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The past decade, a “Science of Networks”:
(Physical, Biological, Social)

• Geometric versus virtual (Internet versus WWW).

• Natural /spontaneously arising versus engineered /built.

• Each network may optimize something unique.

• Fundamental similarities and differences
to guide design/understanding/control.

• Interplay of topology and function ?

• Up until now, studied largely
as individual networks in isolation .

NRC, 2005



Single Network View

• Broad scale degree distributions ubiquitous.

• Small world effect (small diameter and local clusters).

• Vulnerability to “hub” removal / resilience to random removal.

• Percolation, spreading and
epidemics (phase transitions)

• Cascades.

• Synchronization.

• Random walks / Page rank.

• Communities / subnetworks.

• Structural roles of nodes.



A collection of interacting networks:

Networks:

Transportation
Networks/
Power grid
(distribution/
collection networks)

Biological networks
- protein interaction
- genetic regulation
- drug design

Computer
networks

Social networks
- Immunology
- Information
- Commerce

• E-commerce→WWW→ Internet→ Power grid→ River networks.

• Biological virus → Social contact network → Transportation networks →
Communication networks→ Power grid→ River networks.



Interdependent networks
What are the simplest, useful, abstracted models ?

• What are the emergent new properties?
– Host-pathogen interactions
– Phase transition thresholds

• Iteractions: Cooperative, competitive, neutral ?

• How do demands in one system shape the performance of the
others? (e.g., demand informed by social patterns of communication)

• How do constraints on one system manifest in others?
– (River networks shape placement of power plants)
– (Overlay networks)

• Coupling of scales across space and time / co-evolution.



Models of interacting networks

• Random graphs & branching processes
(“Typical” graph consistent with specified parameters)

• Phase transitions
(The surprising consequences of interactions)

• Motifs (distinguishing real systems from random graphs)
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Modeling networks as random graphs
• Erdős and Rényi random graphs (1959, 1960).

Phase transition in large-scale connectivity.

• Configuration models (Bollobás 1980, Molloy and Reed RSA 1995).
Enumerating over all networks with specified {pi}.

. . . 

• Preferential attachment (Barbási-Albert 1999, etc.)

• Growth by copying (Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins,
Upfal FOCS 2000), including duplication/mutation (Vazquez, Flammini,
Maritan, Vespignani, ComPlexUs 2003)

• Random graphs analysis considers the ensemble of all graphs that
can be constructed consistent with specified properties.



Cautions for use of random graphs

• Ensemble not necessarily representative

• Degree distribution is often not enough:

Doyle, et. al., PNAS 102 (4)2005.

All these have
same deg dist, pi:

the resulting models are widely conjectured to be asymptotically
equivalent (e.g., see ref. 6 and references therein).

In particular, for a graph g having degree sequence D, we
define the purely graph-theoretic quantity s(g) ! "(i, j)!E(g)didj,
where E(g) is the set of edges in the graph. It is easy to check that
high s(g) requires high-degree vertices to connect to other
high-degree vertices. Normalizing against smax ! max{s(g): g !
G(D)}, we define the measure 0 ! S(g) ! 1 of the graph g as
S(g) ! s(g)!smax. Although s(g) and S(g) can be computed for any
graph and do not depend on any particular construction mech-
anism, they have a special meaning in the context of ensembles
of graphs. Specifically, S(g) has a direct interpretation as the
relative log-likelihood of a graph resulting from the generalized
random-graph construction (17); thus, all of the SF-model–
generation mechanisms generate essentially only high S graphs.
The S-metric also potentially unifies other aspects of SF graphs,
because it is closely related to betweenness, degree correlation
(6), and graph assortativity (18) and captures several notions of
self-similarity related to graph trimming, coarse graining, and
random rewiring (6).

The focus on ensemble-based methods means that the analysis in
SF models has implicitly ignored those graphs that are unlikely to
result from such constructions, in particular graphs with small S.
Thus, although power-law degree distributions are unlikely under
some traditional random graph constructions [e.g., Erdös–Renyı́
random graphs (19)], there are a multitude of other model-
generation mechanisms that give rise to power laws (20). The
SF-generating mechanisms are only one kind, but they tend to
generate only high S graphs, which leaves unexplored an enormous
diversity of low S graphs, as seen in Fig. 1. The graphs in Fig. 1 a
and b are relatively likely to result from probabilistic construction,
whereas the graphs in Fig. 1 c and d are vanishingly unlikely. The
PA-type graph shown in Fig. 1a has S(ga) ! 0.61 and is typical of
the graphs that are likely under a variety of random-generation
methods. The graph shown in Fig. 1b is the smax graph and thus by
definition has S(gb) ! 1.0. It can be thought of both as the most
likely graph and also (uniquely) as the most ‘‘perfectly’’ SF graph
with this degree sequence. Of course, the sheer enormity of the
number of different high S graphs means that any particular one

