Why Is there a macro-world”?
Large-deviations scaling and its connection to macrostates
and robustness




Purpose of this lecture

- The concepts of micro-world and macro-world in
equilibrium thermodynamics are well known

Less well-known is how to separate these notions from
their historical roots in physical mechanics, and to treat
them In a pure form

- Goal today: emphasize the concepts of micro and macro,
and what we know about emergence In these terms

- We can then readily extend to non-equilibrium, problems
of inference, and much more



The difference between “micro-worlds” and
“macro-worlds”

- (For the purpose of this talk) . . .

the concept of a micro-world isn’t about being small,
it is about being particular
N reference to the parts and their assembly



In Mechanics

- “Newtonian Clockwork”

- The Spandrels of San Marco




IN

Siology

““ microbewiki.kenyon.edu

Bacterialcell: = & &+
1 genome, small- numbers regulatory enzymes

1-2-4-6 ploidy qualitatively changes how orgamsms )
function and how they evolve

C. elegans (herm) 959 cells (male) 1031

N-pods

Reliable translation (1 gene -> 1 enzyme)


http://microbewiki.kenyon.edu

In Communication and Computation

- Design errors In specific relations

Price and energy devoted to correction
against operations errors

Example: 8-Slot Flight Chassis




Macro-worlds come from indefiniteness

- The thing that makes a macro-world “macro” is

indef]

dyna
eithe
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niteness: the ability to take well-defined structure,

roperties with an indefinite composition of
r detalled relations among components

- We should not take it for granted that macro-ness is even

DOSS

IDle

- With some experience, it should become striking that the
actually-realized macro-worlds are rare compared to their
possibilities, even moreso than for micro-worlds



INn Mechanics or Materials

- Ammonia MASER

-+ Materials properties K

- Working fluids etc.



IN

—volutionary

Dynamics

+ (Genetics concept of an adapted population is inherently

a statistical one

www.slideshare.net/eserrelli
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First appearance of the adaptive landscape: Sewall Wright (1932) “The roles of
mutation, inbreeding, crossbreeding and selection in evolution”, communication at 6th

International Congress of Genetics, Cornell University


http://www.slideshare.net/eserrelli

In Communication and Computation

Error-correcting codes
(e.g9. Reed-Solomon on CD/DVD)
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Introduction to Large-deviations scaling
and the entropy

+ Some examples

- How the entropy comes from counting and large-
deviations scaling

- The general characteristics shared by large-deviations
limits



Gaussian limiting distributions

Sinomial distributions and the convergence to




The multinomial, Stirling’s formula, and the Gibbs-
Shannon entropy

Stirling approximation for logs:  logn! ~ n (logn — 1)

Multinomial for counting:
( N ) — N' ~ o NS(F )

ny...np ni!...np!
T T - n T
Shannon entropy: 5(_1 _P) — NP M
- NN ; N BN
notice: ( (E n—P)) = log P
max | S N N og

SO: L N ~ —N[Smax_s(n_]\%7nvp)]
ny...NnNp



The general characterization of
Large-Deviations scaling

- The separation of scale from structure in fluctuation
probabillities under some process of aggregation

scale structure

— NS
Phyct ~ €

A good introduction:

H. Touchette, The large deviation approach to statistical mechanics,
Phys. Rep. 478, 1-69, 2009.

arxiv:0804.0327

Recall the binomial and its Gaussian limit

2 n 2
count(n | N) = ( N > ~ 2V —e_QN(W_%)

7TN scale structure


http://arxiv.org/abs/0804.0327

The two main claims for this lecture:
Large-Deviations Scaling (LDS) and macro-worlds

- The kind of separation of scale from structure seen In
LDS is the concept we need to characterize macro-
worlds

Many (all?) real instances of the emergence of macro-
worlds are formalized as cases of LDS



P,

ow aggregate fluctuation laws give rise to
assical thermodynamics

Extensive state variables: origin, roles, and meaning
The equation of state starting from the right end

How fluctuation theorems recover FEESESN
classical thermodynamic laws o A,

Why historically we started with
conservation of energy, but why — ==&
conceptually it is not the best way =

X -
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—xtensive State Variables:
scalable arguments to the Entropy function

- The values of limiting quantities determine what “volume”
or “measure” of states can be reached by a system

- When the states are achieved as combinations of
elements made available by U, V, N, then state space
volume will scale exponentially in these constraints, and
entropy will scale in the same way as they do, defining
extensivity

- We write, then: S(U,V,N)



Roles of Extensive State Variables:
Constraints of possibility and boundary interfaces

U=U; + U,
- Suppose multiple systems must V=V, + V1,
share something: N = N; + Ny, ete.

