

Highly Scalable Inference Techniques for Mix-Membership Block Models

Eric Xing

epxing@cs.cmu.edu

Machine Learning Dept./Language Technology Inst./Computer Science Dept. Carnegie Mellon University

Social networks

davestone04

dinner tonight - nice reunion!

WWDC Keynote thought 3: That's some fine technical and customer relations work there, AT&TI.Must feel good to be firing on all cylinders.

it b inte

NYC. Getting a good wellfire understanding of what to

Just finished productive meetings with employers in

NeuroProdjust finished

BGFCville

Ethan: last night, I was at a Uruguayan restaurant in Honduras, watching the US vs. Hon, soccer match and

Where to Find the Marketer Opportunities in the New iPhone: http://adiix.com/eshu

tangue Rock fro

breaks (guy fixe fixing ca

@ pwd_ #voroblobs sure and as a first idea. I think it mowing ould be pixelbender stuff

beastiebovs

Better follow @professor_booty an to http://RTth.is/62

AidtoArtisans

For the first time in 2,000. years, women in the Yunnar region are making Nixi pottery again. This was never done

e katiebailev07 project

SteveGladis ets

sashafarmer

yeeps! monday just hit with vengeance! finishing up scheduling some showings

and then showin

plouisemay

shaneculp

Adding code to help in localization. Moving towards tRdetn a little over a week

Estimating Evolving "Latent" Social Networks

Can I get his vote?

Corporativity,

Antagonism,

Cliques,

...

over time?

Asymptotic-consistent graph estimation algorithms [Kolar and Xing, 09,12]

KELLER

TESLA

Smoothly evolving graphs

Abruptly evolving graphs

$$\mathbb{P}\left[\hat{G}(\lambda_n) \neq G\right] = \mathcal{O}\left(\exp\left(-Cn^{\epsilon}\right)\right) \to 0$$

Mixed Membership of Actors

- Micro-inference vs. Meso- or Macro-inference
- Multi-role of every node
- Context dependent role-instantiation
- Role dynamics

Mixed Membership Stochastic Blockmodel [Airoldi, Blei, Fienberg and Xing, JMLR 2008]

- 1. $\{\theta_i\}_{i=1}^N \sim p(\theta|\alpha) \equiv \text{Dirichlet}(\theta;\alpha)$ sample mixed membership vectors.
- 2. For each actor v_i that actor v_i possibly interacts with:
 - $z_{i \to j} \sim \text{Multinomial}(z|\theta_i)$ sample an indicator for v_i ;
 - $z_{i \leftarrow j} \sim \text{Multinomial}(z|\theta_i)$ sample an indicator for v_i ;
 - $e_{ij} \sim \text{Bernoulli}(e|z_{i \to j}^{\top} B z_{i \leftarrow j})$ sample a link.

In the mixed-membership simplex

[Airoldi, Blei, Fienberg and Xing, JMLR 2008]

Multi-Scale Community Blockmodel

[Ho, Parikh, and Xing, JASA 2012]

Challenge - Massive Data Scale

Does not fitting into memory, nor a single machine, a familiar problem!

Popular Statistical Network Models don't scale well

- Mixed-Membership Stochastic Blockmodel
 - Models every element A(i,j) of the adjacency matrix, which has size $\Theta(N^2)$
 - Hence Θ(N²) latent variables
 - Hence $\Omega(N^2)$ time per iteration of approximate inference
- Latent Factor models
 - Only $\Theta(N)$ latent variables, but Markov Blanket of each variable is $\Theta(N)$ in size
 - Thus $\Omega(N^2)$ time per iteration of approximate inference
- Exponential Random Graph Models
 - Estimated via MCMC-MLE, which samples the adjacency matrix
 - So $\Omega(N^2)$ time for approximate inference
- Fundamental problem: the above models all represent the network by its adjacency matrix, i.e. the matrix of all relationships A(i,j)
 - Adjacency matrix has size $\Theta(N^2)$, so inference will take $\Theta(N^2)$ time as well!
 - The more compact adjacency list representation is NOT a solution, because the above models statistically depend on "missing edges" A(i,j) = 0 as well $\frac{5}{7}$

ML with scalable, adaptive, online, parallelizable, and confident ...

