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Unlike other species, humans cooperate in large, distantly related
groups, a fact that has long presented a puzzle to biologists. The
pathway by which adaptations for large-scale cooperation among
nonkin evolved in humans remains a subject of vigorous debate.
Results from theoretical analyses and agent-based simulations
suggest that evolutionary dynamics need not yield homogeneous
populations, but can instead generate a polymorphic population
that consists of individuals who vary in their degree of coopera-
tiveness. These results resonate with the recent increasing empha-
sis on the importance of individual differences in understanding
and modeling behavior and dynamics in experimental games and
decision problems. Here, we report the results of laboratory
experiments that complement both theory and simulation results.
We find that our subjects fall into three types, an individual’s type
is stable, and a group’s cooperative outcomes can be remarkably
well predicted if one knows its type composition. Reciprocal types,
who contribute to the public good as a positive function of their
beliefs about others’ contributions, constitute the majority (63%)
of players; cooperators and free-riders are also present in our
subject population. Despite substantial behavioral differences,
earnings among types are statistically identical. Our results support
the view that our human subject population is in a stable, poly-
morphic equilibrium of types.

behavioral economics � cooperation � evolution � public goods

The evolution of cooperation in sizable groups of nonkin in
humans has been and continues to be the subject of debate

(1, 2). Although theoretical models of group selection (3, 4),
indirect reciprocity (5–7), and costly signaling (8) have helped to
clarify possible evolutionary routes to cooperation, fundamental
questions remain about the number and nature of the cognitive
mechanisms that underpin human cooperative psychology (9)
and whether there are stable individual differences in these
mechanisms (10).

Agent-based simulations of the evolutionary dynamics of
interacting strategies, which generally embody this assumption,
that an agent’s type is stable, causing it to use the same strategy
until its simulated death, have helped to inform these issues (3).
A key result from simulations is that populations, instead of
evolving toward agents with homogeneous behavioral strategies,
often evolve such that multiple strategies coexist at an equilib-
rium (11–13). There are many ways that this diversity can be
maintained (14), and the details by which this occurs is the
subject of intense research activity in various domains (15).
Experimental results of the kind reported here can be useful for
clarifying whether the assumption of stable types in the realm of
human cooperation as assumed by simulations is justified, and,
if it is, how best to characterize these types (16, 17).

The laboratory experiment reported here complements sim-
ulations by exploring type stability in a potentially fickle human
population. In line with types used in simulations (18) and
observed in other experimental contexts (19), we consider the
hypothesis that people are one of three stable types: (i) coop-

erators, who contribute to generating group benefits at a cost to
self, (ii) free-riders, who do not incur these costs, and (iii)
reciprocators, who respond to others’ behavior by using a
conditional strategy. Note that reciprocity is more complex in
multiplayer games than in two-player games because the breadth
of possible conditional strategies obviously expands (20). How-
ever, in our experiment subjects were given information about
aggregate behavior only, which simplifies their strategy space.

The dynamics of agent-based simulations are sensitive to the
fraction of types in the population and the frequency with which
these types interact (13). A goal of the experiments reported here
was to investigate whether the type composition of a group has
a predictable effect on the dynamics of cooperation in human
groups. Public goods games provide a natural environment for
this study because the results of previous public goods experi-
ments are consistent with the conjecture that types exist and
affect cooperative outcomes.

We use a public goods game with the voluntary contribution
mechanism (21) to learn about types and the effect of types on
cooperative dynamics. Our experimental subjects are randomly
assigned to groups of four people and faced with a decision to
divide money (represented by tokens that are provided to them
by the experimenter) into private and group accounts. Tokens
placed into the private account are kept by the investing indi-
vidual. Tokens placed in the group account are doubled by the
experimenter, and then divided equally among all group mem-
bers. Hence, each unit invested in the group account increases
the aggregate group payoff, but decreases the investing individ-
ual’s payoff. This generates a social dilemma, where the
group optimum is achieved only when each individual makes a
decision that is contrary to her or his income-maximizing
self-interest (22).