- Since, for each system, S; = S(U;, Vi, N;)

-+ The extensive state variables that are constraints also
become interface properties at system boundaries



Intensive State Variables:
the gradients of the Entropy

The most-likely fluctuation is (in this language, by construction)
the one to a state that maximizes total entropy: Pre ~ o~ NS
ucC

In multi-part systems, what matters is how the constraints of

sharing impose trade-offs in entropy; for each J, 99 |

we simply define these gradients to have names: 50 =7
V.N

0S P

Vipy T

The dependence of S is then just a notation:
N

1 p 14 ON
0S5 = T5U+ T(SV T&N U,V



—ntropy maximization across a shared quantity
equalizes intensive state variables

Max total entropy:  §(S; +52) =0
051 055

Each entropy Is constrained: = 8—U15U1 " an, oUsy + . ..
0S7 0SSy
But they must share: =
Y U, U, oU1 +
* And these have names: I N P
KAy

All this is standard and familiar, but it sets up a frame. ..



-rom constraints to independence, In 2 steps:
. maximizing against a constraint

Maximizing entropy subject to a constraint (general):
P P
L=5-p (Zpin’_U> — 1 (Zpi—l)
1=1 1=1

Resulting probabilities are just exponential:

D = 6—[1+77+5_H7;] _ i_e—BHi
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-rom constraints to independence, In 2 steps:
l; Independence of internal variables given the bdry

- A marginal large-deviations function only for internal
fluctuations of probabillity is obtained by fixing boundary
values of the extensive state variables

L—BU —logZ = — Zpﬂog( ) (21%1)

But remember Stirling’s formula and the factorials:
This says internal fluctuations behave like random
samplex conditioned only on the boundary constraint

Py~ () (7, ) ST

1=1



The concept of phase transitions

»+ Changes in the part of the “structure” factor in LD scaling
that controls macrostates

- Competitions for entropy iInduce phase transitions

- The idea of the order parameter and its role with respect
to iInformation



—xample: a simple model of a magnet

* The counting
(combinatorial) factor s2 = +1

comes only from spin E 3 @
configurations I , o
PN

- Each configuration
requires energy to reach;
aligned configurations N

. € €
require less H = 5T N <Z> $;S; — h;si
1,] 1=

 Configurations requiring more energy are exponentially more improbable (we
will say why in a moment)

—

p(S) X 6—H(§’)/kBT



—ntropy all the way down: thermal probability
weight factors are just Large-Deviation probabillities

* The exponential weight function (called a “Boltzmann factor”) itself is just a
large-deviation function for fluctuations of the surroundings to give up enough
energy that the system can reach a particular state

—

p(S) X 6—H(§’)/kBT

 Resulting probability density competes combinatorics in the system’s and the
environment’s states, connected by the constraint of energy conservation

Will walk you through how that happens,
and introduce the idea of thermodynamic
effective potentials




Remember the large-deviations form we computed
for the combinatoric part of the two-state system

1 6 1 252 1 1e+29 1 1.17e+149
P 4 (1) 100 500
.7 T N
/ ® \
SN 3 (4)
e \ |
| 2 (6) % »
/

n 2
| will call this the “system” Count(n ‘ N) — N ~ 9V _e—QN(W_%)
Large-Deviation function TN  ccale structure
In the next slide



First notice how we separate scale from structure
N defining aggregate variables

Remember that the microscopic Hamiltonian was:
€ € N
H: —5 — N;SZSJ _hzlsz
1,7 1=

Introduce descaled counting variables:

(structure)

T = 22 o 1 magnetization

N (relative to system size)

-+ Then the Hamiltonian separates scale/structure

H(5) = —N (hx + ga;?)