Scalable Representation

[Ho and Xing, NIPS 2013]

Node 0 Adj. Matrix Features

Dest. Node	Edge Status
1	No
2	Yes
3	Yes
4	Yes
5	No
6	No
7	No
8	No
9	Yes

Length O(N) vs. Length O(Degree²)

Triangle features more compact for low node degree!

four edges, five non-edges

Node 0 2/3-Triangle Features

Dest. Nodes	Triangle Status				
(2,3)	♣				
(2,4)					
(2,9)	♣				
(3,4)	\triangle				
(3,9)	♣				
(4,9)	lacksquare				

one 3-triangle, five 2-triangles

Why 2/3-edge triangular motifs?

- Well studied in many fields:
 - Biology
 - Social science (transitivity)
 - Data mining (clustering coefficients)
- Basis for network clustering coefficient (CC)
 - Ratio of 2-edge motifs to 2-edge + 3-edge motifs
 - High CC implies stronger, more well-connected clusters
- 2/3-edge motifs contain almost all edges from the adjacency matrix
 - Exception: isolated components with exactly 1 edge
 - Thus, the triangular representation preserves almost all network information!

Triangular Model Intuition

- Adjacency matrix models (MMSB, Latent Factor) are concerned with edge probabilities
 - i.e. the distribution over events { A(i,j) = 0, A(i,j) = 1 }
- Our triangular motif model is concerned with probabilities over 2/3-edge motifs

• i.e. the probability of a triple (i,j,k) exhibiting one of the three possible 2-edge motifs, or the sole 3-edge motif

MMTM Generative Process

Node i

Role	Probability
1	0.7
2	0.2
3	0.1

Node j

Role	Probability
1	0.5
2	0.1
3	0.4

Node k

Role	Probability
1	0.3
2	0.7
3	0.0

j picks role 3 K picks role 2

For each triple (i,j,k) being modeled:

1. Pick roles for i,j,k from their respective role vectors

MMTM Generative Process

For each triple (i,j,k) being modeled:

- 1. Pick roles for i,j,k from their respective role vectors
- 2. Given the combination of roles (in this case 1,3,2), we look up a tensor of parameters B to get that role combination's 2/3-edge motif distribution
- 3. Generate the motif from the distribution

j 3 k n

Note: we permit adjacent node triples to generate "incompatible" 2/3-edge motifs. This is in line with the "bag-of-motifs" assumption!

Look up B(1,3,2) to get the 2/3-edge motif distribution

Picks motif 1

Motif

Probability: 0.4

0.1

0.2

0.3

MMTM Graphical Model

Gibbs Sampling for inference, with θ and B integrated out

triangular motifs

distributions for each role combination

Additional modeling and scaling technologies

Isomorphism

- δ-subsampling
 - we pick a constant δ and subsample $\delta(\delta$ -1)/2 motifs from every node with degree > δ
 - A possible theory of projection invariance
- O(K) triangle probability parameters (instead of O(K³))
- Stochastic variation inference
- Parallel inference with parameter server architecture and bounded staleness

Simulations

• Statistics for N=4,000 simulation networks:

	#0,1-edges	#1-edges	$\max(D_i)$	$\#\Delta_3,\Delta_2$	$\delta = 20$	$\delta = 15$	$\delta = 10$	$\delta = 5$
MMSB	7,998,000	55,696	51	1,541,085	749,018	418,764	179,841	39,996
Latent position	II	56,077	51	1,562,710	746,979	418,448	179,757	39,988
Biased scale-free	II	60,000	231	3,176,927	497,737	304,866	144,206	35,470
Pure membership	П	55,651	44	1,533,365	746,796	418,222	179,693	39,986

Table 2: Number of edges, maximum degree, and number of 3- and 2-edge triangles Δ_3 , Δ_2 for each N=4,000 synthetic network, as well as #triangles when subsampling at various degree thresholds δ . MMSB inference is linear in #0,1-edges, while our MMTM's inference is linear in # Δ_3 , Δ_2 .