Experimental Design and Procedures
Our experiment included 84 participants in three groups of 24
and one group of 12. We found no statistically significant
difference in behavior between the 12- and 24-subject sessions,
and therefore data are pooled. Participants were recruited from
the undergraduate population by using the recruitment system
in place at the University of Arizona’s Economic Science
Laboratory.

Participants arrived in the laboratory and were seated at
computer terminals that were divided by partitions. Except for
the instructions, which were printed on paper, the entire exper-
iment was conducted via computer. Once seated, participants
were told that they had already earned their show-up payment
and that their decisions and earnings would be kept confidential.

Abbreviations: LCP, linear conditional-contribution profile; CP, Casari and Plott.
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Subsequently, the instructions for our sequential voluntary
contribution mechanism, available on request, were distributed.

The instructions informed participants that they would be
assigned to a series of groups, each consisting of four people, and
that the members of these groups would be shuffled randomly
over an unspecified number of games. Participants were told that
they would receive an endowment of 50 tokens per game to
divide between two exchanges, and that tokens in the individual
exchange earned one cent per token, whereas tokens in the group
exchange earned half of one cent for each player.

Each game consisted of all players simultaneously making an
initial allocation of tokens between the two accounts. After this
initial decision, there were a number of rounds. Each round
proceeded as follows. First, one player in each group was
provided the current aggregate contribution to the group ex-
change. Then, that person was given the opportunity to change
his or her allocation to the two accounts. The game proceeded
round by round until the game ended at a point unknown to the
participants. Participants were told that each player would have
at least one chance to change his or her contribution decision,
and that the game would end at a randomly chosen point. We
provided no details on the nature of the randomization process.
However, it was emphasized that payoffs in each game would be
determined by the final allocation of all group members’ tokens
to the two exchanges, and that total earnings for the experiment
would be determined by summing the earnings from each game.

The rotation of subjects to constitute groups, the order of play
within groups, and the length of each game were generated
randomly and kept constant for all four sessions. Game lengths
were generated by assigning a probability of 0.04 that the game
would end after any player’s opportunity to change his or her
allocation, subject to the constraint that all subjects be allowed
to update at least once. We chose this procedure with an eye
toward providing enough variation in game lengths to ensure
that subjects did not come to expect games to last a specific
number of rounds. This technique is important to help make
certain that subjects viewed all of their decisions (aside from the
first simultaneous contribution) as potentially payoff relevant.
Payoff saliency is also an important reason that we chose not to
reveal the randomization structure to the subjects: some subjects
might mistakenly believe that a small probability of the game
ending after any round means that they would always have many
opportunities to change their decisions.

Our randomization process generated the following number of
opportunities to update contribution decisions (excluding the four
initial simultaneous contributions): 16, 7, 23, 32, 32, 34, 4, 17, 31, 8.
So, for example, in the first game there was an initial set of
simultaneous contributions, and then the game proceeded sequen-
tially until each of the four subjects had had four opportunities to
update his or her previous contribution, at which point the game
ended and subjects’ earnings for that game were calculated.

Participants completed a 10-question quiz that had to be
answered correctly before they could proceed. The first game
began after everyone had completed the quiz correctly, and
subsequent games proceeded automatically after all groups had
reached the end of the preceding game.

Participants were paid their experimental earnings privately,
�$20 on average, and dismissed when the experiment con-
cluded. Subjects were in the laboratory for �90 min.

Results
Aggregate Contributions. Each experimental session included at
least seven games. Some sessions proceeded slightly faster and
included as many as 10 games. Final contributions to the group
account displayed the decay typically found in public goods
experiments. In particular, average contributions decayed over
time from 60% to �35% of the subjects’ endowment. However,

average contributions mask substantial heterogeneity in behav-
ior among individuals and groups, an issue to which we now turn.

