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Chaos

Complex behavior, arising in a deterministic nonlinear
dynamic system, which exhibits two special properties:

« sensitive dependence on initial conditions

« characteristic structure. ..
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Chaos

Complex behavior, arising in a deterministic nonlinear
dynamic system, which exhibits two special properties:

« sensitive dependence on initial conditions

« characteristic structure...

Systems that exhibit chaos are ubiquitous; many of them
are also simple, well-known, and “well-understood”

Where nonlinear dynamics turns up

* Flows (of fluids, heat, ...)
- Eddy in creek
- Weather
- Vortices around marine invertebrates

- Air/fuel flow in combustion chambers

Where nonlinear dynamics turns up

¢ Driven nonlinear oscillators
- Pendula
- Hearts

- Fireflies

- and lots of other electronic, chemical, & biological
systems
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Where nonlinear dynamics turns up

¢ Classical mechanics
- three-body problem
- paired black holes

- pulsar emission

- Hut & Bahcall Ap.J. 268:319
* Protein folding
» Population biology

¢ And many, many other fields (including yours)

* continuous time systems:
* time proceeds smoothly
* “flows”

* modeling tool: differential equations

« discrete time systems:
* time proceeds in clicks
«

‘maps”

» modeling tool: difference equation

A useful graphical solution
technique

o

cobweb” diagram
* gka return map

06

* aka correlation plot

Image from Doug Ravenel’s website at URochester
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Bifurcations

Qualitative changes in the dynamics caused by
changes in parameters




Bifurcations

Qualitative changes in the dynamics caused by
changes in parameters:

* Heart: pathology
* Eddy in creek: water level
« Olfactory bulb: smell

 Brain: blood chemicals

Bifurcations in the logistic map
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Note: in discrete time plots, it makes no sense to connect dots!!

Plots from Strogarz
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Figure 10.2.5

Plots from Strogarz

Courtesy of Allison Brown

PRESSURE

n=0 n=1

n=3 n=4

n=2

n=5

6/6/13



TR
o
-
R
=
os
e e e e
* chaos

« veils/bands: places where chaotic attractor is dense (UPOs)

e chaos

« veils/bands: places where chaotic attractor is dense (UPOs)

* period-doubling cascade @ low R
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Universality!

Feigenbaum number and many other interesting
chaotic/dynamical properties hold for any 1D
map with a quadratic maximum.

Proof: renormal

izations. See Strogatz §10.7

Don 't take this too far, though...

1D Maps
Logistic Map
:
’ )
| Reset |
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W :2 se have quadnatic sarx[02 |
: S
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Map Choice
085 * o5 . To PlotType | Cobweb Plot %]
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Show Time: O Yes @ No
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* chaos

« veils/bands: places where chaotic attractor is dense (UPOs)

* period-doubling cascade @ low R

* windows of order within the chaos, complete with their own
period-doubling cascades (e.g., 3 to 6 to 12)

A bit more lore on periods and chaos

* Sarkovskii (1964)

3,5,7,...3x2, 5x2,
* Yorke (1975)

* Metropolis et al.

L3x22,5x22, .. 22,21

(1973)
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* chaos
« veils/bands: places where chaotic attractor is dense (UPOs)
« period-doubling cascade @ low R

* windows of order within the chaos, complete with their
own period-doubling cascades (e.g., 3 to 6 to 12)

* small copies of object embedded in it (fractal)

lots of other interesting stuff, too — e.g., Misiurewicz points

Fractals
« non-integer Hausdorff dimension
« self-similar

Aok

Images from Gleick

Examples: Cantor set, coastlines, trees, lungs, clouds, drainage basins, ...

The Mandelbrot set

www . youtube . com/watch?v=G_GBwuYu0Os

Fractals in computer graphics

Matthew Ward, WPI
davis.wpi.edu/~matt/courses/fractals/trees.html

Fractals in the wild

Syt

http://paulbourke.net/fractals/googleearth/

Fractals in
maps

Newton’s method
4
onx -1=0

From Strogatz

6/6/13



Fractals and chaos...

The connection: many (most) chaotic systems have fractal
state-space structure.

But not “all.”

The rest of today...