Simulations

 MMTM with δ-subsampling is not only much faster, but also more accurate

Figure 3: Mixed-membership community recovery task: Cumulative ℓ_2 errors and runtime per trial for MMSB, MMTM and MMTM with δ -subsampling, on N=4,000 synthetic networks.

Improvement over state of the art

- As the number of nodes increases:
 - MMSB (edge-based representation) runtime increases quadratically
 - MMTM (triangle-based) runtime increases linearly when δ is held constant
 - Stochastic variational inference further improves speed

[Ho, Yin and Xing, NIPS 2012, UAI 2013]

Name	Nodes N	Edges	Roles K	Threads	Runtime
Brightkite	58K	214K	64	4	35 min ¹
Brightkite	l II		300	4	2.7 h
Slashdot Feb 2009	82K	504K	100	4	2.3 h
Slashdot Feb 2009	l II		300	4	6.8 h
Stanford Web	282K	2.0M	5	4	12 min^2
Stanford Web			100	4	6.3 h
Berkeley-Stanford Web	685K	6.6M	100	8	20.7 h
Youtube	1.1M	3.0M	100	8	10.7 h

Competing methods
8 days (Blei, NIPS 2012)
o days (Bici, Wii 3 2012)
18 hrs (Ho et al, NIPS 2012
10 1115 (110 et al, 1111 5 2012
E/7/10

A Larger-scale Demonstration

- Stanford web graph, N≈280,000
 - Ran for 2,000 sampling iterations, convergence observed by 500 iterations
 - Total runtime: 74 hours on a single computational thread

Every circle represents a node in the network

Circle sizes are proportional to node degrees

Colors and positions represent inferred role MM vectors

Figure 5: N = 281,903 Stanford web graph, MMTM mixed-membership visualization. 5/7/13

MMTM Stochastic Variational

- Variational EM on randomly chosen triangles (data points)
 - Similar to stochastic variational for LDA and MMSB
 - Only need to touch every triangle 2-3 times to converge
- O(K) triangle probability parameters B
 - Old model:
 - B(a,b,c) for all K³ choices of roles a,b,c → K³ parameters
 - New model:
 - **3-roles-same:** B(a,a,a) for each of the K choices of $a \rightarrow K$ parameters
 - **2-roles-same:** B(a,a,·) for each of the K choices of a, where $\cdot \neq a \rightarrow K$ parameters
 - All-roles-different: $B(\cdot,\cdot,\cdot)$ where all three \cdot are different \to 1 parameter
 - Total 2K + 1 parameters
- Parallelization
 - Alternate inference between
 - Node topic vectors Θ
 - Triangle role assignments s
 - Triangle probability parameters B
 - Each variable type can be parallelized given the other 2 types

Running time on real networks

Re	Real Networks — Statistics, Experimental Settings and Runtime									
Name	Nodes N	Edges	δ	2,3-Tris (for δ)	Frac. of 3-Tris	Roles K	Threads	Runtime		
Brightkite	58K	214K	50	3.5M	0.11	64	4	35 min^1		
Brightkite						300	4	2.7 h		
Slashdot Feb 2009	82K	504K	50	9.0M	0.030	100	4	2.3 h		
Slashdot Feb 2009						300	4	6.8 h		
Stanford Web	282K	2.0M	20	11.4M	0.57	5	4	12 min^2		
Stanford Web			50	25.0M	0.42	100	4	6.3 h		
Berkeley-Stanford Web	685K	6.6M	35	67.1M	0.55	100	8	20.7 h		
Youtube	1.1M	3.0M	50	36.0M	0.053	100	8	10.7 h		