Statistical-Type Classification Algorithm. Our approach to behav-
ioral-type classification is to prespecify a set of behaviors of
interest, and then assign one from this set to each subject.¶ This
sort of approach was used, for example, by El-Gamal and
Grether (23) in their well known behavioral typing algorithm
[see also Houser and Winter (24)]. Although more sophisticated
(and cumbersome) procedures are available, the advantage of
our classification algorithm is that it provides a simple, fast, and
accurate method for inference about individual differences, after
which any analysis can be conducted.

The behaviors that interest us are contributing little most of the
time (free-riding), contributing a great deal most of the time
(cooperating), and contributing an amount roughly equal to the
contributions of others (conditional cooperation or reciprocation).
Intuitively, our procedure bases inferences about a subject’s type on
a plot of a subject’s contributions against the average contribution
to the group account she observed before making his or her own
contribution. Contributions by cooperators lie well above the 45°
line on this plot. Reciprocators’ contributions cluster near the 45°
line, whereas free-riders’ contributions are small regardless of the
average contribution they observe. Fishbacher, Gächter, and Fehr
(19), who studied reciprocation by using the strategy method (25)
with a one-shot public goods game, used a similar approach to type
classification. Indeed, our algorithm can be viewed as a formal
extension of their visual-inspection approach.

Although our statistical procedure has the advantage of
simplicity, it also risks omitting variables that could be important
determinants of behavior. These variables might include, for
example, a subject’s previous outcomes within the experiment
(amounts earned or amounts previous group members have
contributed). Moreover, even if all appropriate variables are
included, our simple specification might include them in the
wrong way (say, by neglecting higher-order terms). Specification
errors and omitted variables are a concern for us to the extent
that they contaminate our type classifications. In fact, as we
discuss below, the decisions subjects made in games used for
classification purposes predict well the decisions they made in
games played afterward. Hence, the evidence is that our type
classifications are valid, and that our model, although simple,
nevertheless provides useful and reliable results.

Formally, our statistical procedure is to use a subject’s linear
conditional-contribution profile (LCP) to classify each subject as
one of the three types. We define each subject’s LCP as the outcome
of an ordinary least-squares regression of his or her contribution
decisions on the mean contribution that he�she observed immedi-
ately before making a contribution decision. This process enables us
to summarize a subject’s contribution strategy with two parameters:
the intercept and slope of his or her LCP. The intercept provides
a measure of how willing a subject is to cooperate even when his or
her group counterparts contribute little to the public good. The
slope measures a subject’s responsiveness, both in direction and
magnitude, to others’ contributions.

We classify each subject according to his or her estimated
LCP, as follows. A subject is classified as a free-rider if and only
if the graph of his or her LCP lies everywhere �25. This means
that a subject’s expected contribution is �50% of the endow-
ment at all levels of others’ contributions. Similarly, a subject is
classified as a cooperative type if and only if the graph of his or
her LCP lies everywhere at or �25. That is, a cooperative type’s
expected contribution to the public good is more than half of the
endowment regardless of others’ contributions. We classify a

¶Houser, Keane, and McCabe (17) provide a type classification algorithm that does not
require one to specify the types of interest a priori.
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subject as a reciprocator if the graph of his or her LCP has a
positive slope and lies both above and below the 50% line.
Hence, a reciprocator’s expected contribution increases as the
group average increases. Subjects with any other LCP are not
classified as one of these three types.

Findings. Based on the seven (in-sample) games that each subject
plays, our algorithm classifies 17 of our 84 subjects (20%) as
free-riders, 11 (13%) as cooperators, and 53 (63%) as recipro-
cators (three subjects were not statistically classifiable as one of
these types).� Note that this distribution of types is similar to the
distribution reported by Fishbacher, Gächter, and Fehr (19).

Contribution decisions differ substantially among these types.
The median per-round contributions of free-riders, reciprocators,
and cooperators are statistically significantly different (P � 0.001,
three-sample Medians test), at 1, 25, and 50 tokens, respectively.
Despite this, median earnings per game across types are not
statistically different (P � 0.27, three-sample Medians test), ranging
from 70.0 (conditional cooperators) to 77.5 (free-riders),** a
narrow band within the possible range from 25 to 125.