scale structure



Structure changes are governed by a Large-
Deviation function called the Effective Potential &

_ 5N , € o —H(3)/kgT _ —N&®(z)
=2 —1 H :—N(h —2> S)e —
o N (S) v —I_ 2 v Z pO( ) scale structure
(structure) scale structure §’| T

system LDP environment LDP eff. potential LDP

sereSeSeles
B N
e %%

eSS SESTES P

0.4 -1
1 hx € xr?
» Competition between system b(x) ~ { 2 | (1 ) 2 4 _}
and environment combinatorics 2 kgl kT 6
for the distribution of energy system environment

LDP LDP



Order Parameters, Sufficient Statistics, and
INnference

- An order parameter is a property of structure in a
macrostate brought into existence by a phase transition

- The macro-world is built from the order parameters of
robust states

- The “systems” in which order parameters are organized
(groups, geometries, etc.) characterize kinds of order

- A suggestion: the emergence of individuality in biogenesis
was (1 or more) phase transition(s) for which the order
parameters brought into existence are proper names

(Fun: Bertrand Russell, “On Denoting” 1905 Mind 14:479-493)



An example: what new kind of information exists
when the magnet goes into an ordered phase?

. . N1 N
Prgbabll|ty for some particular P(s; =1]|n) = ( ) ) / ( ) —
spin to have value +1 n—1 n

e

Probability for two chosen spins each to have value +1

P(51:1,52:1|n):<JZ:§>/<JZ>:£E?V—_11))

= P(s1 = 1,| n) P(s2 = 17‘”){1+O(%>}

Magnetization as a measure of the state of order: n = (u+ N) /2

Details become independent of each other beyond their dependence on the

mean 1
Plsi = 1isa = 111 = Plsy = L) Plsz = 1| {1+ 0( )}



Asymptotically optimal error correction Is a large-
deviations result

- Concepts from block encoding: error probability,
message expansion factor, and correlation length

-+ The Shannon proof of asymptotically reliable message
transmission is a large-deviation result
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Block encoding and asymptotically reliable
communication in the presence of noise

_ Horse: AA
Suppose we want to send any of 4 messages: Mule: An
Hinny: aA

* Without error correction:
Donkey: aa

- Can encode them as two “bits” sent in Horse

d sequence
Represent +
©

AA S

- Under transmission with noise, bit Transmit
errors produce message errors + Interpret
Mule
. _ Mule
- Adding redundancy to reduce errors: AAas Aaaa
AAaA Aaa
AARa. aA Aaa ddaa k
- Same messages, encoded by an  Horse ||LS Donkey
. . A
expansion of 2 bits to 4 AAAR AIAR g
aaAa
.aAAA aaAA

Hinny



The Intensive and Extensive state variables of a
block code

- Iwo properties of our block code can take the same form
for any block length:

- The flip probabiilty per symlol

- The expansion factor (how many bits used per letter)
- One property defines a “scale” of the code:

- The length of encoding blocks

- These are respectively intensive and extensive variables



The Shannon sphere-packing proof of Asymptotically
Reliable Error Correction (AREC) at finite noise

-+ Two steps to understand:

- Why increasing block length at fixed expansion factor
can decrease the probability of error

- Why this has a limit of perfect reliability at infinite block
length but fixed expansion factor



Concept of correlation length in a code: filtering
un-caught residuals in longer blocks

* In a message represented as a sequence of letters, | can send a 2x-
expanded message for bit-blocks of increasing length

1 — 2 2 —4 |2 =

» Continuous-valued versions of the same idea exist, using sphere-packing
In increasingly high “dimensions” A




he concept of the “capacity” of a channel:
—xample using the Shannon sphere-packing code

- How many message spheres can you fit within the power budget of your signal,
leaving room for one noise-ball around each message?

