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Chaos 

Complex behavior, arising in a deterministic nonlinear 
dynamic system, which exhibits two special properties: 

•  sensitive dependence on initial conditions 

•  characteristic structure… 

chaotic	



nonlinear	


dynamic(al)	



Chaos 

Complex behavior, arising in a deterministic nonlinear 
dynamic system, which exhibits two special properties: 

•  sensitive dependence on initial conditions 

•  characteristic structure… 

Systems that exhibit chaos are ubiquitous; many of them 
are also simple, well-known, and “well-understood” 

Where nonlinear dynamics turns up 

•  Flows (of fluids, heat, …) 

- Eddy in creek 

- Weather 

- Vortices around marine invertebrates 

-  Air/fuel flow in combustion chambers 

Where nonlinear dynamics turns up 

•  Driven nonlinear oscillators 

- Pendula 

- Hearts 

-  Fireflies 

- and lots of other electronic, chemical, & biological 
systems 
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Where nonlinear dynamics turns up 

•  Classical mechanics 

- three-body problem 

-  paired black holes 

-  pulsar emission 

-  …. 

•  Protein folding 

•  Population biology 

•  And many, many other fields (including yours) 

Hut & Bahcall Ap.J. 268:319	



•  continuous time systems:  

•  time proceeds smoothly 

•  “flows” 

•  modeling tool: differential equations 

•  discrete time systems:  

•  time proceeds in clicks 

•  “maps” 

•  modeling tool: difference equation 

A useful graphical solution 
technique  

•  “cobweb” diagram 

•  aka return map 

•  aka correlation plot 

Image from Doug Ravenel’s website at URochester	



Bifurcations  
Qualitative changes in the dynamics caused by 
changes in parameters 
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Bifurcations  
Qualitative changes in the dynamics caused by 
changes in parameters: 

•  Heart: pathology 

•  Eddy in creek: water level  

•  Olfactory bulb: smell 

•  Brain: blood chemicals 

•  etc. etc. 

Bifurcations in the logistic map  

R=2.8	



R=3.3	



Note: in discrete time plots, it makes no sense to connect dots!!	


Plots from Strogatz	



R=3.3	



R=3.5	



Plots from Strogatz	



R=3.5	



R=3.9	



Plots from Strogatz	



Courtesy of Allison Brown	



n=0	

 n=1	

 n=2	



n=3	

 n=4	

 n=5	
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R	



•  chaos 

•  veils/bands: places where chaotic attractor is dense (UPOs) 

•  chaos 

•  veils/bands: places where chaotic attractor is dense (UPOs) 

•  period-doubling cascade @ low R 

Δ

Δ

Δ

1	



2	



3	



Feigenbaum number	
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Universality! 
Feigenbaum number and many other interesting 
chaotic/dynamical properties hold for any 1D 
map with a quadratic maximum. 

Proof: renormalizations.  See Strogatz §10.7 

Don’t take this too far, though… 

Some (but not all) of 
these have quadratic 
maxima…	



•  chaos 

•  veils/bands: places where chaotic attractor is dense (UPOs) 

•  period-doubling cascade @ low R 

•  windows of order within the chaos, complete with their own 
period-doubling cascades (e.g., 3 to 6 to 12) 

A bit more lore on periods and chaos 

•  Sarkovskii (1964) 
3, 5, 7, …3x2, 5x2, …3x22, 5x22, … 22, 2, 1 

•  Yorke (1975) 

•  Metropolis et al. (1973) 
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•  chaos 

•  veils/bands: places where chaotic attractor is dense (UPOs) 

•  period-doubling cascade @ low R 

•  windows of order within the chaos, complete with their 
own period-doubling cascades (e.g., 3 to 6 to 12) 

•  small copies of object embedded in it (fractal) 

 lots of other interesting stuff, too — e.g., Misiurewicz points 

  Fractals 
•  non-integer Hausdorff dimension 
•  self-similar 

Examples: Cantor set, coastlines, trees, lungs, clouds, drainage basins, … 

Images from Gleick 

www.youtube.com/watch?v=G_GBwuYuOOs!