To investigate whether individual differences in our experiment
are stable, when time allowed we had subjects play up to three
additional games, again with randomly reassigned partners. In these
out-of-sample games, subjects typed as free-riders continued to
contribute less on average than their group counterparts, cooper-
ators more, and reciprocators about the same. The median contri-
butions of free-riders, reciprocators, and cooperators in the out-
of-sample games are 5, 25, and 50, respectively, and are statistically
significantly different (P � 0.001, three-sample Medians test). In
addition, we fit a simple censored regression model (contributions
on a constant and the average group contribution) to the out-of-
sample contribution decisions of each type. Each type’s estimated
model is statistically significantly different from each other type’s
(P � 0.01 for all three possible pairwise comparisons).†† Overall
then, our results provide evidence that types in our experiment are
different from one another and stable over time.

Because we have provided evidence that types are both stable
and behaviorally distinct, it is reasonable to distinguish groups by
their type compositions. To do this, we assigned to each group a
cooperativeness score, with higher scores indicating that the group
contained more cooperative types (see Fig. 1). One summary
measure of group cooperation is the final amount contributed by a
group to the public good. Over the first seven games, there is a
positive relationship between this measure and a group’s cooper-
ativeness score. Moreover, a simple regression analysis reveals that
this relationship is statistically significant, with a one-point increase
in the group cooperativeness score associated with a �20-token
increase in the amount of the final contribution to the public good.
This result is not surprising, given that these data were themselves
used to determine types. Importantly, however, a similar analysis
run on the groups observed in the out-of-sample games reveals a
nearly identical relationship, and one cannot reject the hypothesis
that a group’s cooperativeness score has the same effect on final
group contributions in both samples.‡‡

Again, because player types are stable and distinct, we inves-
tigated whether cooperative dynamics within a newly formed

group can be predicted conditional on knowing that group’s type
composition. We found that a group’s final contribution to the
group account can be well predicted by its cooperativeness score
(Fig. 1). Moreover, the path leading to this final contribution is
also accurately predicted. In particular, the average per-round
contribution across out-of-sample groups with a given score
generally lies within two standard errors of the estimated mean
contribution of in-sample groups with the same score (Fig. 2).
However, there are relatively few out-of-sample data points (Fig.
1), and there is significant variation about each mean. In
addition, one notices from visual inspection that the paths for
different groups are somewhat similar. Consequently, it is not
surprising that results from pairwise t tests indicate that the
out-of-sample contribution paths for the different groups are
largely statistically indistinguishable.§§

Note that, as pointed out above, the games lasted different
numbers of rounds (between 4 and 34). Clearly, game length also
will contribute to the amount of cooperative decay that a group
experiences. When the number of observations on a particular
group score is large, the game length effect is mitigated by the
randomization procedures embedded in our design. For some
group scores we have only a small number of observations (see
Fig. 1). In these cases, the game length effect will tend to obscure
the relationship between the group’s cooperativeness score and
the final group contribution, and therefore make it more difficult
to predict group outcomes based on cooperativeness scores. In
this light, our finding that group outcomes are well predicted
hints that composition effects are an important source of be-
tween-group differences in cooperation.

Discussion
Previous Classification Systems. Our results provide evidence that
there are multiple, stable behavioral types that vary with respect to
their disposition to cooperate in a group context. Fishbacher,
Gächter, and Fehr (19), having found evidence of both free-riding
and conditionally cooperative strategies, suggested that groups that

�The R-squared values for the type regressions ranged from �0 to �1, with a mean of �0.4.

**The standard deviations of the earnings distributions for free-riders, cooperators, and
reciprocators are 18, 19, and 24, respectively.

††Each estimated model was statistically significant (P � 0.001) with pseudo R-squared �0.02.

