parameters have been estimated by maxi-
mum likelihood is first treated by Cox [41,48], and has
since been developed in this simulation estimation of
the null distribution [42], by parametric bootstrap esti-
mate [49]. Cox’s d statistic (often called the deviance
between models) is simply the difference between the
log likelihoods of these maximum-likelihood estimates,
defined as follows.

Let L0 be the likelihood function for model 0, let
u0 ¼ arg max u0 [ V 0, (L0ðu0jXÞ) be the maximum-
likelihood estimate for u0 given X and let L0 ¼ L0u0jX ;
and define L1, u1, L1 similarly for model 1. The statistic
we will use is d, defined to be twice the difference in log
likelihood of observing the data under the two MLE
models,

d ¼ �2ðlogL0 � logL1Þ: ð3:12Þ

This approach has been applied to the problem of model
adequacy [50] and model choice [51] in other contexts.
We have extended the approach by generating the
test distribution as well as a null distribution of the
statistic d.

3.5. Simulation-based comparisons

We perform the identical analysis procedure described
earlier on each of these three datasets. First, we esti-
mate parameters for the null and test model to each
dataset by maximum likelihood. Comparing the
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Figure 1. (a) The distributions of a hypothetical warning indicator are shown under the case of a stable system (blue) and a
system approaching a critical transition (red). (b) Points along the ROC curve are calculated for each possible threshold indicated
in (a). The false positive rate is the integral of the distribution of the test statistic under the stable system right of the threshold
(blue shaded area, corresponding to blue vertical line). The true positive rate is the integral of the system approaching a transition
left of the threshold (red shaded area, corresponds to the red line). Successive columns show the threshold increasing, tracing out
the ROC curve. (Online version in colour.)
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likelihood of these fits directly gives us only a minimal
indication of which model fits better. To identify if
these differences are significant, and by what prob-
ability they could arise as a false alarm or a missed
event, we simulate 500 replicate time series from each
estimated model.

The model parameters of both models are re-estimated
on both families of replicates (the null and test, i.e. 2 �
2 � 500 fits). The differences in the likelihood values
between the model estimates produced from the first set
of simulations determines the null distribution for the
deviance statistic d. As the constant OU process model
is nested within the time-heterogeneous model, these
values are always positive, but tend to be not as large
as those produced when the models are fit to the second
family of data.

The extent to which these distributions overlap
indicates our inability to distinguish between these
scenarios. The tendency of the observed deviance to
fall more clearly in the domain of one distribution or
the other indicates the probability our observed data
corresponds best with that model—either approaching
a critical transition or remaining stable. While it trivial
to assign a statistical significance to this observation
based on how far into the tail of the null distribution
it falls, for the reasons we discussed we prefer the
more symmetric comparison of the probability that
this value was observed in either distribution. We visu-
alize the trade-off between false alarms and failed
detection using the ROC curves introduced earlier.

3.6. Information criteria will not serve

One will commonly observe models representing
alternative processes being compared through the use
of various information criteria such as the Akaike infor-
mation criterion. While tempting to apply in this
situation, such approaches are not suited to this pro-
blem for several reasons. The first is that information
criteria are not concerned with the model choice
J. R. Soc. Interface
objective we have in mind, as they are typically applied
to find an adequate model description without too
many parameters that the system may be over-fit.
More pointedly, information criteria have no inherent
notion of uncertainty. Information criteria tests alone
will not tell us our chances of a false alarm, of missing
a real signal or how much data we need to be confident
in our ability to detect transitions.

3.7. Beyond hypothesis testing

It is possible to frame the question of sensitivity,
reliability and adequate data in the language of hypoth-
esis testing. This introduces the need for selecting a
statistical significance criterion. In the hypothesis test-
ing framework, a false positive is a type I error, which
is defined relative to this arbitrary statistical signifi-
cance criterion, most commonly 0.05. By changing the
criterion, one can increase or decrease the probability
of the type I error at the cost of decreasing or increasing
false negative or type II error, which must also be
defined relative to this criterion.

The language of hypothesis testing is built around a
bias that false positives are worse than false negatives,
and consequently an emphasis on p-values rather than
power. In the context of early warning signals, this is
perilous—it suggests that we would rather fail to pre-
dict a catastrophe than to sound a false alarm.
To avoid this linguistic bias and the introduction of
an nuisance parameter on which to define statistical
significance, we propose the use of ROC curves.