  The Mandelbrot set Fractals in computer graphics	



Matthew Ward, WPI	


davis.wpi.edu/~matt/courses/fractals/trees.html!

Fractals in the wild	



http://paulbourke.net/fractals/googleearth/!

From Strogatz	



Fractals in 
maps 

Newton’s method	


 on x   - 1 = 0	

4	
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Fractals and chaos… 

 The connection: many (most) chaotic systems have fractal 
state-space structure. 

But not “all.” 

The rest of today… 

•  Lunch (cafeteria downstairs) 

•  Dynamics Lab I:   

•  Meet here at 1:30pm  

•  Bring your laptop, if you have one here 

•  Make sure it has Java installed, and some 
browser besides Chrome 

•  Lab handouts on the CSSS wiki 

•  Intro to Santa Fe (3pm, here) 

•  Public lecture tonight (shuttles at 6:45) 

•  discrete time systems:  

•  time proceeds in clicks 

•  “maps” 

•  modeling tool: difference equation 

So far: mostly about maps. 

•  continuous time systems:  

•  time proceeds smoothly 

•  “flows” 

•  modeling tool: differential equations 

Next up: flows 

Attractors 

•  Attractors exist only in dissipative systems! 

•  Dissipation          contraction of state space under the influence of 
the dynamics 

•  Can still have chaos if no dissipation…just not chaotic attractors 

attractor 

basin of 
attraction 

boundary of basin of 
attraction 

W

V	



n=0	

 n=1	

 n=2	



n=3	

 n=4	

 n=5	
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Conditions for chaos in 
continuous-time systems 

 Necessary: 

•  Nonlinear 

•  At least three state-space dimensions     (NB: only one needed in maps) 

Necessary and sufficient: 

•  “Nonintegrable” 

 i.e., cannot be solved in closed form 

Concepts: review •  State variable 

•  State space 

•  Initial condition 

•  Trajectory 

•  Attractor 

•  Basin of attraction 

•  Transient 

•  Fixed point (un/stable) 

•  Bifurcation 

•  Parameter 

www.exploratorium.edu/complexity/
java/lorenz.html!

(Note: by Jim Crutchfield, another SFI person, 
who will be here at the end of next week)	



A cool Lorenz applet: 

J. Atm. Sci. 20:130	
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•  Equations: 

x’ = a(y-x) 

y’ = rx -y -xz 

z’ = xy - bz 

(first three terms of a Fourier expansion of the Navier-Stokes eqns) 

? •  State variables: 

  x convective intensity 

  y temperature 

  z deviation from linearity in the 
vertical convection profile 

•  Parameters: 

  a Prandtl number - fluids property 

  r  Rayleigh number - related to ΔT 

  b aspect ratio of the fluid sheet 
x’ = 16(y-x) 

y’ = 45x -y -xz 

z’ = xy - 4z 

©  2006 Jos Leys and Etienne Ghys; www.josleys.com	



x’ = 16(y-x) 

y’ = 45x -y -xz 

z’ = xy - 4z 
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x’ = 16(y-x) 

y’ = 50x -y -xz 

z’ = xy - 4z 

Maybe add Donny’s Lorenz 
movie here?	



•  See student work folder in directory above	



Courtesy of Donny 
Warbritton	



Attractors 

 Four types: 

•  fixed points 

•  limit cycles (aka periodic orbits) 

•  quasiperiodic orbits 

•  chaotic attractors 

A nonlinear system can have any number of attractors, of all 
types, sprinkled around its state space 

Their basins of attraction (plus the basin boundaries) partition the 
state space 

And there’s no way, a priori, to know where they are, how many 
there are, what types, etc. 
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Attractors 

