
Why is there a macro-world? 
Large-deviations scaling and its connection to macrostates 
and robustness



Purpose of this lecture

• The concepts of micro-world and macro-world in 
equilibrium thermodynamics are well known 

• Less well-known is how to separate these notions from 
their historical roots in physical mechanics, and to treat 
them in a pure form 

• Goal today: emphasize the concepts of micro and macro, 
and what we know about emergence in these terms 

• We can then readily extend to non-equilibrium, problems 
of inference, and much more



The difference between “micro-worlds” and 
“macro-worlds”

• (For the purpose of this talk) . . . 

the concept of a micro-world isn’t about being small,  
it is about being particular  
in reference to the parts and their assembly



In Mechanics

• “Newtonian Clockwork” 

•                                            Super-complex design/debugging 

• The Spandrels of San Marco



In Biology

• Bacterial cell: 
1 genome, small-numbers regulatory enzymes 

• 1-2-4-6 ploidy qualitatively changes how organisms 
function and how they evolve 

• C. elegans (herm) 959 cells (male) 1031 

• n-pods 

• Reliable translation (1 gene -> 1 enzyme)

microbewiki.kenyon.edu

http://microbewiki.kenyon.edu


In Communication and Computation

• Design errors in specific relations 

• Price and energy devoted to correction  
against operations errors



Macro-worlds come from indefiniteness

• The thing that makes a macro-world “macro” is 
indefiniteness: the ability to take well-defined structure, 
dynamics, or properties with an indefinite composition of 
either counts or detailed relations among components 

• We should not take it for granted that macro-ness is even 
possible 

• With some experience, it should become striking that the 
actually-realized macro-worlds are rare compared to their 
possibilities, even moreso than for micro-worlds



In Mechanics or Materials

• Ammonia MASER 

• Materials properties 

• Working fluids etc.



In Evolutionary Dynamics

• Genetics concept of an adapted population is inherently 
a statistical one www.slideshare.net/eserrelli

http://www.slideshare.net/eserrelli


In Communication and Computation

• Error-correcting codes 
(e.g. Reed-Solomon on CD/DVD) 

• von Neumann redundant logic gates



Introduction to Large-deviations scaling  
and the entropy

• Some examples 

• How the entropy comes from counting and large-
deviations scaling 

• The general characteristics shared by large-deviations 
limits



Binomial distributions and the convergence to 
Gaussian limiting distributions
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The multinomial, Stirling’s formula, and the Gibbs-
Shannon entropy

• Stirling approximation for logs: 

• Multinomial for counting: 

• Shannon entropy: 
 
 
notice: 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The general characterization of  
Large-Deviations scaling

• The separation of scale from structure in fluctuation 
probabilities under some process of aggregation 

• Recall the binomial and its Gaussian limit
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A good introduction:
H. Touchette, The large deviation approach to statistical mechanics, 
Phys. Rep. 478, 1-69, 2009. 
arxiv:0804.0327 

scale structure

Pfluct ⇠ e�NS

http://arxiv.org/abs/0804.0327


The two main claims for this lecture: 
Large-Deviations Scaling (LDS) and macro-worlds

• The kind of separation of scale from structure seen in 
LDS is the concept we need to characterize macro-
worlds 

• Many (all?) real instances of the emergence of macro-
worlds are formalized as cases of LDS



How aggregate fluctuation laws give rise to 
classical thermodynamics

• Extensive state variables: origin, roles, and meaning 

• The equation of state starting from the right end 

• How fluctuation theorems recover  
classical thermodynamic laws 

• Why historically we started with  
conservation of energy, but why  
conceptually it is not the best way



Extensive State Variables:  
scalable arguments to the Entropy function

• The values of limiting quantities determine what “volume” 
or “measure” of states can be reached by a system 

• When the states are achieved as combinations of 
elements made available by U, V, N, then state space 
volume will scale exponentially in these constraints, and 
entropy will scale in the same way as they do, defining 
extensivity 

• We write, then: S(U, V,N)



Roles of Extensive State Variables: 
Constraints of possibility and boundary interfaces

• Suppose multiple systems must  
share something: 

• Since, for each system,  

• The extensive state variables that are constraints also 
become interface properties at system boundaries

U = U1 + U2

V = V1 + V2

N = N1 +N2, etc.

Si = S(Ui, Vi, Ni)



Intensive State Variables:  
the gradients of the Entropy

• The most-likely fluctuation is (in this language, by construction) 
the one to a state that maximizes total entropy:  

• In multi-part systems, what matters is how the constraints of 
sharing impose trade-offs in entropy; for each i,  
we simply define these gradients to have names:  

• The dependence of S is then just a notation:
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Entropy maximization across a shared quantity 
equalizes intensive state variables

• Max total entropy: 

• Each entropy is constrained: 

• But they must share: 

• And these have names:
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All this is standard and familiar, but it sets up a frame . . .