3.8. Receiver-operating characteristic curves

We illustrate the trade-off between false alarms and
failed detection using ROC curves first developed in
signal-processing literature [23,24]. The curves rep-
resent the corresponding false alarm rate at any
detection sensitivity (true positive rate; figure 1).
The closer these distributions are to one-another, the



Figure 2. A model-based calculation of warning signals for the simulated data example. (a) The original time-series data on which
model parameters for equations (3.2) and (3.4) are estimated. (b) Replicate simulations under the maximum-likelihood estimated
(MLE) parameters of the null model, equation (3.4) and test model, equation (3.2). (c) The distribution of deviances (differences
in log likelihood, equation (3.12)), when both null and test models are fit to each of the replicates from the null model, ‘null’, in
red, and these differences when estimating for each of the replicates from the test model, in blue. The overlap of distributions
indicate replicates that will be difficult to tell apart. The observed differences in the original data are indicated by the vertical
line. (Online version in colour.)
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more severe the trade-off. If the distributions overlap
exactly, the ROC curve has a constant slope of unity.
The ROC curve demonstrates this trade-off between
accuracy and sensitivity. Different early-warning indi-
cators will vary in their sensitivity to detect
differences between stable systems and those approach-
ing a critical transition, making the ROC curves a
natural way to compare their performance. Because
the shape of the curve will also depend on the duration
and frequency of the time-series observations, we can
J. R. Soc. Interface
use these curves to illustrate by how much a given
increase in sampling effort can decrease the rate of
false alarms or failed detections.
4. EXAMPLE RESULTS

We illustrate this approach on simulated data as well as
several natural time-series that have been previously
analysed for early warning signals. All data and code



Figure 3. A model-based calculation of warning signals for the Daphnia data analysed in Drake & Griffen [5] (chemostat H6).
Panels as in figure 2. (Online version in colour.)

Early warning for critical transitions C. Boettiger and A. Hastings 7

 on August 6, 2012rsif.royalsocietypublishing.orgDownloaded from 
for simulations and analysis are found in the accompa-
nying R package, earlywarning.
4.1. Data

The simulation implements an individual, continuous-
time stochastic birth–death process, with rates given
by the master equation [44]

dPðn; tÞ
dt

¼ bn�1Pðn � 1; tÞ þ dnþ1Pðn þ 1; tÞ

� ðbn þ dnÞPðn; tÞ; ð4:1Þ

bn ¼
eKn2

n2 þ h2 ð4:2Þ

and dn ¼ en þ at ; ð4:3Þ
J. R. Soc. Interface
where P(n, t) is the probability of having n individuals
at time t, bn is the probability of a birth event occurring
in a population of n individuals an dn the probability of
a death. e, K, h and at are parameters. This corresponds
to the well-studied ecosystem model of over-exploitation
[52,53], with stochasticity introduced directly through
the demographic process. We select this model since it
is has discrete numbers of individuals, nonlinear
processes and the noise is driven by Poisson process of
births and deaths instead of a Gaussian, and thus pro-
vides an illustration that our approach is robust to the
violations of those assumptions in model (3.2).

This model is forced through a bifurcation by gradu-
ally increasing the a parameter, which increases can be
thought of as an increasing toxicity of the environment
(from a0 ¼ 100 increasing at constant rate of 0.09 units/



Figure 4. A model-based calculation of warning signals for the glaciation data analysed in Dakos et al. [16] (glaciation III). Panels
as in figure 2. (Online version in colour.)
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unit time). Other parameters are Xo ¼ 730, e ¼ 0.5,
K ¼ 1000, h ¼ 200. We run this model over a time inter-
val from 0 to 500 and sample at 40 evenly spaced
time points, which were used for a subsequent analysis.
This sampling frequency was chosen to be representa-
tive of reasonable sampling in biological time-series,
and provides enough points to detect a signal while
not too many that errors can be avoided entirely. For
the convenience of the inquisitive reader, we have also
provided a simple function in the associated R package
where the user can vary the sampling scheme and par-
ameter values and rerun this analysis. This time series is
shown in figure 2a.
J. R. Soc. Interface
The first empirical dataset comes from the popu-
lation dynamics of Daphnia living in the chemostat
‘H6’ in the experiments of Drake & Griffen [5]. This
individual replicate was chosen as an example that
showed a pattern of increasing variance over the 16
data points where the system was being manipulated
towards a crash. This time series is shown in figure 3a.