* Lunch (cafeteria downstairs)
* Dynamics Lab I:
* Meet here at 1:30pm
* Bring your laptop, if you have one here

* Make sure it has Java installed, and some
browser besides Chrome

* Lab handouts on the CSSS wiki
* Intro to Santa Fe (3pm, here)
* Public lecture tonight (shuttles at 6:45)

So far: mostly about maps.

« discrete time systems:
* time proceeds in clicks

. ‘maps”

* modeling tool: difference equation

Next up: flows

 continuous time systems:
* time proceeds smoothly
o “flows”

* modeling tool: differential equations

Attractors

attractor

basin of
attraction

<

attraction
« Attractors exist only in dissipative systems!

« Dissipation {==) contraction of state space under the influence of
the dynamics

« Can still have chaos if no dissipation...just not chaotic attractors

boundary of basin of

n=0 n=1 n=2

n=3 n=4 n=5
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Conditions for chaos in
continuous-time systems

Necessary:
* Nonlinear

* At least three state-space dimensions  (NB: only one needed in maps)

Necessary and sufficient:
* “Nonintegrable”

i.e., cannot be solved in closed form

Concepts: review « State variable

* State space

* Initial condition

* Trajectory

* Attractor

* Basin of attraction

e Transient

* Fixed point (un/stable)
* Bifurcation

* Parameter

A cool Lorenz applet:

www.exploratorium.edu/complexity/
java/lorenz.html

(Note: by Jim Crutchfield, another SFI person,
who will be here at the end of next week)
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Deterministic Nonperiodic Flow!

Epwarp N. Lorexz

Massachuseits Inshtule of Technology
(Manuscript received 18 November 1962, in revised form 7 Jaouary 1963)

ApsTRACT

Finite systems of deterministic ordinary nonlinear differential equations may be designed to represent
forced dissipative hydrodynamic flow, Solutions of these equations can be identified with trajectories in
phase space. For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily
unstable with respect to small modifications, so that slightly difiering initial states can evolve into consider-
ably different states. smems with bounded solutions are shown to bounded numerical solutiocas.

A simple system representing cellular convection s solved numerically. All of the solutions are found
to be unstable, and almost all of them are nonperiodic.

‘The feasibility of very-long-range weather prediction is examined in the light of these results.

J. Am. Sci. 20:130
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¢ Equations:

-~

x’=a(y-x)

mmmnmm

y' =rx-y-xz

z'=xy-bz

(first three terms of a Fourier expansion of the Navier-Stokes eqns)

OYYA"
\VAVAY

e State variables:
= Xx convective intensity
= ytemperature

= zdeviation from linearity in the
vertical convection profile

* Parameters:
= @ Prandtl number - fluids property
= r Rayleigh number - related to AT

= b aspect ratio of the fluid sheet

SYOYA
\VAVAY

© 2006 Jos Leys and Etienne Ghys; www. josleys .com

w“ x’'=16(y-x)
'ﬂ y' =45x -y -xz
b z'=xy-4z
w“ x’'=16(y-x)
'ﬂ y' =45x -y -xz
b z'=xy-4z
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x’=16(y-x)
y'=50x -y xz
z'=xy-4z

Courtesy of Donny
Warbritton

“ e
-
Attractors
Four types:

« fixed points
« limit cycles (aka periodic orbits)
« quasiperiodic orbits

« chaotic attractors

A nonlinear system can have any number of attractors, of all
types, sprinkled around its state space

Their basins of attraction (plus the basin boundaries) partition the
state space

And there’s no way, a priori, to know where they are, how many
there are, what types, etc.

6/6/13
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Attractors

* Fixed point

Attractors

* Limit cycle

Attractors

* Quasi-periodic orbit...

“Strange” or chaotic attractors

« often fractal
« covered densely by trajectories

« exponential divergence of
neighboring trajectories. ..

Lyapunov exponents

* nonlinear analogs of eigenvalues: one A for each

dimension

/
/

Lyapunov exponents: summary

« nonlinear analogs of eigenvalues: one A for each
dimension

* negative A; compress state space; positive A; stretch it
* 2\, <0 for dissipative systems

* long-term average in definition; biggest one dominates as
t> o

* positive A is a signature of chaos

* ) are same for all ICs in one basin

6/6/13
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“Strange” or chaotic attractors:

« exponential divergence of
neighboring trajectories

* often fractal

« covered densely by trajectories

« contain an infinite number of
“unstable periodic orbits”...