Fill D-bit code space with maximally

(P+ N)
distant spheres

Signal

strength

D ([Z;]J;)]D <P+N>

Channel capacity per symbol transmitted

1 P+ N
= —1
C 2og< N )




AREC is a Large-Deviations result, with block
length as scale and capacity as rate function

- To show that error probabillity is bounded, send slightly
fewer words, spaced at /D (IV + ¢)

- Rate of transmission is then given by: Strengy
1 N+ P €
— ] ~(C _
Re =5 log ( N +e ) €~ 9N

Probabllity of any mis-decode is
orobabillity a signal is driven further apart than

1 o0
P(f 4+ +2h>D(N+0) = o / . )duuw/z—we—u

D —De/2N __ €_D(C R )

(uz(l/QN)Zz?) ~ € cale structur



Large-deviations formulae for non-equilibrium
Systems

- The shift from ensembles of states to ensembles of
histories

- A simple example with a path entropy that is not the
equilibrium entropy

- Some lllustrative examples from population processes



'om States to Histories:
ne Entropy concept is still the same one

- The most important message:

Entropy Is defined relative to distributions and aggregation
We haven’t said which entropy until we have said which distribution

- This doesn’t change if we pass from equilibrium to
dynamical systems

Equiliorium <-> ensembles of states

Dynamics <-> ensembles of histories



A model of a non-equilibrium
phase transition mimicing metabolism

€ d _
QE\A 2 d—?:e—kgn—l—kan—kln?’

k1 B B
A Pape(F | 22) ~ e P00

Effective potential for excursions

0.02 0.02 ‘
/ 2N + K1N
0.015 ; d(n) :/ dn log< iy
| i € n
0.01 0 1
0.005 |\
e | .0.02
©
-
-0.005 | -0.04 | |\
P . T N o ol N S
.0.06 |
.0.015 |
0.02 -0.08 |
0 0.2 0.4 0.6 0.8




Population processes: examples from Evolutionary
Game Theory where collective effects matter

- A whole class of problems in neutral evolution and

economic theory (Hahn paradox) where the order of [imits
seems to produce ambiguous results

- These are all “fragile” in the mechanical (microscopic)
iInterpretation

- The right answer is that fluctuation effects, which remain
robust, take the place of naive regulators as the naive
regulators become weak



Repeated PD: entropy corrections and “free
fitness” when fithess has w/ neutral directions

Classical repeated prisoners’ dilemma: R S

Move “C” strictly dominated in 1 round a] = [ T P ] I'>R>P>S
Repeated game; R S R

3 strategies, allC, allD, Tit-for-tat; lal=| T P P+ erp

payoffs take on a neutral boundary axis R P+esp R




The naive infinite-population limit gives the wrong
answer

Large-population with limited mutation introduces a few
“police” to disginguish naive from defensive cooperators

- This differs from the naive answer at O(1)



Rock-Paper-Scissors: continuous symmetry
breaking In a discrete-state system

What protects the limit cycle?
Spontaneously broken symmetry is time
translation, not a spatial symmetry

time
[\

State space has only 3-cycle discrete symmetry,
but dynamics takes continuous limit cycle



Quantitative argument that translation of proteins
must not have been 1-1o-1

Collective evolution and the genetic code

Kalin Vetsigian*, Carl Woese'*$, and Nigel Goldenfeld**

10696-10701 | PNAS | July 11,2006 | vol. 103 | no.28 www.pnas.org/cgi/doi/10.1073/pnas.0603780103
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Does understar

ding the origin and persistence of

ife depend on t

nese ideas”?



A fundamental question & a seeming paradox
of the robust Biosphere

e Matter continually cycles; entities always break down
Yet the defining patterns of life have persisted for ~4 Ga

KX
* The most ephemeral entities (small metabolites) carry the most durable %)
patterns (core-metabolic network roles) :

* Intermediate scales are intermediate: R :«‘—"/
Cells and organisms (103-10%s) carry organizational architecture
Populations of genomes carry species identities (~10° years)

» This order spontaneously displaced the order of a non-living Earthe$ -4

- First emergence was quick (<10° years?), and seems “irreversible”



Take-home thoughts

- Scale/structure separation (LDS) gives us a formal way
and guantitative tools to think about the transition from
particularity to indefiniteness

- Thermodynamics is not about heat — it is an application
of combinatorics originally to problems in mechanics

- The extension beyond equilibrium and beyond
mechanics involves technical challenges and new Kinds
of organization, but not philosophical problems