Our second empirical dataset comes from the glacia-
tion record seen in deuterium levels in Antarctic ice
cores [54], as analysed by Dakos et al. [16]. The data are
preprocessed by linear interpolation and de-trending by
Gaussian kernel smoothing to be as consistent as possible
with the original analysis. We focus on the third
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Figure 5. ROC curves for the simulation (red), chemostat
(green) and glaciation (blue) data, computed from the distri-
butions shown in figures 2c–4c. (Online version in colour.)
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glaciation event, consisting of 121 sample points. The
match is not exact because [16] estimates the de-trending
window size manually, but the estimated correlations in
the first-order auto-regression coefficients are in close
agreement with that analysis. De-trending is intended
to make the data consistent with the assumptions of
the warning signal detection [16], which did not apply
to the other datasets [5]. This time series is shown
in figure 4a.

4.2. Analysis

The deviances d observed are 5.1, 6.0, 83.9 for the simu-
lation, the chemostat data and the glaciation data,
respectively. On the basis of AIC score, each is large
enough to reject the null hypothesis of a stable model
with its one extra parameter, but this does not give
the full picture of the anticipated error rates. The size
of these differences reflects not only the magnitude of
the difference in fit between the models but also the
arbitrary units of the raw likelihoods, which are smaller
for larger datasets. Consequently, the glaciation score
reflects as much the greater length of its time series as
it does anything else.

Our simulation approach can provide a better sense of
the relative trade-off in error rates associated with these
estimates. As described already (§3.1), we simulate 500
replicates under each model, shown in figures 2b–4b,
and determine the distributions in likelihood ratio under
each, shown in the lower panels. The observed deviance
from the original data is also indicated (vertical line).

The ROC curves for each of these datasets are
plotted in figure 5. While differences in the rate at
which the system approaches a transition will also
improve the ratio of true positives to false positives,
here we see the best-sampled dataset, glaciation, with
121 points, also has the clearest signal with no observed
errors in the 500 replicates of each type. Comparing the
chemostat and simulation curves illustrate how the
trade-off between false positives and true positives can
vary between data. The chemostat signal, which esti-
mates a relatively rapid rate of change but has less
data, captures a higher rate of true positives for a
given rate of false positives than the simulation dataset
with a weaker rate of change but more data, for
false positive rates above 20 per cent. However, the
simulated set with more data performs better if lower
false positive rates are desired.
5. COMPARING THE PERFORMANCE
OF SUMMARY STATISTICS AND
MODEL-BASED APPROACHES

Owing to the variety of ways in which early warning sig-
nals based on summary statistics are implemented and
evaluated, it is difficult to give a straight-forward com-
parison between them and the performance of this
model-based approach. However, by adopting one of
one of the quantitative measures of a warning signal
pattern, such as Kendall’s t [16,33,55], we are able to
make a side-by-side comparison of the different sum-
mary statistics and the model-based approach in the
context of false alarms and failed detections shown by
J. R. Soc. Interface
the ROC curve. Values of t near unity indicate a
strongly increasing trend in the warning indicator,
which is supposed to be indicative of an approaching
transition. Values near zero suggest a lack of a trend,
as expected in stable systems.

Figure 6 shows the time series for each dataset in col-
umns and the early warning indicators of variance and
autocorrelation computed over a sliding window for
each. Kendall’s correlation coefficient t is calculated for
each warning indicator and displayed on the graphs
(inset). For comparison, the left-most column includes
data simulated under a stable system, which nevertheless
shows a chance increasing autocorrelation with a t ¼ 0.7.
We can adapt the approach we have described earlier to
determine how often such a strong increase would appear
by chance in a stable system as follows.

By estimating the stable and critical transition
models from the data, and simulating 500 replicate
datasets under each as in the earlier-mentioned analy-
sis, we can then calculate the warning signals statistic
over a sliding window of size equal to one-half the
length of the time series, and compute the correlation
coefficient t measuring the degree to which the statistic
shows an increasing trend. This results in a distribution
of t values coming from a model of a stable system, and
a corresponding distribution of t values coming from
the model with an impending transition. These distri-
butions are shown in figure 7. Contrary to the
expectation that the replicates of the null model
(stable system, equation (3.4)) would cluster around
zero, while the test model, equation (3.2), would cluster
around larger positive t values, the observed t values
on the replicates extend evenly across the range. This
results in a marked overlap and offers little ability to dis-
tinguish between the stable replicates and the replicates
approaching a transition.