© 2006 Jos Leys and Etienne Ghys; www. josleys .com

Unstable periodic
orbits (UPOs)

Bradley/Mantilla, Chaos 12:596

Attractor “bones”...

© 2006 Jos Leys and Etienne Ghys; www. josleys .com

Poincare
recurrence

Crutchfield et al.
Chaos 255:46

6/6/13
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— Different timestep

Lorenz, Physica D 35:229

symmetric partitionod multisicp, 4 = 100

Different solver algorithm...
Different arithmetic

N. Ross Ph.D. thesis, Ucolorado, 2008

Adams explicit, k=100
symmetric multistep, A = 100 '

<=
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Moral: numerical methods can run
amok in “interesting” ways...

e can cause distortions, bifurcations, etc.
« and these look a lot like real, physical dynamics...
« source: algorithms, arithmetic system, timestep, etc.

* Q: what could you do to diagnose whether your results
included spurious numerical dynamics?

Moral: numerical methods can run
amok in “interesting” ways...

 can cause distortions, bifurcations, etc.
 and these look a lot like real, physical dynamics...
* source: algorithms, arithmetic system, timestep, etc.

* Q: what could you do to diagnose whether your results
included spurious numerical dynamics?

* change the timestep
* change the method

* change the arithmetic

So ODE solvers make mistakes.

...and chaotic systems are sensitively
dependent on initial conditions....

Shadowing lemma

Every* noise-added trajectory on a chaotic attractor is
shadowed by a true trajectory.

Important: this is for state noise, not parameter noise.

(*) Caveat: not if the noise bumps the trajectory out of the
basin

Section

Trajectory

Plane of section

Not the same thing as a projection!

6/6/13
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The driven damped pendulum

oy

ot -0 fresesic s 5

=)

p fregratio = 5

trajectory Poincare section

Time-slice sections of periodic orbits:
some thought experiments

¢ pendulum rotating @ 1 Hz and strobe @ 1 Hz?
¢ pendulum rotating @ 1 Hz and strobe @ 2 Hz?
¢ pendulum rotating @ 1 Hz and strobe @ 3 Hz?
¢ pendulum rotating @ 1 Hz and strobe @ 1/2 Hz?

e pendulum rotating @ 1 Hz and strobe @ nt Hz? (or
some other irrational)

‘What bifurcations look like on a Poincare section

T

o= 5

The Lorenz attractor

X3 . %%

Cantor set!
(remember: not always...)

Ba a=16r=45b-¢ (0L2 46,5

a=161=46b=4; (12419629

‘What about a section of a UPO?

-~

55

6/6/13
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Les, 5 5,5 a=16r=60b=¢ (2

X

Aside: finding UPOs

* Section

* Look for close returns

¢ Cluster

* Average

* See Gunaratne, So papers

55 azi6r=6b=4; 12619628

Computing sections

« If you’re slicing in state space: use the “inside-
outside” function

« If you’re slicing in time: use modulo on the
timestamp

¢ See Parker & Chua for more details

A; and the un/stable manifolds (W" and W?)

Aside: finding those un/stable
manifolds

* Linearize the system

* Find the eigenvectors E®and EY

* Take a step along E*; run time forwards

* Take a step along E; run time backwards
 See Hinke & Osinga paper for more details

These A; & manifolds play a role in
control of chaos...

6/6/13
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Lyapunov exponents, revisited:

* one A for each dimension; ZA < 0 for dissipative systems
* ) are same for all ICs in one basin

* negative A compress state space along stable manifolds

* positive A stretch it along unstable manifolds

* biggest one (A,) dominates as t — oo

* positive A is a signature of chaos

e calculating them:

* From equations: eigenvalues of the variational matrix (see variational system
notes on CSCI5446 course webpage, which you can access from Liz’s homepage.)

* From data: various algorithms that are hideously sensitive to numerics,
noise, data length, & algorithmic parameters...

Calculating A (& other invariants) from data

* A good reference: Kantz & Schreiber, Nonlinear
Time Series Analysis (Abarbanel’s book is also very
good)

* Associated software: TISEAN
www.mpipks-dresden.mpg.de/~tisean

TISEAN
Nonlinear Time Series Analysis
Rainer Hegger

Holger Kantz
Thomas Schreiber

Go to Version 3.0.1 (released March 2007

Go to Version 2.1 (released December 2000

Please make sure you have this installed before
the 9am lab session tomorrow morning!

