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Abstract—We studied the stability of spiral waves in hom
geneous two-dimensional cardiac tissue using phase I of
Luo–Rudy ventricular action potential model. By changing t
conductance and the relaxation time constants of the ion c
nels, various spiral wave phenotypes, including stable, qu
periodically meandering, chaotically meandering, and brea
were observed. Stable and quasiperiodically meandering s
waves occurred when the slope of action potential dura
~APD! restitution was,1 over all diastolic intervals visited
during reentry; chaotic meander and spiral wave breakup
curred when the slope of APD restitution exceeded 1. Cur
ture of the wave changes both conduction velocity and AP
and their restitution properties, thereby modulating local sta
ity in a spiral wave, resulting in distinct spiral wave phen
types. In the LR1 model, quasiperiodic meander is most se
tive to the Na1 current, whereas chaotic meander and brea
are more dependent on the Ca21 and K1 currents. ©2000
Biomedical Engineering Society.@S0090-6964~00!00807-9#

Keywords—Reentry, Arrhythmias, Restitution, Stability, Elec
trophysiology, Simulation

INTRODUCTION

Ventricular fibrillation ~VF! is the single most com
mon cause of sudden cardiac death, yet its mechan
are poorly understood. Increasing evidence suggests
spiral waves, a generic property of excitable media, ar
major form of reentry underlying common cardia
arrhythmias.4,9,14 It has been conjectured11,14,25 that
monomorphic tachycardia may correspond to a station
anchored spiral wave, and polymorphic tachycardia t
meandering spiral wave. The clinical observation th
disordered VF is almost always preceded by ventricu
tachycardia~VT!38 raises the possibility that the trans
tion from VT to VF may correspond to spiral wav
breakup, in which an initiated single spiral wave~the VT
phase! breaks up after several rotations into multip
spiral waves~the VF phase!. In addition, clinical elec-
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trocardiographic recordings show a transition from ord
to disorder when VT degenerates to VF. This transiti
is analogous to the transition from order to chaos
generic nonlinear dynamical systems. Chaos in card
arrhythmias has been investigated by seve
authors.5,15,23,28,30,34,37Recent combined experimental an
theoretical evidence12,21,30 suggests that the transitio
from VT to VF may represent a quasiperiodic transiti
to spatiotemporal chaos.

Previous experimental and theoretical work has id
tified the restitution properties of action potential dur
tion ~APD! and conduction velocity~CV! as key param-
eters influencing the stability of cardia
arrhythmias.7,8,16,23,28,29,34,37APD restitution is generally
defined as the curve relating the present APD to
previous diastolic interval~DI!, the interval from the end
of the previous action potential to the next excitation

APDn115 f ~DIn!5 f ~CLn2APDn!5F~APDn!, ~1!

where CL is cycle length. Similarly, CV restitution i
defined as

CVn115g~DIn!. ~2!

@In the literature of excitable media,19 CVn115g(CLn)
was generally called the ‘‘dispersion relation.’’ Here w
prefer the term CV restitution because the term disp
sion is widely used by cardiologists in a different co
text, such as ‘‘dispersion of refractoriness.’’# It has been
shown in paced cells and in one-dimensional~1D! rings
that the equilibrium state loses its stability when t
slope of APD restitution.1, leading to complex dynam
ics, such as alternans and chaos.8,23,28,34,37In 2D cardiac
tissue models, numerical simulations7,16,29 showed that
spiral wave breakup was caused by steep APD res
tion. However, how restitution properties relate to t
various spiral wave behaviors is not well understood.

In this paper, we study spiral wave dynamics, t
transition to spatiotemporal chaos, and their relations
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756 QU et al.
to cardiac electrical restitution properties in a homog
neous 2D cardiac tissue, using phase I of the Luo–R
~LR1! ventricular action potential model.24

METHODS

The Cardiac Model

Cardiac cells are resistively connected by gap ju
tions between cells. Ignoring the detailed structure of
real tissue, we consider a homogeneous continuous
duction model7,16,29 in which:

]V/]t52I ion /Cm1D¹2V, ~3!

whereV is the transmembrane potential.Cm51mF/cm2

is the membrane capacitance, andD is the diffusion
constant determined by gap junction resistance, surfa
to-volume ratio, and membrane capacitance.7,29 We use
D50.001 cm2/ms. I ion is the total ionic current density o
the membrane from the LR1 model, which is:I ion5I Na