From constraints to independence, in 2 steps: 
I: maximizing against a constraint

• Maximizing entropy subject to a constraint (general): 

• Resulting probabilities are just exponential: 

• The sum (Z) is related to the entropy and the constraint:
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From constraints to independence, in 2 steps: 
II: independence of internal variables given the bdry

• A marginal large-deviations function only for internal 
fluctuations of probability is obtained by fixing boundary 
values of the extensive state variables 

• But remember Stirling’s formula and the factorials: 
This says internal fluctuations behave like random 
samplex conditioned only on the boundary constraint
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The concept of phase transitions

• Changes in the part of the “structure” factor in LD scaling 
that controls macrostates 

• Competitions for entropy induce phase transitions 

• The idea of the order parameter and its role with respect 
to information



Example: a simple model of a magnet
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• The counting 
(combinatorial) factor 
comes only from spin 
configurations 

• Each configuration 
requires energy to reach; 
aligned configurations 
require less

• Configurations requiring more energy are exponentially more improbable (we 
will say why in a moment)
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Entropy all the way down: thermal probability 
weight factors are just Large-Deviation probabilities

• The exponential weight function (called a “Boltzmann factor”) itself is just a 
large-deviation function for fluctuations of the surroundings to give up enough 
energy that the system can reach a particular state


• Resulting probability density competes combinatorics in the system’s and the 
environment’s states, connected by the constraint of energy conservation

p(�s) � e�H(�s)/kBT

Will walk you through how that happens, 

and introduce the idea of thermodynamic

effective potentials



Remember the large-deviations form we computed 
for the combinatoric part of the two-state system

1 6

0

4

1   252

0

10

1 1e+29

0

100

0

1.17e+1491

500

count(n | N) =

�
N
n

⇥
� 2N

⇤
2

�N
e�2N( n

N � 1
2 )

2

scale structure

1

2

3
4

4

3

2

1

0

(1)

(4)

(6)

(4)

(1)

I will call this the “system” 
Large-Deviation function 
in the next slide



First notice how we separate scale from structure 
in defining aggregate variables

• Remember that the microscopic Hamiltonian was: 

• Introduce descaled counting variables: 

• Then the Hamiltonian separates scale/structure
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Structure changes are governed by a Large-
Deviation function called the Effective Potential
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Order Parameters, Sufficient Statistics, and 
Inference

• An order parameter is a property of structure in a 
macrostate brought into existence by a phase transition 

• The macro-world is built from the order parameters of 
robust states 

• The “systems” in which order parameters are organized 
(groups, geometries, etc.) characterize kinds of order 

• A suggestion: the emergence of individuality in biogenesis 
was (1 or more) phase transition(s) for which the order 
parameters brought into existence are proper names

(Fun: Bertrand Russell, “On Denoting” 1905 Mind 14:479–493)



An example: what new kind of information exists 
when the magnet goes into an ordered phase?
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Details become independent of each other beyond their dependence on the 
mean



Asymptotically optimal error correction is a large-
deviations result

• Concepts from block encoding: error probability, 
message expansion factor, and correlation length 

• The Shannon proof of asymptotically reliable message 
transmission is a large-deviation result



Being ordered & Correcting errors: 
Two names for the same thing



Block encoding and asymptotically reliable 
communication in the presence of noise

• Without error correction:


• Can encode them as two “bits” sent in 
a sequence


• Under transmission with noise, bit 
errors produce message errors


• Adding redundancy to reduce errors:


• Same messages, encoded by an 
expansion of 2 bits to 4

Suppose we want to send any of 4 messages: AA
Aa
aA
aa

Horse:
Mule:
Hinny:
Donkey:

Horse

AA Aa

Mule

AAa
Represent

Transmit
Interpret

Horse

Mule

Hinny

Donkey
AAAA

AAaA

AaAA

AAAa

AaaaAAaa

AaAa

AaaA

aAAA

aAaA

aaAA

aAAa

aaaaaAaa

aaAa

aaaA



The Intensive and Extensive state variables of a 
block code

• Two properties of our block code can take the same form 
for any block length: 

• The flip probabiilty per symbol 

• The expansion factor (how many bits used per letter) 

• One property defines a “scale” of the code: 

• The length of encoding blocks 

• These are respectively intensive and extensive variables



The Shannon sphere-packing proof of Asymptotically 
Reliable Error Correction (AREC) at finite noise