TISEAN 3.0.1: Table of Contents

;\ All programs in alphabetical order

(\ Sections

« Generating time series

TISEAN 3.0.1 « Utilities

« Stationarity
TISEAN home « Embedding and Poincaré sections

« Prediction
Table of Contents .
General Manual
Surrogates Manual
Tutorial
Usage Notes Generating time series
Installation . s

A few routines are provided to generate test data from simple equations. Since there are powerfull packages (for

Problems Helena Nusse and Jim Yorke) that can generate chaotic data, we have only included a minimal selection here.

Lyapunov exponents are an important means of quantification for unstable systems. They are however difficult to estimate from a time

series. Unless low dimensional, high quality data is at hand, one should not attempt to calculate the full spectrum. Try to compute the

maximal exponent first. The two implementations differ slightly. While lyap k implements the formula by Kantz, lyap r uses that by
‘which differs only in the definition of the neighbourhoods. We recommend to use the former version, lyap k.

‘The estimation of Lyapunov exponents is also discussed in the introduction paper. A recent addition is a programm to compute finite
time exponents which are not invariant but contain additional information.

[Maximal exponent [lyap k. Iyap £
[Lyapunov spectrum [lyap spec

Description of the program: lyap_k

 The program estimates the largest Lyapunov exponent of a given scalar data set using the algorithm of Kantz.

Usage:
lyap_k [Options]

Everything not being a valid option will be interpreted as a potential datafile name. Given no datafile at all, means read stdin. Also -
‘means stdin

Kantz’s algorithm:

Choose point K o .
Look at the points around it (e neighborhood)
Measure how far they are from K

Average those distances

Watch how that average grows with time (An)

Take the log, normalize over time = S(An)

Repeat for lots of points K and average the S(An)

N wd =

6/6/13
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If you’re lucky:

w
~

>

=
=

log(stretching factor)

billons of Cycles A

The slope of the scaling region—iff one exists —is the A,

Calculating A (& other invariants) from data

* Be careful! TISEAN has lots of knobs and its
results are incredibly sensitive to their values!

[Option Description Default
1 number of data to be used [Whole file
x# _[mumber of lines to be ignored 0
~cF column to be read T
-M#_maximal embedding dimension to use |2
-m# _ minimal embedding dimension touse |2
d# (delay o use T
~r# _[minimal length scale to scarch neighbors [(data interval)/1000
“R# _[maximal length scale (o search neighbors (data interval)/100
## _|umber of length scales to use 5
“n#  number of refercnce points to use fal
~s# _jnumber of iterations in time 50
“#_[theiler window' 0
of  upu e tame (or sy e o wers s romsin)
erbosity level
_vg | 0: only panic messages 5
1 add input/output messages
2: add statistics for cach iteration
b [show these options [none

Description of the Output:

For each embedding dimension and each length scale the file contains a block of data consisting of 3 columns

1. The number of the iteration
2. The logarithm of the stretching factor (the slope is the Lyapunov exponent if it is a straight line)
3. The number of points for which a neighborhood with enough points was found

Calculating A (& other invariants) from data

* Be careful! TISEAN has lots of knobs and its
results are incredibly sensitive to their values!

* Use your dynamics knowledge to understand &
use those knobs intelligently

* Look at the results plots. For example, do not
blindly fit a regression line to something that has
no scaling region

Fractal dimension:

e Capacity
¢ Box counting
e Correlation (d2 in TISEAN)

e Lots of others:
¢ Kth nearest neighbor
e Similarity
«  Information
¢ Lyapunov

¢ See Chapter 6 and §11.3 of Kantz & Schreiber

We’ve been assuming that we can
measure all the state variables...

——x
Iy

—t—z

6/6/13
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But often you can’t.

17 U\N\mev

Rarely do you even know what they are...

How to undo a projection?

Delay-coordinate embedding

“reinflate” that squashed data to get a topologically
identical copy of the original thing.