The use of box plots infigure 7 provide aconvenient and
familiar way to visualize the overlap between more than
two distributions, though they lack the resolution of the
overlapping density distributions in figures 2–4. The over-
lapping distributions are the natural representation from
which to introduce the ROC curve, as in figure 1.

The ROC curves for these data (figure 8) show
that the summary-statistic-based indicators frequently
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lack the sensitivity to distinguish reliably between
observed patterns from a stable or unstable system.
The large correlations observed in the empirical
examples (figure 6) are not uncommon in stable sys-
tems. It is notable that in both empirical examples,
the summary statistics approach does little better
than chance in distinguishing replicates that have
been simulated from models (3.2) and (3.4), despite
the fact that these models correspond to the assump-
tions of the summary statistics approaches. On the
simulated data, the variance-based method approaches
the true positive rate of our likelihood method at higher
levels of false positives, but performs worse when the
desired level of false positives is low. The ROC curve
helps us to compare the performance of the different
approaches at different tolerances. For instance,
J. R. Soc. Interface
table 1 shows the fraction of true crashes caught at a
5 per cent false positive rate. We can instead set a
desired True positive rate and read off the resulting
number of false alarms, table 2.
6. DISCUSSION

The challenge of determining early warning signs for
impending possible regime shifts requires real attention
to the underlying statistical issues and other assumptions.
Doing this, does, however, open up new possibilities
for asking what the goal of detection should be, and for
clearly identifying underlying assumptions. We consider
alternative approaches based either on summary statis-
tics or on a likelihood-based model choice. By assuming
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Table 1. Fraction of crashes detected when the desired false
alarm rate is fixed to 5%.

variance (%) likelihood (%)

simulation 25 61
chemostat 5.0 34
glaciation 5.4 100

Table 2. Fraction of false alarms when the desired detection
rate is fixed to 90%.

variance (%) likelihood (%)

simulation 49 55
chemostat 81 35
glaciation 93 0
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that the underlying model corresponds to a saddle–node
bifurcation, our analysis presents a ‘best-case scenario’ for
both summary statistic and likelihood-based approaches.
Other literature has already begun to address the
additional challenges posed when the underlying dynamics
do not correspond to these models [30]. Our results
illustrate that even in this best-case scenario, reliable
identification of warning signals from summary statistics
can be difficult.

We have used three examples to illustrate the per-
formance of this approach in data from simulation, a
chemostat experiment and paleo-atmospheric record;
examples differing in sampling intensity and strength
of signal of an approaching collapse. While the well-
sampled geological data shows an unmistakable signal
in this model-based approach, the uncertainty in the
smaller simulated and experimental data forces a
trade-off between errors.

As a way to clearly illustrate the choices involved in
looking for warning signals while avoiding false alarms,
we introduce an approach based on receiver operator
curves. These curves illustrate the extent to which an
potential warning signal mitigates the trade-off between
missed events and false alarms. The extent of the diffi-
culty in finding reliable indicators of impending regime
shifts based on summary statistics becomes clear from
the ROC curves of these statistics, where a 5 per cent
false positive rate often corresponds to only a 5 per
cent true positive rate, performing no better than the
flip of a coin. By estimating the ROC curve for a
given set of data, we can better avoid applying warning
signals in cases of inadequate power. By taking advan-
tage of the assumptions being made to write down a
specific likelihood function, we can develop approaches
that get the most information from the data available.

In any application of early warning signals, it is
essential to address the question of model adequacy.
J. R. Soc. Interface
Our approach formalizes the assumptions about the
underlying process to match the assumptions of the
other warning signals. As the bifurcation results from
the principle eigenvalue passing through zero, the
warning signal is expected in linear-order dynamics;
estimation of the nonlinear model is less powerful and
less accurate. The performance of this approach in the
simulated data—which is nonlinear in its dynamics
and driven with non-Gaussian noise introduced by
the Poisson demographic events—demonstrates the
accuracy under violation of these assumptions.