‡‡Using the in-sample data, we ran a regression of the final contribution amount on an
intercept and the group cooperativeness score. The coefficients’ point estimates were 11
and 21, respectively, with only the 21 statistically significant (P � 0.001). The same
regression run on the out-of-sample data generated coefficient estimates of 10 and 25,
respectively, with only 25 statistically significant (P � 0.01). The null hypothesis that the
models’ parameters are jointly identical in the two cases cannot be rejected at standard
significance levels (P � 0.59). The R-squared for both regressions is �0.22.

§§We ran pairwise, round-by-round t tests to investigate differences in mean contribution
paths. Differences were statistically insignificant in all cases except rounds 1–8 between
the score-2 and score-5 groups (P � 0.05).

Fig. 1. Displayed are the mean final group contribution for the first seven
games (E) and holdout sample (■ ) and a two-standard error interval above
and below that mean. We assign a score of zero to each free-rider in a group
and scores of one and two to each conditional cooperator and cooperator,
respectively. A group’s score is the sum of the scores of its four members. We
obtain group scores ranging from one to seven because the random matching
process did not generate any group that included only cooperators or only
free-riders. The absolute difference between the in-sample means and the
holdout sample means is small, with the greatest deviation being 26 tokens.
The holdout sample means are generally within, or nearly within, two stan-
dard errors of the in-sample means. Of course, not all of these standard errors
are tight, because the number of observations for some group scores is quite
small (e.g., two and three observations during the first seven games in groups
with scores of seven and one, respectively). Shown is evidence that final group
contributions are positively related to a group’s cooperativeness score and
that a group’s score predicts its cooperative decisions out of sample.
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include both types might be expected to experience cooperative
decay and convergence to a noncooperative equilibrium, and then
speculated that ‘‘the speed of convergence depends on the actual
composition of the group.’’ Our results provide direct evidence in
support of these and other closely related hypotheses that have been

previously advanced only speculatively in the public goods litera-
ture. In addition, because the theoretical efficiency of an institution
usually relies on some form of behavioral continuity, evidence that
individuals’ behavioral rules exhibit temporal stability is valuable to
those involved in mechanism design.

Ours is, of course, not the first research to show that there are
multiple motivations in experimental games (26) or that indi-
vidual differences in preferences lead to varied social dynamics
(27, 28). Research in this tradition, which has historically used
two-option, two-player interactions (29), frequently classified
participants into three types, as we do here, although some
classification systems include more (30).

It is interesting to note that social psychologists and economists
have postulated similar classification systems. The research tradi-
tion in social psychology on social value orientation, for example,
suggests that people can be classified as competitors (motivated to
achieve better payoffs than others), cooperators (motivated to try
to increase group welfare), and individualists (motivated to serve
their own interests) (31). This set of types nicely parallels work in
experimental economics that suggests that people fall into types
who are ‘‘spiteful’’ (competitive) (32), ‘‘payoff-maximizing’’ (indi-
vidualists), and ‘‘altruistic’’ (cooperators) (33).

It is tempting to map these schemes onto our three types, but
because of the important differences between two-player and
N-player interactions (20), two-player, two-option games might
or might not be informative of behavior in N-player games. For
example, although an individual’s social value orientation does
predict behavior in resource dilemmas (34), it does not do so in
public goods games (35).

Direct assessment of types in public goods games is relatively
recent, but they have been evident for some time. Early work on
public goods environments suggested that some fraction of indi-
viduals was ‘‘strong free riders’’ (21), and this proportion changed
as a function of the marginal per-capita return. Still earlier, a kind
of reciprocal player was identified that used ‘‘one-period’’ contri-
butions or ‘‘pulses’’ to induce reciprocal contributions from others
(36). Note that there was some initial skepticism about the impor-
tance of types in explaining laboratory data. Pruitt and Kimmel
(37), for example, believed that ‘‘dispositional qualities’’ would have
‘‘little impact in an impersonal setting as represented by most
gaming environments.’’ This view contrasts strongly with a recent
comment on the consistency of individual differences in motiva-
tions in mixed motive interactions found in experiments; Ketelaar
(38) suggested rather that the evidence is that ‘‘several different
varieties of social motive (and not just one) [are] routinely observed
in the adult population.’’