• Two steps to understand: 

• Why increasing block length at fixed expansion factor 
can decrease the probability of error 

• Why this has a limit of perfect reliability at infinite block 
length but fixed expansion factor



Concept of correlation length in a code: filtering 
un-caught residuals in longer blocks

• In a message represented as a sequence of letters, I can send a 2x-
expanded message for bit-blocks of increasing length


• Continuous-valued versions of the same idea exist, using sphere-packing 
in increasingly high “dimensions”
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The concept of the “capacity” of a channel: 
Example using the Shannon sphere-packing code
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AREC is a Large-Deviations result, with block 
length as scale and capacity as rate function

• To show that error probability is bounded, send slightly 
fewer words, spaced at  

• Rate of transmission is then given by: 

• Probability of any mis-decode is  
probability a signal is driven further apart than
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Large-deviations formulae for non-equilibrium 
systems

• The shift from ensembles of states to ensembles of 
histories 

• A simple example with a path entropy that is not the 
equilibrium entropy 

• Some illustrative examples from population processes



From States to Histories: 
The Entropy concept is still the same one

• The most important message:  
Entropy is defined relative to distributions and aggregation 
We haven’t said which entropy until we have said which distribution 

• This doesn’t change if we pass from equilibrium to 
dynamical systems 

• Equilibrium <-> ensembles of states 

• Dynamics <-> ensembles of histories



A model of a non-equilibrium  
phase transition mimicing metabolism
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Population processes: examples from Evolutionary 
Game Theory where collective effects matter

• A whole class of problems in neutral evolution and 
economic theory (Hahn paradox) where the order of limits 
seems to produce ambiguous results 

• These are all “fragile” in the mechanical (microscopic) 
interpretation 

• The right answer is that fluctuation effects, which remain 
robust, take the place of naive regulators as the naive 
regulators become weak



Repeated PD: entropy corrections and “free 
fitness” when fitness has w/ neutral directions
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The naive infinite-population limit gives the wrong 
answer

• Large-population with limited mutation introduces a few 
“police” to disginguish naive from defensive cooperators 

• This differs from the naive answer at O(1)
D C

T

D C

T



Rock-Paper-Scissors: continuous symmetry 
breaking in a discrete-state system
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State space has only 3-cycle discrete symmetry, 
but dynamics takes continuous limit cycle

What protects the limit cycle?

Spontaneously broken symmetry is time 
translation, not a spatial symmetry



Quantitative argument that translation of proteins 
must not have been 1-to-1
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x

W!!x#,s!x#, [3]

where the product is over all genome positions and !(x) is the
amino acid at position x.

Codon Usage. Since different positions belonging to the same site
type are phenotypically indistinguishable in the model, we can
describe the genome by the matrix {usc} that specifies the frequency
of codon c among sites of type s.

Genome Fitness. Accommodating the probabilistic nature of trans-
lation, we set the fitness of a genome to be the average of the
proteome fitness score over many translations, i.e., f % &A'. Since
translations of different codons are independent,
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Putting everything together and switching from codon sequence
to codon usage representation, we end up with
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Equilibration of Codon Usage. Given the matrix of mutational effects
{Fsc(code)}, defined above, what is the codon usage {usc} in an
asexual population of an infinite size and large genomes at a
mutation selection equilibrium? Mutational pressure is character-
ized by the matrix Mcc( specifying the probability that codon c will
mutate into codon c( in one generation. It is assumed independent
of the site type and genome position. Any mutational biases could
be incorporated in Mcc(. Here, we focus on equally probable single
nucleotide changes. In this case, M is specified by a single parameter
#, which is the probability for a mutation at a given site in one
generation. Following Sella and Ardell (24), the codon usage at a
site of type s is given by the eigenvector corresponding to the largest
eigenvalue of the matrix

Qcc(
!s# " Mcc(Fsc(. [6]

The matrix Q reflects the application of selection followed by
mutation.

The parameters of the model described above are Ns, the number
of site types; Na, the number of amino acids; the Na ) Ns matrix W;

and a vector {Ls}, specifying the relative frequencies of the different
site types, the mutation rate #, and the mistranslation rate $.

Model Dynamics. Now we consider an ensemble of populations
with different codes and present the dynamics.