The conclusion is not simply that likelihood
approaches are more reliable, but rather more broadly
that warning signals should consider the inherent trade-
off between sensitivity and accuracy, and must quantify
how this trade-off depends on both the indicators used
and the data available. The approach developed here esti-
mates the risk of both failed detection and false alarms;
concepts that are critical to prediction-based manage-
ment. Using the methods, we have outlined when
designing early warning strategies for natural systems
can ensure that data collection has adequate power to
offer a reasonable chance of detection.
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33 Dakos, V., Kéfi, S., Rietkerk, M., Nes, E. H. V. & Scheffer,
M. 2011 Slowing down in spatially patterned ecosystems at
the brink of collapse. Am. Nat. 177, E153–E166. (doi:10.
1086/659945)

34 Inman, M. 2011 Sending out an SOS. Nat. Climate Change
1, 180–183. (doi:10.1038/nclimate1146)

35 Scheffer, M. 2010 Complex systems: foreseeing tipping
points. Nature 467, 411–412. (doi:10.1038/467411a)

36 Bestelmeyer, B. T. 2011 Analysis of abrupt transitions in
ecological systems. Ecosphere 2, 129. (doi:10.1890/ES11-
00216.1)

37 Contamin, R. & Ellison, A. M. 2009 Indicators of regime
shifts in ecological systems: what do we need to know
and when do we need to know it? Ecol. Appl. 19,
799–816. (doi:10.1890/08-0109.1)

38 Neyman, J. & Pearson, E. 1933 On the problem of the most
efficient tests of statistical hypotheses. Phil. Trans. R. Soc.
Lond. A 231, 289–337. (doi:10.1098/rsta.1933.0009)

39 Kuehn, C. 2011 A mathematical framework for critical
transitions: normal forms, variance and applications.
(http://arxiv.org/abs/1101.2908)

40 Carpenter, S. & Brock, W. 2011 Early warnings of
unknown nonlinear shifts: a nonparametric approach.
Ecology 92, 2196–2201. (doi:10.1890/11-0716.1)

41 Cox, D. R. 1961 Tests of separate families of hypotheses.
In Proc. 4th Berkeley Symp. on Mathematical Statistics
and Probability, Berkeley, CA, 1961, vol. 1. Berkeley,
CA: University of California Press.



Early warning for critical transitions C. Boettiger and A. Hastings 13

 on August 6, 2012rsif.royalsocietypublishing.orgDownloaded from 
42 McLachlan, G. J. 1987 On bootstrapping the like-
lihood ratio test statistic for the number of components in
a normal mixture. Appl. Stat. 36, 318. (doi:10.2307/
2347790)

43 Levins, R. 1966 The strategy of model building in popu-
lation biology. Am. Sci. 54, 421–431.

44 Gardiner, C. 2009 Stochastic methods: a handbook for the
natural and social sciences. Springer Series in Synergetics.
New York, NY: Springer.

45 Kampen, N. V. 2007 Stochastic processes in physics and
chemistry, 3rd edn. North Holland, The Netherlands:
North-Holland Personal Library.

46 Black, A. J. & McKane, A. J. In press. Stochastic formu-
lation of ecological models and their applications. Trends
Ecol. Evol. (doi:10.1016/j.tree.2012.01.014)

47 Guttal, V. & Jayaprakash, C. 2008 Changing skewness:
an early warning signal of regime shifts in ecosystems.
Ecol. Lett. 11, 450–460. (doi:10.1111/j.1461-0248.
2008.01160.x)

48 Cox, D. R. 1962 Further results on tests of separate
families of hypotheses. J. R. Stat. Soc. 24, 406–424.
J. R. Soc. Interface
49 Efron, B. 1987 Better bootstrap confidence intervals.
J. Am. Stat. Assoc. 82, 171–185.

50 Goldman, N. 1993 Statistical tests of models of DNA sub-
stitution. J. Mol. Evol. 36, 182–198. (doi:10.1007/
BF00166252)

51 Huelsenbeck, J. P. & Bull, J. J. 1996 A likelihood ratio test
to detect conflicting phylogenetic signal. Syst. Biol. 45,
92–98. (doi:10.1093/sysbio/45.1.92)

52 Noy-Meir, I. 1975 Stability of grazing systems: an appli-
cation of predator–prey graphs. J. Ecol. 63, 459–481.
(doi:10.2307/2258730)

53 May, R. M. 1977 Thresholds and breakpoints in ecosys-
tems with a multiplicity of stable states. Nature 269,
471–477. (doi:10.1038/269471a0)

54 Petit, J. R. et al. 1999 Climate and atmospheric history
of the past 420,000 years from the Vostok ice core,
Antarctica. Nature 399, 429–436. (doi:10.1038/20859)

55 Dakos, V., Nes, E. H., Donangelo, R., Fort, H. & Scheffer,
M. 2009 Spatial correlation as leading indicator of cata-
strophic shifts. Theoret. Ecol. 3, 163–174. (doi:10.1007/
s12080-009-0060-6)