•  Fixed point 

Attractors 

•  Limit cycle 

Attractors 

•  Quasi-periodic orbit… 

“Strange” or chaotic attractors 

•  often fractal 

•  covered densely by trajectories  

•  exponential divergence of 
neighboring trajectories… 

Lyapunov exponents 

•  nonlinear analogs of eigenvalues: one λ for each 
dimension 

Lyapunov exponents: summary 

•  nonlinear analogs of eigenvalues: one λ for each 
dimension 

•  negative λ  compress state space; positive λ  stretch it 

•  Σλ  < 0 for dissipative systems 

•  long-term average in definition; biggest one dominates as 
t  ∞ 

•  positive λ is a signature of chaos  

•  λ  are same for all ICs in one basin  

i	



i	

 i	



i	
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“Strange” or chaotic attractors: 

•  exponential divergence of 
neighboring trajectories 

•  often fractal 

•  covered densely by trajectories 

•  contain an infinite number of 
“unstable periodic orbits”… 

©  2006 Jos Leys and Etienne Ghys; www.josleys.com	



Unstable periodic 
orbits (UPOs) 

Bradley/Mantilla, Chaos 12:596	


©  2006 Jos Leys and Etienne Ghys; www.josleys.com	



Attractor “bones”… 

Poincare 
recurrence 

Crutchfield et al.	


Chaos 255:46	
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Different timestep	



Lorenz, Physica D 35:229	



Different arithmetic 	



N. Ross Ph.D. thesis, Ucolorado, 2008	



Different solver algorithm…	



Need to look up what paper these came from…	
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Moral: numerical methods can run 
amok in “interesting” ways… 

•  can cause distortions,  bifurcations, etc. 

•  and these look a lot like real, physical dynamics… 

•  source: algorithms, arithmetic system, timestep, etc. 

•  Q: what could you do to diagnose whether your results 
included spurious numerical dynamics? 

Moral: numerical methods can run 
amok in “interesting” ways… 

•  can cause distortions,  bifurcations, etc. 

•  and these look a lot like real, physical dynamics… 

•  source: algorithms, arithmetic system, timestep, etc. 

•  Q: what could you do to diagnose whether your results 
included spurious numerical dynamics? 

•  change the timestep 

•  change the method 

•  change the arithmetic 

So ODE solvers make mistakes.  

…and chaotic systems are sensitively 
dependent on initial conditions…. 

…??!?	



Shadowing lemma  

Every* noise-added trajectory on a chaotic attractor is 
shadowed by a true trajectory. 

Important: this is for state noise, not parameter noise. 

(*) Caveat: not if the noise bumps the trajectory out of the 
basin 

Section 

Plane of section	



Trajectory	



Not the same thing as a projection! 
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The driven damped pendulum 

trajectory	

 Poincare section	



Time-slice sections of periodic orbits: 
some thought experiments 

•  pendulum rotating @ 1 Hz and strobe @ 1 Hz? 

•  pendulum rotating @ 1 Hz and strobe @ 2 Hz? 

•  pendulum rotating @ 1 Hz and strobe @ 3 Hz? 

•  pendulum rotating @ 1 Hz and strobe @ 1/2 Hz? 

•  pendulum rotating @ 1 Hz and strobe @ π Hz? (or 
some other irrational) 

0.3	

 0.4	



0.5	

 0.6	



What bifurcations look like on a Poincare section 

The Lorenz attractor 

Cantor set!  	


(remember: not always…)	



?	



What about a section of a UPO? 
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Aside: finding UPOs 

•  Section	


•  Look for close returns	


•  Cluster	


•  Average	


•  See Gunaratne, So papers	



Computing sections 

•  If you’re slicing in state space: use the “inside-
outside” function	



•  If you’re slicing in time: use modulo on the 
timestamp	



•  See Parker & Chua for more details	



λi and the un/stable manifolds (Wu and Ws) 

Wu	



Ws	



Es	



Eu	



Aside: finding those un/stable 
manifolds 

•  Linearize the system	


•  Find the eigenvectors  Es and Eu	


•  Take a step along Es; run time forwards	


•  Take a step along Eu; run time backwards	


•  See Hinke & Osinga paper for more details	



These λi & manifolds play a role in 
control of chaos… 
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Lyapunov exponents, revisited: 

•  one λ for each dimension; Σλ < 0 for dissipative systems 

•  λ are same for all ICs in one basin  

•  negative λ compress state space along stable manifolds  

•  positive λ stretch it along unstable manifolds 

•  biggest one (λ1) dominates as t      ∞ 

•  positive λ  is a signature of chaos 

•  calculating them:  
•  From equations: eigenvalues of the variational matrix (see variational system 
notes on CSCI5446 course webpage, which you can access from Liz’s homepage.) 