1. There are N entities, each with its own genetic code aa(c) and
codon usage usc.

2. At each step an entity, the acceptor, and K random donor
entities are chosen at random. The acceptor codon usage is
updated according to the rule

&1 %
H
K $

k%1

k

Pk'usi &
H
K $

k%1

K

Pkusi
!k#3 usi, [7]

where usi
(k) is the codon usage of donor k, and pk is some measure

of the compatibility between the donor and acceptor codes
expressing the probability of acceptance. Here, we study the case
with no barrier to HGT of coding regions, i.e., pk % 1. H is the
fraction of the acceptor genome that is a mosaic due to HGT.

3. We attempt to change the code of the acceptor. We examine in
random order the possible elementary changes of the code until
we find one that is acceptable or exhaust all of the possibilities.
We accept a candidate change if it increases or at least preserves
the fitness, calculated by using the mosaic codon usage {usc} and
Eq. 5. An elementary code change reassigns a single codon to
a different amino acid.

4. We equilibrate the acceptor codon usage by finding the
eigenvectors corresponding to the largest eigenvalues of the
matrices Qs.

5. We repeat the cycle.

The CIP mechanism, which clearly facilitates universality (and
given enough time generically leads to universality), is factored
out from the simulations to concentrate on the code attraction
mechanism. Each evolving entity in the ensemble can be thought
of as a different ‘‘species’’ (or ecotype). While within each
species the evolution proceeds through invasions of code variants
with higher fitness, the different species are stable and their
number is fixed, thus blocking the CIP mechanism.

Results: Genetic Code Coevolution Toward Optimality
and Universality
We evolved ensembles of codes with and without HGT and
measured the time evolution of the average distance between codes

Fig. 1. Communal evolution toward optimality of 80
codes with (blue) and without (red) HGT of coding
regions. There is no barrier to HGT between different
codes. The initial conditions are the same for both runs.
Parameters: H % 0.4, ' % 0.99, # % 10*4, $ % 0.01. (A)
Time development of the average amino acid distance
between neighboring codons, a proxy for code optimal-
ity. (B) Probability distribution histogram of code opti-
mality for randomly generated codes. The horizontal
axis is the frequency with which a given code optimality
occurs; the vertical axis is the same as in A. (C) Time
development of the average distance between codes.

10700 ( www.pnas.org)cgi)doi)10.1073)pnas.0603780103 Vetsigian et al.

Collective evolution and the genetic code
Kalin Vetsigian*, Carl Woese†‡§, and Nigel Goldenfeld*‡¶

Departments of *Physics and †Microbiology and ‡Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
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A dynamical theory for the evolution of the genetic code is
presented, which accounts for its universality and optimality. The
central concept is that a variety of collective, but non-Darwinian,
mechanisms likely to be present in early communal life generically
lead to refinement and selection of innovation-sharing protocols,
such as the genetic code. Our proposal is illustrated by using a
simplified computer model and placed within the context of a
sequence of transitions that early life may have made, before the
emergence of vertical descent.

horizontal gene transfer

The genetic code could well be optimized to a greater extent than
anything else in biology and yet is generally regarded as the

biological element least capable of evolving.
There would seem to be four reasons for this paradoxical

situation, all of which reflect the reductionist molecular perspective
that so shaped biological thought throughout the 20th century.
First, the basic explanation of gene expression appears to lie in its
evolution, and not primarily in the specific structural or stereochem-
ical considerations that are sufficient to account for gene replica-
tion. Second, the problem’s motto, ‘‘genetic code,’’ is a misnomer
that makes the codon table the defining issue of gene expression.
A satisfactory level of understanding of the gene should provide a
unifying account of replication and expression as two sides of the
same coin. The genetic code is merely the linkage between these
two facets. Thus, and thirdly, the assumption that the code and the
decoding mechanism are separate problems, individually solvable,
is a reductionist fallacy that serves to deny the fundamental
biological nature of the problem. Finally, the evolutionary dynamic
that gave rise to translation is undoubtedly non-Darwinian, to most
an unthinkable notion that we now need to entertain seriously.
These four considerations structure the approach we take in this
article.

To this point in time, biologists have seen the universality of the
code as either a manifestation of the Doctrine of Common Descent
or simply as a ‘‘frozen accident.’’ Viewing universality as following
from common descent renders unthinkable the notion explored
here that a universal code may be a necessary precondition for
common ancestry, indeed even for life as we know it. We will argue
in this article [a maturation of the earlier concept of the progenote
(1)] that the very fact of the code’s evolvability, together with the
details of its internal structure, provides strong clues to the nature
of early life, and in particular its essential communal character (2).