Mechanics X(t+1)

X(t+27) =02
m=

x(t)

Reconstruction space X(t+7)
(.
—p
embed
x(t)
x(t+21)
X(t+1)
X t
13 0.1
12 02
10 03
08 04 oe
1.1 05
14 06
t
16 0.7 x®
X(t+27) =02
m=23

TISEAN’s delay command does this

6/6/13
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Measure just the x
coordinate. ..

W

r\“‘

’ \ H\ \\ \
I T‘U‘u Il “r ”w““. \““‘ 'u“'\\‘ \ﬂl /\“ "‘\“

...and then embed:

D —

:z““‘m\\ ”\\ “\\M “”M‘ ‘

Takens* theorem

For the right v and enough dimensions, the
embedded dynamics are diffeomorphic to (have same
topologyis) the original state-space dynamics.

* Whitney, Mane, ...

Note: the measured quantity must be a smooth,
generic function of at least one state variable,
and must be uniformly sampled in time.

Diffeomorphisms and topology

Diffeomorphic: mapping from the one to the other
is differentiable and has a differentiable inverse.

What that means:
. qualitatively the same shape
. have same dynamical invariants (e.g., A)

Choosing t:

TISEAN contains tools that help you do this (e.g., mutual)

Choosing m

m > 2d: sufficient to ensure no crossings in
reconstruction space (Takens)...

...but that may be overkill, and you rarely know d
anyway.

“Embedology” paper: m > 2 dy,
(box-counting dimension)

TISEAN contains tools that help you do this (e.g., false_nearest)

6/6/13
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NLTSA¥* of computer performance
dynamics

* nonlinear time-series analysis

bzip2 dynamics on an
Intel Core2

Mytkowicz et al., Chaos 19:033124 ot

e T =973 m= 12

bzip2 dynamics on an
Intel Pentium 4

Mytkowicz et al., Chaos 19:033124

t=930,m=8

povray dynamics on
an Intel Core2

Mytkowicz et al., Chaos 19:033124 H Caveat: need enough data... H

If At is not uniform

the true trajecto;

Conditions: even

Interspike interval embedding

idea: lots of systems generate spikes —
hearts, nerves, etc.

if you assume that the spikes are the result of
an integrate-and-fire system, then the At
has a one-to-one correspondence to some
state variable’s integrated value...

in which case the Takens theorem still holds.

(with the Ats as state variables)

Sauer Chaos 5:127

Prediction: Lorenz’s method of analogues

i - A - -
ey .
B "

e’ -
- X3
. :

6/6/13
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A k-nearest neighbor modification of LMA

"?,w

Using kLMA to predict computer dynamics

o0 W0 200 30 40 S0 60 70 80 900 1000
ime (nstructons x 100,000)

*  Original Signal RMSPE = 11.566

Predicted Signal (.07% of the average)

——— Error Between Signals
column_major

Garland/Bradley Intelligent Data Analysis 2011 cache misses

Predicting the path of a roulette ball...

<\
| BN

2

Local-linear patch
models

embed

The Eudaemonic Pie

(or The Newtonian Casino)

6/6/13
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The Santa Fe competition AMM

000 1105 200

BMW\_WWNWWMJ\NM'fb,‘wﬂﬁﬂtlﬂll‘[ ‘

e Weigend & Gershenfeld, 1992

* put a bunch of data sets up on an ftp server I Vi o ey N
Ci [

¢ and invited all comers to predict their future

e chronicled in Time Series Prediction: DM&WW\WMWMW("W”M&JFMW”&
Forecasting the Future and Understanding the
Past, Santa Fe Institute, 1993 (from which the images on

A
iy A "
the following half-dozen slides were reproduced) Ei\lrM WV‘\'\‘MM‘\‘W V'\A)‘V‘Y

The Santa Fe competition: data Embedding + patch models: (Sauer)

e Laboratory laser Souer

© compettion entry

e Medical data (sleep apnea)

* Currency rate exchange

* RK4 on some chaotic ODE | ‘}s tf‘g\ *Nﬁﬁ ;
i i oW

* Intensity of some star ol
1080 t 100

¢ A Bach fugue

Neural net: (Wan) Further out:

Sauer
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Noise...

Linear filtering: a bad idea if the system is chaotic
Nonlinear alternatives:

« use the stable and unstable manifold structure
on a chaotic attractor...