1I si1I K1I K11I Kp1I b . I Na5ḠNam
3h j(V2ENa) is the

fast inward Na1 current; I si5Ḡsid f(V2Esi) is the slow
inward current, assumed to be theL-type Ca21 current;
I K5ḠKxx1(V2EK) is the slow outward time-depende
K1 current; I K15ḠK1K1`(V2EK1) is the time-
independent K1 current;I Kp50.0183 Kp(V2EKp) is the
plateau K1 current; andI b50.03921(V159.87) is the
total background current.m, h, j, d, f, and x are gating
variables satisfying the following type of differentia
equation

dy/dt5~y`2y!/ty , ~4!

wherey represents the gating variable. The ionic conc
trations are set as@Na#i518 mM, @Na#o5140 mM,
@K# i5145 mM, @K#o55.4 mM, while the intracelluar
Ca21 concentration obeys

d@Ca# i /dt521024I si10.07~10242@Ca# i !. ~5!

Details of the LR1 action potential model were presen
in Table I of Luo and Rudy’s paper.24 By setting @K#o

55.4 mM, the maximum conductance ofI K and I K1 are
ḠK50.282 mS/cm2 and ḠK150.6047 mS/cm2. In Luo
and Rudy’s paper,24 ḠNa523 mS/cm2 and Ḡsi50.09
mS/cm2. In this paper, we changeḠNa, Ḡsi , and ḠK ,
and the relaxation time constantsty (y5m, h, j, d, f, x!
to create different spiral wave behaviors. Unless exp
itly stated either in the text or in the figure caption
parameter values are the same as specified in the orig
LR1 model. We will omit the unit of the channel con
ductance (mS/cm2) in the rest of this paper.
-

-

l

Numerical Simulation

We carried out numerical simulations of the isolat
cell, of 1D cable, and of 2D tissue. Here we specify t
numerical details for the simulations. To simulate
isolated cell, we integrated the following differentia
equation

dV/dt52~ I ion1I sti!/Cm , ~6!

where I sti is the external stimulus current pulse dens
we applied to the system. The duration of the pulse i
ms and the strength is240 mA/cm2 ~about two times
threshold stimulus strength!. We used a fourth orde
Runge–Kutta method to integrate Eq.~6! with a time
stepDt50.01 ms.

To simulate the effects of curvature, we used t
following 1D cable equation:

]V/]t52I ion /Cm1Dk]V/]x1D]2V/]x2, ~7!

wherek is the curvature. Equation~7! was adopted from
Zykov39 to study the effects of curvature on CV an
APD, and was used recently by Comtois and Vine6

Equation~7! was derived by Zykov for a stationary wav
with constantk.39 Equation~7! was integrated using the
conventional Euler method withDt50.005 ms andDx
50.015 cm.

For 2D simulation, the conventional Euler metho
was computationally too tedious and costly to integr
Eq. ~3!. We integrated Eqs.~3!–~5! using operator split-
ting and adaptive time step methods. We useDx5Dy
50.015 cm. The ordinary differential equations were
tegrated with a time step which varied from 0.005 to 0
ms, and the partial differential equation was integra
using the alternating direction implicit method with
time step of 0.1 ms. Details and numerical accuracy w
discussed previously.27

For simulation of an obstacle in the tissue, we ele
trically disconnected a circular area in the center of
tissue by setting the diffusion constant to zero~i.e., no-
flux boundary condition!, and used the same numeric
method to integrate the system.

Tip trajectories of spiral waves were traced using t
intersection point of successive contour lines of volta
corresponding to235 mV, measured every 2 ms. Th
intersection points of these successive contour lines fo
a tip trajectory. APD was defined as the duration duri
which V.272 mV, and DI as the duration during whic
V,272 mV. The resting potential of the LR1 model
around284 mV.

hashika1
Highlight



e-

cle

y
val

a

ng
a-
th.

es-
u-
ve

he
e

the
by
s

n
ve
u-
l-
ve
.

e

to
the

et
D.

ely
on

757Nonlinear Dynamics of Spiral Waves
Measurement of APD and CV restitution

APD restitution for single cell was measured by int
grating Eq.~6! with an S1-S2 protocol in whichS1 was
the steady state action potential during pacing at a cy

