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Abstract. In this work we explore the ability of Google search engine to find results for random N−letter

strings. These random strings, dense over the set of possible N−letter words, address the existence of

typos, acronyms, and other words without semantic meaning. Interestingly, we find that the probability

of finding such strings sharply drops from one to zero at Nc = 6. The behavior of such order parameter

suggests the presence of a transition-like phenomenon in the geometry of the search space. Furthermore, we

define a susceptibility-like parameter which reaches a peaked maximum in the neighborhood, suggesting

the presence of criticality. We finally speculate on the possible connections to Ramsey theory.
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1 Introduction

Computer science and physics, although different disci-

plines in essence, have been closely linked since the birth

of the first one. More recently, computer science has met

together with statistical physics in the so called combi-

natorial problems and their relation to phase transitions

and computational complexity (see [1] for a compendium

of recent works). More accurately, algorithmic phase tran-

sitions (threshold property in the computer science lan-

guage), i.e. sharp changes in the behavior of some com-

puter algorithms, have attracted the attention of both

communities [2–9]. It has been shown that phase transi-

tions play an important role in the resource growing classi-

fication of random combinatorial problems [5]. The com-

putational complexity theory is therefore nowadays ex-

perimenting a widespread growth, melting different ideas

and approaches coming either from theoretical compu-
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tation, discrete mathematics, and physics. For instance,

there exist striking similarities between optimization prob-

lems and the study of the ground states of disordered mod-

els [10].

Problems related to random combinatorics appear typi-

cally in discrete mathematics (graph theory), computer

science (search algorithms) or physics (disordered systems).

The concept of sudden change in the behavior of some

variables of the system is intimately linked to this hall-

mark. For instance, Erdös and Renyi, in their pioneering

work on graph theory [11], found the existence of zero-

one laws in their study of cluster generation. These laws

have a clear interpretation in terms of phase transitions,

which appear extensively in many physical systems. More

recently, computer science community has detected this

behavior in the context of algorithmic problems. The so

called threshold phenomenon [1] distinguishes zones in the

phase space of an algorithm where the problem is, com-

putationally speaking, either tractable or intractable. It

is straightforward that these three phenomena can be un-

derstood as a unique concept, in such a way that building

bridges between each other is an appealing idea.

In this work we address the performance of Google’s search

engine from this focus. The webpages, blogs, and other

text repositories that conform Internet contain a huge

amount of information, which is typically encoded in texts

-i.e. words with semantic meaning- of several languages.

These words are N-letter strings, where N is not expected

to be too large, according to the dictionary. Eventually,

we will find in these information repositories some words

that are not defined in any dictionary. These words can

be typos (typographic errors), acronyms, invented words,

etc, that we will call typos from now on. Since there are

many independent reasons justifying the presence of such

typos, as a first approximation we can suppose that they

are the result of a random process where in every new

webpage or blog, with a small probability a new typo is

introduced. The total amount of these outliers would be,

in this case, directly related to the size of the total text

reservoir: Internet should be ’large enough’ to have these

structures by pure chance. Now, which is the amount of

these typos as a function of the typo’s size? Is there any

characteristic scale for these structures? How can we es-

timate such amount? Of course, for every fixed N the are

many more words without a semantic meaning: if we gen-

erate a random N-letter string, with very large probability,

this one will not be a real word, but some kind of typo.

Consequently, in order to explore the presence of typos in

Internet, we only need to make queries of random N-letter

strings. Now, are the typos equally distributed as a func-

tion of the typo’s size? If these typos are reminiscent of

the real words (for instance, if a typo is just the result of

a word with a permutation/deletion/modification of let-

ters), we should expect that the presence of N-letter ty-

pos is a smoothly decreasing function of N . Will we find

such smooth behavior in this case? In what follows we

will present some results suggesting that the presence of

typos is related to a percolation-like phenomenon, where

the probability of finding an N-letter typo sharply drops

from one to zero at a critical value Nc. This latter value is
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related to the reservoir’s size. We finally speculate on the

relation to Ramsey theory, which addresses the presence

of spurious order in random structures.

2 Automatic random queries

We have done automatic generated queries to the popular

Internet search engine Google. Fixed a size N , we have

generated 2 · 104 random strings of N letters and have

made the associated queries. Each query has an associ-

ated output, the amount of results E. In figure 1 we show

an example a string of N = 3 letters. In each query, a

3−letter string is generated at random, and we plot E as

a function of the query. In figure 2 we plot, in log-log, the

histogram of such experiment, plotting the frequency dis-

tribution of E. The distribution approximates a uniform

one for small results, characteristic of a random process.

The tail follows a power law. If we assume that the pres-

ence of typos is correlated in some way to the presence

of real words, we can deduce that this power law is rem-

iniscent of the word use distribution in languages, which

actually follows a power law in the statistics of word use

in books.