Farmer & Sidorowich, in Evolution, Learning and
Cognition, World Scientific, 1983

Results:

w0 | d ' : ; i 4
107 e
107 k|
107 +
107 1
107 4
107 4
™M 4
10" 1
10 k|

f 7 = &

Farmer & Sidorowich, in Evolution, Learning and
Cognition, World Scientific, 1983

Idea:

e If you have a model of the system, you can
simulate what happens to each point in
forward and backward time

e If your system has transverse stable and
unstable manifolds, that does useful things to
the noise balls

* Since all three versions of that data should be
identical at the middle time, can average them

e =3 poise reduction!

*  Works best if manifolds are perpendicular, but
requires only transversality

Noise...

Linear filtering: a bad idea if the system is chaotic
Nonlinear alternatives:

« use the stable and unstable manifold structure
on a chaotic attractor

« use the fopology of the attractor...

Computational Topology

Why: this is the fundamental mathematics
of shape. complements geometry.

What: compute topological properties
firom finite data

How:

« introduce resolution parameter

« count components and holes at different resolutions
« deduce topology from patterns therein

V. Robins Ph.D. thesis, UColorado, 1999

6/6/13
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Connectedness: definitions Connectedness: examples
° o
° ° o If the data points are samples of a The number of connected
@ . °o o disconnected fractal like this: components looks like this:
« how many “lumps” in a data set:
oo as
)
« e-connectedness (after Cantor) b
« e-connected components H Z; L
&Ll
« g-isolated points: ! —__
° nx 5 3 25 2 15 I_ 05
° og : gt pson)
(note obvious tie-in to fractal dimension...)
Robins et al., Physica D 139:276, Nonlinearity 11:913
Connectedness and filtering
Connectedness: examples o ) )
The effect of noise is to add isolated points to the set and a
shoulder to the C(g) curve:
If the data points are samples of a The number of connected
connected set like this: components looks like this: e*
3 f; 25 ﬁ
o, os )
I . o .
So if you know that the object is connected — like the attractor of a flow
— you can reasonably assume that any isolated points are noisy, and
remove them by pruning with € = ¢*
Robins et al., Physica D 139:276, Nonlinearity 11:913 Robins et al., Intelligent Data Analysis 8:505, Chaos 14:305

Continuity and filtering
Chaos and control...

= omm o oxmoEs ol Y

15000

CACHE

5000

—_— e — — o

T T T - <

J 20000 40000 60000 8000¢ O s o4 o4 o5 oss 06 o8

time (instructions x 100,000) :

Idea: key concepts:

* deterministic, differentiable dynamics (maps & flows) are continuous
Conijecture: - dense attractor coverage

« if the image of a connected set is not connected, more than one dynamics ial trai .

.

is at work exponential trajectory separation .
Approach: ) » un/stable manifold structure

« track connectedness over time
Applications: * local-linear control

« pulling apart interleaved dynamics, removing noise...

Alexander et al., CHAOS., 2012

25



Local-linear control of a saddle point works in a
region defined by the cross-sectional eigenstructure,
together with the actuator capabilities:

Control:

getting from A to B
B, minimizing X
some cost
functional...

55,95

Lorenz
System:
denseness,

reachability,
and control

F45,-5

Denseness & reachability in a real
engineering application

Ny
- D,
(@d
Ao Ae
THIS IDEA
TRADITIONAL
CONTROL

« can control position/volume/density of attractor — within limits
« possibly not reachable any other way

* not for time-critical applications (that “eventually”)

Using Chaos to Broaden the Capture
Range of a Phase-Locked Loop

Blizabeth Bradley, Member, IEEE

OGY control

- dense attractor coverage — reachability

* un/stable manifold structure + UPO denseness +
local-linear control — controllability

Ott et al., PRL 64:1196

55,95

Use local-linear
control, designed
using the eigen-
values and eigen-
vectors at that
point Xto balance
a chaotic system
on a UPO passing
through that point.

£45,-5

But you're relying on denseness to get you into the controllable
region, and that may take a while...

6/6/13
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« dense attractor coverage — reachability

« un/stable manifold structure + UPO denseness +
local-linear control — controllability

« exploit sensitive dependence, t00???

