A Complex Systems Theory of Disease

Samuel V. Scarpino

Omidyar Fellow Santa Fe Institute

scarpino@santafe.edu @svscarpino scarpino.github.io

Where will the next pandemic emerge?

Where will the next influenza pandemic emerge?

© WHO 2008. All rights reserved

World Health

Organization

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

Data Source: World Organisation for Animal Health (OIE) and national governments

Map Production: Public Health Information and Geographic Information Systems (GIS), World Health Organization

What factors are important for pandemic flu?

Air travel

Duration of Travel | Duration

Density of pig farms

Worldwide pig density

Worldwide pig density

and it happened again with Ebola

and it happened again with Ebola

Table I. — Age distribution of persons positive for either Lassa (LAS), Ebola (EBO) or Marburg (MAR) virus antibodies.

Age (years)	Nb tested	LAS-positive (prevalence %)	EBO-positive (prevalence %)	MAR-positive (prevalence %)
0-9	49	5 (10 %)	2 (4 %)	0
10-19	68	11 (16 %)	$\frac{1}{5}(7\%)$	$\overline{0}$
20-29	108	21 (19 %)	6 (6 %)	1
30-39	94	16 (17 %)	5 (5 %)	1
40-59	88	9 (10 %)	6 (7 %)	1
60 plus	26	5 (16 %)	2 (8 %)	2
Total	433	67 (16 %)	26 (6 %)	5 (1 %)

and it may happened again with Chagas

Brumpt et al. 1912 Salazar et al. 2015

and it may happened again with Chagas

Brumpt et al. 1912 Salazar et al. 2015

Modeling infectious diseases

Inequality & disease

Social clustering & Ebola

Compartmental models

Susceptible (S)

Compartmental models - Mass Action Assumption

Compartmental models

Lions, Tigers, and Boxes ... oh my

Fig. 1 The general transfer diagram for the MSEIR model with the passively immune class M, the susceptible class S, the exposed class E, the infective class I, and the recovered class R.

$$S'(t) = \mu \cdot (1 - wP - aP) - \beta [I_s(t) + I_a(t)]S(t) - \nu S(t)$$
(1)

$$I_s'(t) = \beta \sigma [I_s(t) + I_a(t)]S(t) - \gamma_s I_s(t) - \nu I_s(t)$$
(2)

$$I_a'(t) = \beta(1-\sigma)[I_s(t) + I_a(t)]S(t) + \beta[I_s(t) + I_a(t)]V(t) - \gamma_a I_a(t) - \nu I_a(t)$$
(3)

$$V'(t) = \mu \cdot aP - \beta [I_s(t) + I_a(t)]V(t) - \nu V(t)$$

$$\tag{4}$$

$$R'(t) = \mu \cdot wP + \gamma_s I_s(t) + \gamma_a I_a(t) - \nu R(t)$$
(5)

Lions, Tigers, and Boxes ... oh my

ly immune class M, the recovered class R.

 $I'_s(t) = \beta \sigma [I_s(t)]$ $I'_a(t) = \beta (1 - \epsilon)$ $V'(t) = \mu \cdot aP$ $R'(t) = \mu \cdot wP$

 $S'(t) = \mu \cdot (1 -$

Fig. 3. Transfer diagram for the pertussis model with vaccination.

Reproduction Number

Expected number of secondary cases in the begining of an outbreak

Compartmental models

$$R_0 = \frac{\text{Infection rate}}{\text{Recovery rate}} = \frac{\beta S}{\gamma}$$

Reproduction Numbers

Disease	R_0	
Measles & Whooping Cough	5 - 18	
Chicken Pox	7 - 12	
Polio	5 - 7	
Smallpox	1.5 - 20+	
Seasonal flu	1.1 - 1.5	
Ebola	1.1 - 3	

Problems with the Reproduction Number

Ebola virus genomic data

Reconstructed transmission network

Posterior number of secondary infections

Problems with the Reproduction Number

Contact Patterns Vary

Meltzer et al. 2014

Why do these problems exist?

Why do these problems exist?

1.

Intrinsic properties of the pathogen

2.

Contact patterns of the host

Network Epidemiology

Network Epidemiology

$$R_{0} = T \left(\frac{\langle K^{2} \rangle - \langle K \rangle}{\langle K \rangle} \right)$$

Network Epidemiology Vs.

Standard Calculation

$$R_{0} = T \left(\frac{\langle K^{2} \rangle - \langle K \rangle}{\langle K \rangle} \right)$$

$$R_0 = \frac{\beta S}{\gamma}$$

Model complexity

Modeling infectious diseases

Inequality & disease

Social clustering & Ebola

The Cholera Outbreak of 1854

Poverty and the Cholera Outbreak of 1854

Modern Inequality and health

Life Expectancy Income Inequality **Primary Care** Life Expectancy

modified from Shi et al. 1999

The current Ebola outbreak

Poverty and the current Ebola virus outbreak

Health Care Expenditure Per Person U.S.D. (log scale)

Poverty and the current Ebola outbreak

Health Care Expenditure Per Person (log U.S.D.)

Influenza in El Paso, TX

2013 - 14 Influenza Season

Poverty in El Paso

Poverty and flu in El Paso

At least two strongly correlated groups

It's not geographic

It's poverty and ...

It's poverty and vaccination

Poverty and influenza in Dallas, TX

Higher hospitalization rates in poorer zip codes

Poorer zip codes are in sync

Predicting hospitalizations

Predicting hospitalizations in the richest areas

Predicting hospitalizations in the poorest areas

Modeling infectious diseases

Inequality & disease

Social clustering & Ebola

Clustering and disease transmission

High clustering Low clustering

Clustering and disease transmission

High clustering Low clustering

Clustering and disease transmission

High clustering Low clustering

Outbreak in Sierra Leone

Evidence for clustered transmission

Evidence for clustered transmission

1. Dynamic importance of clustering

2. No evidence for interventions

3. Perhaps we can forecast outbreaks

What happens when you replace sick workers?

What happens when you replace sick workers?

What happens when you replace sick workers?

How does Relational Exchange work?

How does Relational Exchange work?

Accelerating exponential growth

Accelerating exponential growth

influenza

dengue

Influenza in the U.S.A. 1926 - 1951

$$R_{0} = T \left(\frac{\langle K^{2} \rangle - \langle K \rangle}{\langle K \rangle} \right)$$

$$R_0 = \frac{\beta S}{\gamma}$$

High clustering Low clustering

Toward a complex systems theory of disease

Acknowledgments

Lauren Ancel Meyers
Mark Kirkpatrick
Ned Dimitrov
Ben Althouse
Dave Morton
James Scott
Atila Iamarino
Bruce Clements
Sara Del Valle
Greg Johnson

NSF GRFP & DDIG
NIH MIDAS
DTRA
Texas DSHS
APHA
Integrative Biology UT Austin
UT Austin
The Santa Fe Institute
The Omidyar Group

Michael Johansson
Chad Wells
Dan Yamin
Martial Ndeffo-Mbah
Natasha Wenzel
Spencer Fox
Tolbert Nyenswah
Frederick Altice
Alison Galvani
Jeffrey Townsend

Questions?

Samuel V. Scarpino

Omidyar Fellow Santa Fe Institute

scarpino@santafe.edu @svscarpino scarpino.github.io