3 Evidence of critical behavior

We have defined the order parameter P as the probability

of finding a non-null amount of results whenever making a

random N-letter string query to Google. In practice, and

following the definition of P in percolation theory, in each

query we have summed 1 whenever the query shows non-
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Fig. 1. Example of automatic query results for a string of

N = 3 letters. In each query, a 3−letter string is generated at

random.
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Fig. 2. Histogram in log-log of figure 1, that plots the fre-

quency of results. The distribution approximates a uniform

one for small results, characteristic of a random process. The

tail follows a power law: this is reminiscent of the word use

distribution in languages.

null results and 0 otherwise, and have finally normalized

P over the total number of queries. In figure 3 we have

plotted the values of P versus the number of letters in a

string, N , which acts as a control parameter. Below a cer-
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Fig. 3. Probability versus N

tain value Nc, the probability of finding a non-null amount

of results is 1, while above Nc, this probability sharply

drops to a value which is very close to zero. Following a

geometrical image, we can understand this behavior as a

percolation process in the space of all possible combina-

tions of n-letter words: while for N < Nc the majority of

these possible combinations are actually present in the In-

ternet reservoir, and thus we are in the ’percolant phase’

where every initial condition (random combination of N

letters) can be found across a non-null amount of paths,

for N > Nc the number of such paths drops to zero. We

expect that this behavior is even more acute for larger

sizes of the Internet reservoir.

3.1 Susceptibility-like parameter

In order to cast light in the nature of such apparently

abrupt behavior, we need to define the thermodynam-

ically conjugated variable of the order parameter, that

is, a susceptibility-like parameter that measures the fluc-
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Fig. 4. R versus N

tuations of P . The so called canonical measure of self-

averaging performs R this task, since it is defined as the

variance of E, properly normalized:

R =
< E2 > − < E >2

< E >2

As it can be seen in figure 4, R evidences a peaked maxi-

mum in the neighborhood of the transition point, much in

the vein of a critical transition. This suggests the presence

of criticality in this system.

4 Possible connections with Ramsey theory

In a nutshell, Ramsey theory addresses the presence of

spurious order in disordered media. The cornerstone of

such theory is the following: in a set of M elements where

no relation of order has been defined (that is, assuming no

correlations between the M elements), one can find with

probability 1 hints of order (i.e. patterns) of arbitrarily

size as long as M is large enough.

Ramsey theory is, for instance, the reason why we can

find several stars in the sky forming a straight line: this
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pattern may suggest the presence of a hidden order, such

an extraterrestrial skyway. However, the fact that there

are so many stars in the sky is sufficient for these kind of

geometric patterns to emerge, just by pure chance.

More technically, Ramsey theory addresses the presence of

such patterns in graphs. Concretely, the Ramsey number

r(m, n) of a graph is the minimal number of nodes that a

random graph needs to have in order to contain a clique

of order n. In our work, a handwaving analogy could be

made: suppose that the Internet reservoir is the set of M

elements. Why do we find random N-letter strings, which

are not obviously -in most of the cases- true words? There

are many reasons: the presence of typos, acronyms, and

other sources of ’randomness’. Now, if for N < Nc the

probability of finding such random strings is 1, this sug-

gests the presence of some order (for instance, as long as

the entropy is low). One could assert that the only reason

for this probability to be 1 is that the Internet is so large

(webpages, blogs, etc) that one can find spurious order,

just as in Ramsey theory. And that given the number of

such webpages and blogs, this spurious order grows until

Nc. This should be investigated in depth in future work.

5 Concluding remarks

In this work we have shown that the probability of find-

ing a random N-letter string in Internet shows an abrupt

behavior, this probability being P ' 1 for N < 6 while

P ' 0 for N > 6. We have interpreted such crossover

as a percolation-like process in the space of words, i.e. the

Internet reservoir. In order to check whether a critical phe-

nomenon is taking place, we have defined a susceptibiity-

like parameter associated to the order parameter P , and

have shown that this parameter reaches a peaked maxi-

mum in the neighborhood of the transition, what is typi-

cal of a second order phase transition. In a further work,

we will address different reservoir sizes, by using not the

worldwide engine (google.com) but specific engines (ger-

man, spanish, french,italian,...) whose characteristic reser-

voir sizes are smaller, in order to make a finite size analysis

of the transition. The reservoir sizes of the specific engines

will be estimated through set theory. Finally, these results

should be contrasted with those of a purely stochastic pro-

cess, in order to verify if the presence of such abrupt phe-

nomenon is the result of a random phenomenon.

On the other hand, the connections with Ramsey theory

should be studied in depth in future work.
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