==> “targeting”

Lorenz
System:

SDOIC-based
targeting

\ /
\

OGY & co. have been used \ /

in rons of systems; see \ /

Shinbrot review paper. 4

Alfred Hubler has done a lot

of cool stuff in this area as
well.
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Low-energy (cheap) orbit transfers

¢ Depart along WY, & arrive on
WSLZ

501/2D Lyapunov Oebit
ut Lunar L,

2D Lyapunov Orbit

unar L,

Unstable
N\ Manifold

y (x10% km)

x (x10% km) Jeff Parker, PhD thesis, UColorado 2008

Four R switches; 240X faster

Bradley, Cybernetics & Systems 26:299

Other cool ways to use invaria
manifolds

‘Want to get a spacecraft onto a “halo
orbit,” which is a UPO of the
dynamics.

Unstable Periodic Orbits (UPOs) have
invariant manifolds:

e« Stable Invariant Manifold (W)
— The set of all trajectories a particle
could use to arrive onto the UPO.
¢ Unstable Invariant Manifold (W)
— The set of all trajectories a particle

could take after a small perturbation
from the UPO.

Jeff Parker, PhD thesis, UColorado 2008

Homoclinic orbits - The best case

If a trajectory in Stable and Unstable intersect
(“homoclinic connection™)

v.1Pn
Y. 10m

X 10

Unstable Manifold of an LL, Lyapunov Orbit

Stable Manifold of an LL, Lyapunov Orbit

Jeff Parker, PhD thesis, UColorado 2008
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Can we do any of that in spatially
extended systems?

(i.e. harness the butterfly effect, exploit un/stable
manifold geometry?)

Sensitive flames (1856 — 1930s)

1 repeat a passage from Spenser:
“ Her ivory forehead full of bounty brave,
Like & broad table did itself dispread ;
For love his lofty triumphs to engrave,
And write the battles of his great godhead.
All truth and gooduess might therein be read,
For there their dwelling was, und when she spake,
Sweet words, like droppirig honey she did shed ;
And through the pearls and rubies softly brake
A silver sound, which heavenly music seemed to make.”

The flame selects from the sounds those to which it can
respond. It notices some by the slightest nod, to others
it bows more distinetly, to some its obeisance is very

profound, while to many sounds it turns an entirely deaf

ear.

A 2D jet

contraction

air jet exits

exit st

plenum

1.0 metre

compressed air enters >< J v

Peacock et al., Exp. Fluids 37:22

End view

room lighting stop-action laser “slice”™

aerosolized canola oil

Forcing the jet flow

Slit: 2.5 X 400 mm

MEMS actuators

poly2 poly 1 '

\— ﬂ
solder =

7 \

ceramic air jet

Video : overhead
view at 2Hz, 10V

Area of individual flap is 1.0 x 0.25mm

Ma et al., IEEE Trans. Adv. Packaging 26:268
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The Butterfly effect in action... Does this have anything to do with reality?

no forcing 6Hz forcing

MEMS flap

Forcing generates coherent structures that enhance entrainment and mixing

Peacock et al., Exp. Fluids 37:22

Communication and chaos:
Measurement

& isolation: ¢ Two coupled Lorenz systems will synchronize
¢ Robust to a small amount of noise

¢ Use this to transmit & receive information

x’'=a(y-x) x’'=a(y-x)
y'=rx-y-xz —— y'=r{xtex)-y-xz
z'=xy-bz z'=xy-bz

¢ Chaotic carrier wave, so hard to intercept or
jam

Pecora & Carroll Phys. Rev. Lett 64:821

Another interesting application:

Solar system stability:
chaos in the solar system

« recall: two-body problem not chaotic
« orbits of Pluto, Mars * but three (or more) can be...

* Kirkwood gaps

« rotation of Hyperion & other satellites

Hut & Bahcall
Ap.J. 268:319
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Exploring that issue, circa 1880:

An orrery, which
is a mechanical
computer whose
gear ratios and
circular platters
simulate the orbits
of the planets

Exploring that issue, circa 1980:

« write the n-body equations for the solar system
« solve them using symplectic ODE solvers on a
special-purpose computer

The digital orrery
(Wisdom & Sussman)

ONR_ NOOOI4-86.K-0180

Numerical Evidence That
the Motion of Pluto Is Chaotic

GERALD JAY SUSSMAN AND Jack Wispom

“The Digital Orery has bee used to pecform an

ton of the motio of the outer planets for 845

years. This integration ndicates that the lonter

o of the plact Fiso s chaoic Neary trjectoie
iverge exponcntally with an e-folding time of only about

20 milion years. . v

Ind [AU] (variational)
(sponsed-om) (] P Ul

Science 241:433

Should we worry?