Graphs/runtime are for 10 passes per data point (triangle)
Convergence occurs in 2-3 data passes
Youtube network (1.1M nodes, K = 100) in <2h using 8 threads

Further Improvement over state of the Xin and Xing NIDS 2013 UNI 201

- As the number of nodes increases:
 - MMSB (edge-based representation) runtime increases quadratically
 - MMTM (triangle-based) runtime increases linearly when δ is held constant
 - Stochastic variational inference further improves speed

[Ho, Yin and Xing, NIPS 2012, UAI 2013]

Name	Nodes N	Edges	Roles K	Threads	Runtime
Brightkite	58K	214K	64	4	35 min ¹
Brightkite			300	4	2.7 h
Slashdot Feb 2009	82K	504K	100	4	2.3 h
Slashdot Feb 2009	l II		300	4	6.8 h
Stanford Web	282K	2.0M	5	4	12 min^2
Stanford Web			100	4	6.3 h
Berkeley-Stanford Web	685K	6.6M	100	8	20.7 h
Youtube	1.1M	3.0M	100	8	10.7 h

Competing methods
8 days (Blei, NIPS 2012)
o days (Biel, Nil 3 2012)
18 hrs (Ho et al, NIPS 2012
E/7/40

And the improvement continues ...

Real Networks — Statistics, Experimental Settings and Runtime									
Name	Nodes N	Edges	δ	2,3-Tris (for δ)	Frac. of 3-Tris	Roles K	Threads	Runtime	
Brightkite	58K	214K	50	3.5M	0.11	64	4	35 min^1	
Brightkite						300	4	2.7 h	
Slashdot Feb 2009	82K	504K	50	9.0M	0.030	100	4	2.3 h	
Slashdot Feb 2009						300	4	6.8 h	
Stanford Web	282K	2.0M	20	11.4M	0.57	5	4	12 min^2	
Stanford Web			50	25.0M	0.42	100	4	6.3 h	
Berkeley-Stanford Web	685K	6.6M	35	67.1M	0.55	100	8	20.7 h	
Youtube	1.1M	3.0M	50	36.0M	0.053	100	8	10.7 h	

Brightkite 58K nodes

New MMTM converges in 12 min

Stochastic Variational MMSB (Gopalan et al, NIPS 2012) took 8 days using 4 threads

Stanford 282K nodes

New MMTM converges in 6 min

Gibbs MMTM (Ho et al, NIPS 2012) took 18.5 hours using 1 thread

26

Conclusion

- MMTM exploits a "bag-of-triangular-motifs" network representation
 - Specifically, MMTM models triangular motifs with 2 or 3 edges
 - Parsimonious alternative to edge-based adjacency matrix representation, which has size N²
- MMTM scales to much larger networks than adjacency matrix models such as MMSB, ERGMs or latent position models
 - With δ-subsampling, # 2/3-edge triangular motifs << N²
 - 100K node networks are feasible with MMTM (single thread)
 - Whereas 10K node networks are already impractical for the a/m models
- MMTM inference yields better role MM vector recovery than MMSB inference on a variety of models
 - Even on the MMSB model itself!
 - This is partly because MMTM's state space is much smaller (fewer latent variables), thus MMTM approximate inference converges much faster

A note on scalable ML

- Our New MMTM is built on 3 principles:
 - Compact data representation (triangles rather than edges)
 - Parsimonious model with linear O(K) number of role parameters
 - Fast, scalable, distributable inference algorithm (stochastic variational EM)
- These principles are the building blocks for truly scalable Big ML
- Next step: distributed general ML inference engine for large clusters

Future Work

- Parallelization
 - One thread can perform inference on N=280K nodes in 3 days
 - We aim to parallelize to 1,000 threads, so as to perform inference on networks with N=100M nodes
- Subsampling strategies
 - What are the theoretical properties of δ-subsampling?
 - Are there better subsampling strategies?