•  From data: various algorithms that are hideously sensitive to numerics, 
noise, data length, & algorithmic parameters… 

1	



Calculating λ (& other invariants) from data  

•  A good reference: Kantz & Schreiber, Nonlinear 
Time Series Analysis (Abarbanel’s book is also very 
good)	



•  Associated software: TISEAN 	


www.mpipks-dresden.mpg.de/~tisean!

Please make sure you have this installed before 
the 9am lab session tomorrow morning!	



Kantz’s algorithm: 

1.  Choose point K	


2.  Look at the points around it (ε neighborhood)	


3.  Measure how far they are from K	


4.  Average those distances	


5.  Watch how that average grows with time (Δn)	


6.  Take the log, normalize over time  S(Δn)	


7.  Repeat for lots of points K and average the S(Δn)	
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If you’re lucky: 

 The slope of the scaling region—iff one exists—is the λ1	



S(Δn)	



Δn	



Calculating λ (& other invariants) from data  

•   Be careful!  TISEAN has lots of knobs and its 
results are incredibly sensitive to their values!	



Calculating λ (& other invariants) from data  

•   Be careful!  TISEAN has lots of knobs and its 
results are incredibly sensitive to their values!	



•  Use your dynamics knowledge to understand & 
use those knobs intelligently	



•  Look at the results plots.  For example, do not 
blindly fit a regression line to something that has 
no scaling region	



Fractal dimension: 

•  Capacity    

•  Box counting   

•  Correlation   (d2 in TISEAN) 

•  Lots of others:  
•  Kth nearest neighbor 

•  Similarity 

•  Information 

•  Lyapunov 

•  … 

•  See Chapter 6 and §11.3 of Kantz & Schreiber 

We’ve been assuming that we can 
measure all the state variables… 

x	



y	



z	



y	


x	



z	
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But often you can’t. 

x	



Rarely do you even know what they are…	



How to undo a projection? 

Delay-coordinate embedding 

“reinflate” that squashed data to get a topologically 
identical copy of the original thing. 

Reconstruction space x(t+τ)	



x	



x(t+2τ)	



x(t)	


embed	



Mechanics 

 x 	

 t	


1.3 	

 0.1	


1.2 	

 0.2	


1.0 	

 0.3	


0.8 	

 0.4	


1.1 	

 0.5	


1.4 	

 0.6	


1.6 	

 0.7	



x(t+τ)	



x(t+2τ)	



x(t)	



1.3	



1.0	



1.1	



τ = 0.2	


m = 3	



 x 	

 t	


1.3 	

 0.1	


1.2 	

 0.2	


1.0 	

 0.3	


0.8 	

 0.4	


1.1 	

 0.5	


1.4 	

 0.6	


1.6 	

 0.7	



x(t+τ)	



x(t+2τ)	



x(t)	



τ = 0.2	


m = 3	



TISEAN’s delay command does this	
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Measure just the x 
coordinate…	



…and then embed:	



Takens* theorem 

* Whitney, Mane, …	


Note: the measured quantity must be a smooth, 

generic function of at least one state variable, 
and must be uniformly sampled in time.  	



For the right τ and enough dimensions, the 
embedded dynamics are diffeomorphic to (have same 
topology as) the original state-space dynamics. 

Diffeomorphisms and topology 

Diffeomorphic: mapping from the one to the other 
is differentiable and has a differentiable inverse. 

What that means:  

•   qualitatively the same shape 

•   have same dynamical invariants (e.g., λ) 

Choosing τ: 

TISEAN contains tools that help you do this (e.g., mutual)	



Choosing m  

 m > 2d: sufficient to ensure no crossings in 
reconstruction space (Takens)… 

…but that may be overkill, and you rarely know d 
anyway. 