Kirkwood gaps:

Orhital inclination

Koronis

20 25 30
Avarane distance from Sun (astronomical units)

From Sky & Telescope

Chaos and the Kirkwood gaps

FIGURE 5. Eccentricity of a typical chaotic trajectory over a longer time interval. the
time is now measure illions of years. Bursts of high eccentricity behavior are
interspersed with intervals of irregular low eccentricity behavior, broken by occasional
spikes.

Wisdom, Nuclear Phys. B 2:391

6/6/13

30



Evidence in favor of the conjecture:

04

FIGURE 9. Comparison of the actual distribution of asteroids with the outer
of the chaotic zone. There s both a chatic region and quasipe
‘but trajectories of both types are planet crossing.

boundaries
riodic region i the gap.

Wisdom, Nuclear Phys. B 2:391

Chaotic tumbling of satellites:

Voyager and Galileo saw this...

TUMBLING FOR YOU

56 Augs 2004 Shy & Teesce

From Sky & Telescope

Ap.J.97:570
Ap.J.98:1855

www.nasa.gov/mission_pages/cassini/multimedia/pia06243.html

More chaos in the solar system:

* obliquity of Mars (Touma & Wisdom, Science 259:1294)

www.solarviews.com

*etc.

Chaotic tumbling of satellites:

This happens for all satellites at some point in their
history, unless they are perfectly spherical and in
perfectly circular orbits (pf: KAM theorem; see
Wisdom paper on syllabus)

Some of them are still tumbling chaotically because of
their geometry, but most (like the earth and its moon)
have settled down into tidal equilibria

Musical Variations from a Chaotic Mapping

Dabby Chaos 6:95

Pitch sequence:
CE,G,CEG,C,E...

. symbol dynamics

Also fun: http: / /ww. youtube . com/watch?v=B2XtE9Yy1CA

6/6/13

31



6/6/13

bt
e

)
pﬂ% ¢
g\ vt

R Y,
R ]

i

g

ww " gl
W

P

m%ﬁ

]

v

iR d

N

; % m.ﬁvovﬂ
;. L/
;.amz%

Chaotic variations on movement sequences

original piece
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chaotic variation

Bradley & Stuart, Chaos 8:800
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Lorenz

Rossler

original cell variation
iti ; cell D —
itinerary omerary

medley —original

Rossler variation of medley

random variation of medley

6/6/13
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\ = |
original cell variation
iti ; cell D —
itinerary omerary
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abrupt transition

Interpolation

SS

SZon

Stuart & Bradley, ICML 1998

Corpus-based approach

« graph captures motions of one joint
* note: specific to the genre of the corpus!
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Initial state
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Target state

Graph search

...for 44 joints in parallel!
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initial

target
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initial

interpolation 2

interpolation 1

target

initial
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Con/cantation: (chaotic variations)

A computer-assisted theme and variations performance project

- e —

Radcliffe Institute for Advanced Study

Created by David Capps and Liz Bradley Tuesday, April 17*
m

Video and layout: Angelika von Chamier

Ideas and algorithms: Josh Stuart
Motion capture and animation: Carnegle Mellon Graphics Laborato

(Professor Jessica Hodgins, leader; Justin Macey, motion-capture

technician; Mo Maler, animation and character design)

Code: David Trowbridge and Evan Sheehan

Made possible with support from the Raddliffe Institute for Advanced
Study, the National Science Foundation (IS-0326322), the David and
Lucile Packard Foundation, and the Graduate Council on Arts and
Humanities at the University of Colorado.

10 Garden Street
Inspiration: Diana Dabby Cambridge, MA 02138

All Cues Given

Robeta  David  Amanco  Ander Prue  Georg

Robeta David  Amanco  Ander Prue  Georg

synchronousobjects.osu.edu/content.html

interpolation 3




Full Score of Movement Material, Cues, and Sync-ups

H
H
H

B

i

synchronousobjects.osu.edu/content.html
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