Currently, individual differences are receiving increasing atten-
tion. In addition to Fishbacher et al.’s (19) work described above, a
valuable contribution closely related to the research reported in this
article was done by Casari and Plott (CP) (39). CP model individual
differences by assigning individuals parameters of the degree to
which they are ‘‘spiteful’’ or ‘‘altruistic’’ in a commons dilemma
(which is conceptually similar to a public goods game). While both
we and CP use linear parametric models to characterize the nature
of other-regarding preferences among our subjects, CP rule out
reciprocity, whereas we focus on reciprocal preferences in our effort
to develop predictions of group dynamics. Similarly, our sequential
design, in contrast to the simultaneous contribution protocol used
by CP and the majority of public goods game researchers, allow us
to relax CP’s assumption that ‘‘agents expect the others to act in
period t as they did in period (t-1).’’ Although this assumption might
be correct, our observations imply that expectations about others’
behavior might include a dynamic component related to reciprocity.

The Evolution of Cooperative Types and Simulations. We are en-
couraged by connections between our results, the results of other
type classification systems, and the results of evolutionary sim-
ulations. Evolutionary game theorists have known for some time

Fig. 2. Mean contribution of groups in the first seven (thin lines) and final
three (thick lines) games. (a) Groups with score � 2. (b) Groups with score �
3. (c) Groups with score � 4. (d) Groups with score � 5. The horizontal axis
indicates the round, where round zero is the initial, simultaneous contribu-
tion. The vertical axis indicates the equally weighted (over groups) mean
contribution to the public good. We include only groups with cooperativeness
scores between two and five because the number of observations on groups
with other scores is too low (either one or two) to allow reasonable inferences
with respect to dynamics. The pattern of mean contributions over rounds in
the first seven games is a prediction of cooperative dynamics in the final three
games. The vertical bars extend two standard errors above and below each
in-sample mean. For groups with scores of 2, 4, and 5, nearly all of the holdout
sample’s mean contributions are within two standard errors of the predicted
means. These findings suggest that there is a predictable relationship be-
tween temporal patterns of group cooperation and the cooperative nature of
a group’s members.
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that populations can achieve stable polymorphic equilibria (40,
41). Lomborg (13), for example, describes evolutionary simula-
tions that lead to stable populations of three types: cooperators,
‘‘cautious cooperators,’’ and noncooperators, although the pro-
portions of each varied across simulations. The stability we
observe supports the use of types in these simulations and is
potentially informative on the key evolutionary issue of whether
variation in experimental games might be caused by players using
mixed strategies as opposed to the possibility that we are
observing a polymorphic population.

Consider also our (unsurprising) result that groups composed
of more cooperative types enjoyed greater group cooperation
and tended to earn more. For example, three reciprocators when
grouped with a cooperator can expect to earn �40% more than
when they are grouped with a free-rider. At the same time, each
type’s average earnings were statistically identical over the
course of our experiment. In a polymorphic equilibrium, payoffs
to each type should be equal (14). In this context, the similarity
of earnings among our types is intriguing. This result is consistent
with the possibility that individual differences reflect genuine
strategic differences as opposed to differences in, for example,
amounts of confusion between participants (42, 43).

Another promising line of work that could profitably combine
both simulation and experimental procedures might be to investi-
gate the properties of our sequential public goods game under a
payoff structure that implies interior equilibria. In the laboratory,
this structure will help to distinguish motivations for contributions
because, for example, positive contributions in our method have
ambiguous interpretations. In particular, confusion and prosocial
behavior can be conflated (42, 43). (The reason that all participants
in our experiment were required to complete perfectly a 10-
question quiz is that it helped to ensure that subjects understood the
structure of the experimental environment.) In addition to avoiding
the confusion confound, public goods games with interior equilibria
are able to distinguish rich varieties of behaviors (33) and assess
treatment effects in ways that are not possible when the equilibrium
is on the boundary (44). At the same time, in their comprehensive

survey, Laury and Holt (44) point out that the main results from the
linear voluntary contribution mechanism literature do not change
when the equilibrium is moved to any point that lies between the
lower boundary and the midpoint of the contribution decision
space.