graph, even the relatively most likely, is actually unlikely in absolute
terms to be selected. The graphs in Fig. 1 c and d have the values
S(gc) ! 0.33 and S(gd) ! 0.34, respectively; furthermore, there are
relatively few graphs with S values this low, and thus any graphs
similar to these are vanishingly unlikely to arise at random (6). The
remainder of this article explains in more detail why the underlying
forces at work in the evolution of the real router-level Internet avoid
the generation of high S graphs and how this feature can be
captured in an optimization-based design framework. We also
consider what, if anything, this framework has to say about the RYF
nature of the Internet.

A Look at the Actual Internet
An obvious starting point for investigating the structure and
underlying forces at work in the Internet is to inspect detailed
router-level maps from Internet service providers (ISPs).
Abilene, the backbone for the Internet2 academic network, is
illustrated in Fig. 1 and is an ideal example for many reasons that
will be exploited throughout this analysis.** Abilene publishes
detailed hardware specifications for each router and link, so Fig.
1 is exact, not an approximation based on indirect measure-
ments. Abilene is also a state-of-the-art network with essentially
no difference between physical (i.e., layer two) and Internet-
protocol (IP) (i.e., layer three) connectivity. This simplifies the
exposition without loss of generality and also eliminates a source
of confusion in measured data from networks that use older
legacy technologies. Using regional academic networks and
commercial ISPs, we verified that all the inferences and conclu-
sions based on Abilene hold in general. Commercial ISPs do not
allow publishing such details because of proprietary consider-
ations, but router-level measurement studies (21, 22, ††) further
confirm our analysis (7, 23, 24), although this requires additional
statistical and Internet-specific expertise beyond the intended scope
of this article.

**Detailed information about the objectives, organization, and development of the
Abilene network are available from www.internet2.edu!abilene.

††SKITTER Project. Cooperative Association for Internet Data Analysis, University of Cali-
fornia San Diego Supercomputing Center (www.caida.org).

Fig. 1. Diversity among graphs having the same degree sequence D. (a) RNDnet: a network consistent with construction by PA. The two networks represent
the same graph, but the figure on the right is redrawn to emphasize the role that high-degree hubs play in overall network connectivity. (b) SFnet: a graph having
the most preferential connectivity, again drawn both as an incremental growth type of network and in a form that emphasizes the importance of high-degree
nodes. (c) BADNet: a poorly designed network with overall connectivity constructed from a chain of vertices. (d) HOTnet: a graph constructed to be a simplified
version of the Abilene network shown in Fig. 2. (e) Power-law degree sequence D for networks shown in a–d. Only di # 1 is shown.

14498 " www.pnas.org!cgi!doi!10.1073!pnas.0501426102 Doyle et al.

• Graph distance ... complicated to build in Euclidean space



Opportunities for random graphs?

• Enhance/delay onset of percolation
– Achlioptas, R.D., Spencer, Science, 2009.
– R.D., Mitzenmacher Phys. Rev. Lett., 2010.
– Chen, R.D. Phys. Rev. Lett. 2011.

• Local optimization models:
tradeoffs between Euclidean and tree metrics
– R.D., Borgs, Chayes, Berger, Kleinberg, PNAS 2007.

• Epidemic spreading: SIS/SIR

• Socio-technical models (“Task oriented social networks”)
– Wen, R.D, Devanbu, Filkov (under review): OSS systems: shared
ownership of tasks good; but need a project lead.

• Signatures for onset of phase transitions



Wiring which respects group structures percolates earlier!
(E. Leicht and R. D’Souza, arXiv:0907.0894)

A B

1e+05 1e+06 1e+07 1e+08

0.
82

0.
86

n

k

S

k c
0.

82
0.

86

1e+05 1e+06 1e+07 1e+08
n

(Also tradeoffs between sparser and denser subnetworks.)

• Probability distribution for node degrees: {pakakb, p
b
kakb
}

• Generating functions to calculate properties of the ensemble of such
networks.



Calculating optimal interconnectivity
[Brummitt, R.D., Leicht, PNAS 109 (12) E680-E689, 2012.]

(Author Summary may be of particular interest)

• Branching process on multi-type random-regular graphs

za = 3

zb = 4p = 0.1

• Simulations of sandpiles on real power grid topologies



A view from the UK’s Chief Science Advisor

(Source: Prof. Brian Collins, Chief Science Advisor, UK Dept of Transport)
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