“Embedology” paper: m > 2 dbox  
 (box-counting dimension) 

TISEAN contains tools that help you do this (e.g., false_nearest)	
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 λ = 1.06	



bzip2 dynamics on an 
Intel Core2	



 τ = 194, m = 10	



Mytkowicz et al., Chaos 19:033124 

NLTSA* of computer performance 
dynamics                       * nonlinear time-series analysis	



 λ = 0.07	



 τ = 973, m = 12	



Mytkowicz et al., Chaos 19:033124 

bzip2 dynamics on an 
Intel Pentium 4	



 λ = 0.04	



 τ = 930, m = 8	



Mytkowicz et al., Chaos 19:033124 

povray dynamics on 
an Intel Core2	



Caveat: need enough data…	



Theorem (Takens):  for τ>0 and m > 2d, 
reconstructed trajectory is diffeomorphic to 
the true trajectory 

Conditions: evenly sampled in time 

If Δt is not uniform 

Interspike interval embedding 

 idea: lots of systems generate spikes — 
hearts, nerves, etc. 

 if you assume that the spikes are the result of 
an integrate-and-fire system, then the Δt 
has a one-to-one correspondence to some 
state variable’s integrated value… 

 in which case the Takens theorem still holds. 

 (with the Δts as state variables) 

Sauer Chaos 5:127 

Prediction: Lorenz’s method of analogues	





6/6/13	



22	



Using kLMA to predict computer dynamics	



column_major 
cache misses	



RMSPE = 11.566	


(.07% of the average)	



Garland/Bradley Intelligent Data Analysis 2011 

1.3 	

	


1.2 	

	


1.0 	

	


0.8 	

	


1.1 	

	


1.4 	

	


1.6 	

	



Local-linear patch 
models	



embed	



Predicting the path of a roulette ball… 

The Eudaemonic Pie	


(or The Newtonian Casino)	
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The Santa Fe competition  

•  Weigend & Gershenfeld, 1992 

•   put a bunch of data sets up on an ftp server 

•   and invited all comers to predict their future 

•   chronicled in Time Series Prediction: 
Forecasting the Future and Understanding the 
Past, Santa Fe Institute, 1993 (from which the images on 
the following half-dozen slides were reproduced)	



The Santa Fe competition: data  

•  Laboratory laser 

•  Medical data (sleep apnea) 

•  Currency rate exchange 

•  RK4 on some chaotic ODE 

•  Intensity of some star 

•  A Bach fugue 

Embedding + patch models:  (Sauer)  

Neural net:  (Wan)  Further out: 

Sauer	



Wan	
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Noise… 

Linear filtering: a bad idea if the system is chaotic 

Nonlinear alternatives:  

•  use the stable and unstable manifold structure 
on a chaotic attractor… 

Farmer & Sidorowich, in Evolution, Learning and 
Cognition, World Scientific, 1983	



Idea:  
•  If you have a model of the system, you can 

simulate what happens to each point in 
forward and backward time 

•  If your system has transverse stable and 
unstable manifolds, that does useful things to 
the noise balls 

•  Since all three versions of that data should be 
identical at the middle time, can average them 

•          noise reduction! 

•  Works best if manifolds are perpendicular, but 
requires only transversality 

Results: 

Farmer & Sidorowich, in Evolution, Learning and 
Cognition, World Scientific, 1983	



Noise… 

Linear filtering: a bad idea if the system is chaotic 

Nonlinear alternatives:  

•  use the stable and unstable manifold structure 
on a chaotic attractor 

•  use the topology of the attractor… 

Computational Topology 

V. Robins Ph.D. thesis, UColorado, 1999	
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Connectedness: definitions 

•  how many “lumps” in a data set: 

•  ε-connectedness (after Cantor) 

•  ε-connected components 

•  ε-isolated points: 

Connectedness: examples 

If the data points are samples of a 
disconnected fractal like this: 

(note obvious tie-in to fractal dimension…) 