A few additional caveats are in order. Clearly, the notion of type
must be understood with respect to a particular class of decisions;
if cooperation is very costly, we presume universal defection would
obtain (21). Nonetheless, our results add to the growing body of
research that suggests that reciprocity is an important motive in
group contexts across a range of institutional arrangements (45, 46).
Additional work will be required to determine the conditions under
which players separate into types, including conditional cooperative
ones, and which institutions have the effect of homogenizing play.
It seems likely that important variables facilitating reciprocal play
are the extent to which gains from trade are available, the amount
of repeat interaction, and the availability of information about
others’ behavior.

In addition, we remain agnostic with respect to the very
important issue of the correct ultimate explanation for the
existence of cooperative types, and how cooperative strategies
are stabilized. Punishment (47–49) and the possibility of non-
participation (50, 51) are two elements that look promising as
parts of the answer to the question of how adaptations designed
for cooperation in groups might have evolved.

One avenue of research, already in progress, is to replicate
experiments such as ours to determine whether distributions of
types are similar cross-culturally. Such similarities, were they to
be found, might help to clarify the origins of heterogeneous
preferences. In addition, agent-based simulations, which can be
calibrated to yield stable heterogeneity in agents, will be useful
for understanding the mix of strategies that can persist in
populations. Productive future work, some of which is already
underway (52), should be aimed at more closely integrating
laboratory and agent-based simulation research.

The Russell Sage Foundation and the International Foundation for
Research in Experimental Economics provided support for this research.

1. Darwin, C. (1859) The Origin of Species (Murray, London).
2. Wilson, E. O. (1975) Sociobiology: The New Synthesis (Belknap, Cambridge,

MA).
3. Boyd, R., Gintis, H., Bowles, S. & Richerson, P. J. (2003) Proc. Natl. Acad. Sci.

USA 100, 3531–3535.
4. Gintis, H. (2000) J. Theor. Biol. 206, 169–179.
5. Leimar, O. & Hammerstein, P. (2001) Proc. R. Soc. London 268, 748–753.
6. Nowak, M. A. & Sigmund, K. (1998) Nature 393, 573–577.
7. Panchanathan, K. & Boyd, R. (2003) J. Theor. Biol. 224, 115–126.
8. Gintis, H., Bowles, S. & Smith, E. A. (2001) J. Theor. Biol. 213, 103–119.
9. Fehr, E. & Fischbacher, U. (2003) Nature 425, 785–791.

10. Van Lange, P. A. M., De Bruin, E. M. N., Otten, W. & Joireman, J. A. (1997)
J. Pers. Soc. Psychol. 73, 733–746.

11. Dugatkin, L. A. & Wilson, D. (1991) Am. Nat. 138, 687–701.
12. Aktipis, C. A. (2004) J. Theor. Biol. 231, 249–260.
13. Lomborg, B. (1996) Am. Soc. Rev. 61, 278–307.
14. Maynard Smith, J. (1982) Evolution and the Theory of Games (Cambridge Univ.

Press, Cambridge, U.K.).
15. Sinervo, R. & Lively, C. M. (1996) Nature 288, 240–243.
16. Camerer, C. F. (2003). Behavioral Game Theory: Experiments in Strategic

Interaction (Princeton Univ. Press, Princeton).
17. Houser, D., Keane, M. & McCabe, K. (2004) Econometrica 72, 781–822.
18. Bowles, S. & Gintis, H. (2004) Theor. Popul. Biol. 65, 17–28.
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