FIGURE 1. Effects of curvature on APD and CV restitution.
„A–C…: Schematic of a rectilinear „A…, convex „B…, and con-
cave „C… propagating wave. Arrows indicate the direction of
propagation. The curvature k of the rectilinear wave is zero.
We denote the curvatures of the wave front and wave back
of a convex wave to be positive, and those of a concave
wave to be negative. „D… and „E…: CV and APD vs k under the
following conditions: „D… control „ḠNaÄ16, ḠsiÄ0.02,
ḠKÄ0.423, DÄ0.001…; „O… with the maximal Na ¿ conductance
ḠNa reduced to 8 „ḠsiÄ0.035, ḠKÄ0.282, DÄ0.001…; „d… with
the diffusion coefficient D increased to 0.002. „F…: CV resti-
tution curves for rectilinear wave with kÄ0 „solid line …, a
convex wave with kÄ10 cmÀ1

„dotted-dashed line …, and a
concave wave with kÄÀ10 cmÀ1

„dashed line …. „G…: APD
restitution curves from a single cell „dotted line …, a rectilin-
ear wave with kÄ0 „solid line …, a convex wave with kÄ10
cmÀ1

„dashed-dotted line …, and a concave wave with kÄÀ10
cmÀ1

„dashed line … in 2D tissue. In „F… and „G…, ḠNaÄ16,
ḠsiÄ0.02, and ḠKÄ0.423.
length of 1 s, andS2 was delivered at progressivel
shorter coupling intervals scanning the diastolic inter
until refractoriness was reached.

To calculate APD and CV in tissue, we initiated
unidirectional wave in the 1D ring using Eq.~7!. APD
and CV restitution were obtained by reducing the ri
length until conduction failed. APD and CV were me
sured after 5–10 cycles of transient for each ring leng
When the slope of APD restitution was,1 everywhere,
the reentrant wave in 1D was stable, and the APD r
titution curve was single valued. When the APD restit
tion slope exceeded 1, however, the unidirectional wa
oscillated in a modulated alternans,8,18,35 yielding a
double-valued APD restitution curve~due to memory
effects arising from the alternating APD!. However, the
memory effect in our model is not very large, so that t
differences in the double-valued curve were small. W
therefore fitted a single-valued curve to represent
restitution properties, as was done previously
Courtemanche.8 In contrast, the CV restitution curve wa
single-valued for both cases.

RESULTS

Effects of Curvature on CV and APD Restitution

As noted in the Introduction, CV and APD restitutio
are known to be important determinants of spiral wa
stability. Since it is known that diffusive currents mod
late restitution properties significantly in addition to ce
lular ionic currents, we investigated the effects of wa
front/wave back curvature on CV and APD restitution

For a rectilinear wave@Fig. 1~A!#, the current flux
exists only in the direction of propagation~equivalent to
the 1D propagation case!. For either a convex or concav
wave @Figs. 1~B! and 1~C!, respectively#, CV and APD
are different from those of a rectilinear wave due
source-sink effects. For small curvature, there is
well-known eikonal relation19,39 for CV ~assuming DI is
sufficiently long not to limit Na1 current availability!

CV5CV02gDk, ~8!

where CV0 is the rectilinear wave velocity andg is a
constant. Figure 1~D! shows CV versusk, fitting to Eq.
~8! with g'0.9, for different values ofD and channel
conductance. A recent study by Comtois and Vin6

showed that curvature also had a strong effect on AP
In Fig. 1~E!, we plot APD versusk for our simulation of
the LR1 model. For small curvatures, an approximat
linear relation holds, analogous to the eikonal relati
Eq. ~8! for CV

APD5APD01bk, ~9!
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758 QU et al.
where APD0 is the action potential duration of the re
tilinear wave andb is a constant on the order of 1 ms c
for the data shown in Fig. 1~E!. In general, however, ou
numerical simulations indicate thatb andg are not con-
stants, but nonlinear functions of CL or DI, as was p
viously shown both analytically and numerically.6,26 Fig-
ures 1~F! and 1~G! show the numerically- calculate
effects of curvature on CV restitution and APD restit
tion curves for the LR1 model.