The number of connected 
components looks like this: 

Robins et al., Physica D 139:276, Nonlinearity 11:913 

Connectedness: examples 

If the data points are samples of a 
connected set like this: 

The number of connected 
components looks like this: 

Robins et al., Physica D 139:276, Nonlinearity 11:913 

Connectedness and filtering 

So if you know that the object is connected — like the attractor of a flow
— you can reasonably assume that any isolated points are noisy, and 
remove them by pruning with ε = ε* 

The effect of noise is to add isolated points to the set and a 
shoulder to the C(ε) curve: 

ε* 

Robins et al., Intelligent Data Analysis 8:505, Chaos 14:305 

Continuity and filtering 

Idea: 	


•  deterministic, differentiable dynamics (maps & flows) are continuous	



Conjecture: 	


•  if the image of a connected set is not connected, more than one dynamics 
is at work	



Approach: 	


•  track connectedness over time	



Applications: 	


•  pulling apart interleaved dynamics, removing noise…	



Alexander et al., CHAOS., 2012 

 key concepts:  

•  dense attractor coverage  

•  exponential trajectory separation 

•  un/stable manifold structure 

•  local-linear control 

Chaos and control… 
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Local-linear control of a saddle point works in a 
region defined by the cross-sectional eigenstructure, 
together with the actuator capabilities: 

Control:  
getting from A to 
B, minimizing 
some cost 
functional… 




B	



A	



Lorenz 
System:  
denseness, 
reachability, 
and control 

R = 50 




•  can control position/volume/density of attractor — within limits 

•  possibly not reachable any other way 

•  not for time-critical applications (that “eventually”) 

Denseness & reachability in a real 
engineering application 

•  dense attractor coverage      reachability 

•  un/stable manifold structure + UPO denseness + 
local-linear control     controllability 

OGY control 

Ott et al., PRL 64:1196	



Use local-linear 
control, designed 
using the eigen- 

values and eigen- 
vectors at that 

point     to balance 
a chaotic system 

on a UPO passing 
through that point.	



×	






But you’re relying on denseness to get you into the controllable 
region, and that may take a while…	
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•  dense attractor coverage      reachability 

•  un/stable manifold structure + UPO denseness + 
local-linear control     controllability 

•  exploit sensitive dependence, too??? 

 “targeting” 







Lorenz 
System:  
SDOIC-based 
targeting 

Four R switches; 240X faster 

OGY & co. have been used 
in tons of systems;  see 
Shinbrot review paper.  	



Alfred Hubler has done a lot 
of cool stuff in this area as 
well.	



Bradley, Cybernetics & Systems 26:299 

Erik Bollt	



Other cool ways to use invariant 
manifolds	



WS 

WU 

Halo Orbit 

Want to get a spacecraft onto a “halo 
orbit,” which is a UPO of the 
dynamics.	



Unstable Periodic Orbits (UPOs) have 
invariant manifolds:	



•  Stable Invariant Manifold (WS)	


–  The set of all trajectories a particle 

could use to arrive onto the UPO.	



•  Unstable Invariant Manifold (WU)	


–  The set of all trajectories a particle 

could take after a small perturbation 
from the UPO.	



Jeff Parker, PhD thesis, UColorado 2008	



Low-energy (cheap) orbit transfers	


•  Depart along WU

L1  & arrive on 
WS

L2	



Jeff Parker, PhD thesis, UColorado 2008	



Homoclinic orbits - The best case	



•  If a trajectory in Stable and Unstable intersect 
(“homoclinic connection”)	



Unstable Manifold of an LL1 Lyapunov Orbit Stable Manifold of an LL1 Lyapunov Orbit 

Jeff Parker, PhD thesis, UColorado 2008	
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Can we do any of that in spatially 
extended systems?���

(i.e. harness the butterfly effect, exploit un/stable 
manifold geometry?)	