Beyond the code’s universality we have very few clues to guide
us in trying to understand its evolution and that of the underlying
decoding mechanism. The principal ones again are properties of the
code itself; specifically, the obvious structure of the codon table.
The table possesses (at least) two types of order: synonym order and
relatedness order. The first is the relatedness of codons assigned to
the same amino acid; the second is the relatedness of codons
assigned to related amino acids. Relatedness among the amino
acids is context-dependent and in the context of the codon table
could a priori reflect almost anything about the amino acids: their
various properties, either individually or in combination; the several
macromolecular contexts in which they are found, such as protein
structure, the translation mechanism, and the evolution of trans-
lation; or the pretranslational context of the so-called RNA world.
Although we do not know what defines amino acid ‘‘similarity’’ in

the case of the code, we do know one particular amino acid measure
that seems to express it quite remarkably in the coding context. That
measure is amino acid polar requirement (3–5). Although the
relatedness order of the code is marginally evident from simple
inspection of the codon table (3, 4, 6–8), it is pronounced when
the amino acids are represented by their respective polar require-
ments (4).

A major advance was provided by computer simulation studies
(9–14) of the relatedness ordering of the amino acids over the
codon table, which showed that the code is indeed relationally
ordered and moreover is optimized to near the maximum extent
possible. Compared with randomly generated codes, the canonical
code is ‘‘one in a million’’ when the relatedness measure is the polar
requirement. No other amino acid measure is known to possess this
characteristic (14) (in our opinion, the significance of this obser-
vation has not been adequately recognized or pursued). These
precisely defined relatedness constraints in the codon table were
unexpected and still cry out for explanation.

As far as interpretation goes, the optimal aspect of the genetic
code is surely a reflection of the last aspect of the coding problem
that needs to be brought into consideration: namely, the precision
or biological specificity with which translation functions. Precision,
along with every aspect of the genetic code, needs to be understood
as part of an evolutionary process. We would contend that at early
stages in cellular evolution, ambiguous translation was tolerated
(there being no alternative) and was an important and essential part
of the evolutionary dynamic (see below). What we imply by
ambiguity here is inherent in the concept of group codon assign-
ments, where a group of related codons is assigned as a whole to a
corresponding group of related amino acids (3). From this flows the
concept of a ‘‘statistical protein,’’ wherein a given gene can be
translated not into a unique protein but instead into a family of
related protein sequences. Note that we do not say that these are an
approximation to a perfect translation of the gene, thereby implying
that these sequences are in some sense erroneous. Early life did not
require a refined level of tolerance, and so there was no need for
a perfect translation. Ambiguity is therefore not the same thing as
‘‘error.’’

The phylogenetic expression of ambiguity is reticulate evolution.
In reticulate evolution, there is no unique notion of genealogical
descent: genetic content can be distributed collectively. Accord-
ingly, as we now turn the emphasis away from the documentation
of the static features of the genetic code and toward their evolu-
tionary origins, we must necessarily invoke an evolutionary dynamic
distinct from that identified originally by Darwin. This dynamic can
be seen as a kind of biological game in which both the players and
the rules of play are unfamiliar, at least in the non-microbial world.
The players are cell-like entities still in early stages of their
evolutions. The evolutionary dynamic (the ‘‘rules’’) involves com-
munal descent. The key element in this dynamic is innovation-
sharing, an evolutionary protocol whereby descent with variation
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A dynamical theory for the evolution of the genetic code is
presented, which accounts for its universality and optimality. The
central concept is that a variety of collective, but non-Darwinian,
mechanisms likely to be present in early communal life generically
lead to refinement and selection of innovation-sharing protocols,
such as the genetic code. Our proposal is illustrated by using a
simplified computer model and placed within the context of a
sequence of transitions that early life may have made, before the
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translated not into a unique protein but instead into a family of
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ingly, as we now turn the emphasis away from the documentation
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Does understanding the origin and persistence of 
life depend on these ideas?



A fundamental question & a seeming paradox  
of the robust Biosphere

• Matter continually cycles; entities always break down  
Yet the defining patterns of life have persisted for ~4 Ga 

• The most ephemeral entities (small metabolites) carry the most durable 
patterns (core-metabolic network roles)


• Intermediate scales are intermediate:  
Cells and organisms (103-109s) carry organizational architecture 
Populations of genomes carry species identities (~106 years)


• This order spontaneously displaced the order of a non-living Earth


• First emergence was quick (<105 years?), and seems “irreversible”



Take-home thoughts

• Scale/structure separation (LDS) gives us a formal way 
and quantitative tools to think about the transition from 
particularity to indefiniteness 

• Thermodynamics is not about heat — it is an application 
of combinatorics originally to problems in mechanics 

• The extension beyond equilibrium and beyond 
mechanics involves technical challenges and new kinds 
of organization, but not philosophical problems