  Sensitive flames (1856 – 1930s) 

Peacock et al., Exp. Fluids 37:22	



A 2D jet	

 End view	



room lighting	

 stop-action laser “slice”	



aerosolized canola oil	



Forcing the jet flow	



Slit: 2.5 X 400 mm 

MEMS actuators	



 Area of individual flap is 1.0 x 0.25mm 

Video : overhead 
view at 2Hz, 10V 

Ma et al., IEEE Trans. Adv. Packaging 26:268	
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The Butterfly effect in action…	



no forcing 6Hz forcing 

 Forcing generates coherent structures that enhance entrainment and mixing 

MEMS flap	



Peacock et al., Exp. Fluids 37:22	



Does this have anything to do with reality?	



Measurement 
& isolation:	



Communication and chaos:  

•  Two coupled Lorenz systems will synchronize 

•  Robust to a small amount of noise 

•  Use this to transmit & receive information 

•  Chaotic carrier wave, so hard to intercept or 
jam  

x’ = a(y-x) 

y’ = rx -y -xz 

z’ = xy - bz 

x’ = a(y-x) 

y’ = r(x+εx) -y -xz 

z’ = xy - bz 

Pecora & Carroll Phys. Rev. Lett 64:821	



Another interesting application: 
chaos in the solar system 

•  orbits of Pluto, Mars 	


•  Kirkwood gaps	


•  rotation of Hyperion & other satellites	


•  …	



Solar system stability: 

•  recall: two-body problem not chaotic	


•  but three (or more) can be…	



Hut & Bahcall	


Ap.J. 268:319	
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Exploring that issue, circa 1880:  

An orrery, which 
is a mechanical 
computer whose 
gear ratios and 
circular platters 
simulate the orbits 
of the planets	



Exploring that issue, circa 1980:  
•  write the n-body equations for the solar system	


•  solve them using symplectic ODE solvers on a 
special-purpose computer 	



The digital orrery 	


(Wisdom & Sussman)	



Science 241:433	



Should we worry?  

•  No. 

Kirkwood gaps: 

From Sky & Telescope	



Chaos and the Kirkwood gaps 

Wisdom, Nuclear Phys. B 2:391	
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Evidence in favor of the conjecture: 

Wisdom, Nuclear Phys. B 2:391	



Chaotic tumbling of satellites: 

Ap. J. 97:570	


Ap. J. 98:1855	



Voyager and Galileo saw this…	



From Sky & Telescope	



www.nasa.gov/mission_pages/cassini/multimedia/pia06243.html!

Chaotic tumbling of satellites: 

This happens for all satellites at some point in their 
history, unless they are perfectly spherical and in 
perfectly circular orbits (pf: KAM theorem; see 

Wisdom paper on syllabus)	



Some of them are still tumbling chaotically because of 
their geometry, but most (like the earth and its moon) 

have settled down into tidal equilibria	



More chaos in the solar system: 

•  obliquity of Mars (Touma & Wisdom, Science 259:1294)	



•  etc.	



www.solarviews.com!

G

Musical Variations from a Chaotic Mapping 

Pitch sequence: 
C, E, G, C, E, G, C, E… 

E

C 
G

E
C

C symbol dynamics 

variation! 

Dabby Chaos 6:95 

Also fun: http://www.youtube.com/watch?v=B2XtE9YylCA!
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1 3 4 5 6 72

2 3 4 7 6 6 7

chaotic variation 

original piece 

Chaotic variations on movement sequences 

chaotic      mapping 

Bradley & Stuart, Chaos 8:800	
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Lorenz	

 Rossler	



original cell 
itinerary 

variation 
cell 
itinerary medley—original	



Rossler variation of medley	

 random variation of medley	
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original cell 
itinerary 

variation 
cell 
itinerary 

abrupt  transition 

Interpolation 

Stuart & Bradley, ICML 1998	



Corpus-based approach 

•  graph captures motions of one joint  
•  note: specific to the genre of the corpus! 
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Initial state Target state 

Graph search 

…for 44 joints in parallel! 

initial target 
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interpolation 1	

 initial 

target interpolation 2	



initial 
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target interpolation 3	



synchronousobjects.osu.edu/content.html!
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synchronousobjects.osu.edu/content.html!