Electrophysiological and Dynamical Properties of Spir
Waves in the LR1 Model

Figure 2~A! illustrates a snapshot of a stable, period
~stationary! spiral wave, produced in the LR1 model b
altering the maximum conductance of Ca21 and K1 cur-
rents and clamping thej gate of the Na1 current to j
51. The pointsa–i indicate the locations of recordin
electrodes, with electrodea very close to the rotation
center of the spiral wave. Figure 2~B! shows the trans-
membrane voltage V at these electrode sites. Near
rotation center, there is no action potential. The volta
in the spiral core oscillates around250 mV, significantly
more positive than the usual resting potential~284 mV!.
The oscillation becomes larger further from the cent
with full action potentials forming in the spiral arm
Figures 2~C! and 2~D! showI Na andI K at electrodesb, c,
and h. At the rotation center, there is almost no Na1

current, but K1 current is present due to the partial
depolarized membrane potential in the core. Figures 2~E!
and 2~F! show the maximum voltageVmax, resting po-
tential, APD, and DI versus distance from the center
rotation. In the core, no APD and DI are measura
using our fixed voltage threshold272 mV. Immediately
outside the core,Vmax and DI increase with increasin
distance from the core, whereas resting potential
APD decrease. This is due to the high positive~convex!
curvature of the wave in this region, which, as sho
above, prolongs APD and suppresses CV. Further fr
the center, the effects of curvature disappear, andVmax,
resting potential, APD, and DI achieve nearly stable v
ues. Near the edge of the tissue, however, APD
creases and CV,Vmax, and V̇max increase due to the
no-flux boundary condition.

Nonstationary spiral wave phenotypes can be p
duced by allowing the Na1 current j gate to function
normally and increasingḠsi in the LR1 model, as illus-
trated in Fig. 3. Figure 3~A! shows tip trajectories of a
single spiral wave in a 6 cm36 cm tissue, forḠsi

50.02, 0.035, and 0.0395, and a snapshot for the cas
spiral wave breakup (Ḡsi50.052). AsḠsi increased, the
meander became more and more violent, and finally
ral wave breakup occurred@Fig. 3~A!d# creating complex
spatiotemporal patterns. In Fig. 3~B!, CL return maps
f

became progressively more complex, showing a tran
tion from quasiperiodicity to chaos. The maximu
Lyapunov exponent shown in Fig. 3~C! further demon-
strates a transition to chaos asḠsi increased. Throughou
the rest of the paper, we will refer to the spiral wave
Fig. 2 as a stable spiral wave, the spiral wave dynam
in Fig. 3~A!a andb as quasiperiodic meander, the irreg
lar dynamics in Fig. 3~A!c as chaotic meander, and th
dynamic behavior in Fig. 3~A!d as spiral breakup.

Nonlinear Dynamic Theory of Spiral Wave Stability

The major effect of increasingḠsi on APD restitution
is to steepen its slope~see the Appendix!. As first shown
by Karma16 and later by others,7,29 the APD restitution
slope is a controlling parameter governing spiral wa
phenotype. Here, we analyze the nonlinear dynamics
spiral waves with respect to restitution properties.

To study the stability of a spiral wave in 2D tissue, l
us first recall Zykov’s kinematic description.39 Figure
4~A! shows a schematic plot of arigid rotating spiral
wavesolution ~which can be eitherstableor unstableas
a solution! with a closed, circular tip trajectory.O is the
center of rotation,q is the spiral wave tip where the
wave front and wave back join, andQ denotes a specia
point at which the wave front has zero radial velocity.P
is a representative point in the spiral arm far away fro
the tip, where wave front and wave back curvature
small. Zykov observed that inside the circle traced byQ
~defined here as the spiral core, and the other part as
spiral arm!, propagation is ‘‘decremental’’ in the sens
that there is no active regeneration of action potentia
and propagation will eventually die out. Outside th
circle traced byQ, active propagation will continue in
definitely. Q is therefore the point that has the critic
curvature and CV at which active conduction fails.

We can numerically demonstrate Zykov’s kinema
argument in our cardiac model. We chose the parame
as in Fig. 2~A!, at which the spiral wave rotates period
cally with a closed, circular tip trajectory. We simulate
Eq. ~7! to calculate APD and CV for different curva
tures. Figures 4~B! and 4~C! show CV and APD restitu-
tion curves atk50 andk57 cm21, close to the maxi-
mal curvature of the spiral wave tip. The dashed lin
mark the smallest values of DI at which the wave w
propagate without failure at the two different curvature
The solid vertical line in Fig. 4~B! marks the CL of the
spiral wave in 2D tissue. This line intersects the cond
tion failure line at a point Q8 and intersects the zero
curvature CV restitution curve at another pointP8. We
compared calculated quantities such as APD, DI, CV,V,
etc., at Q8 and P8 in the 1D simulation to the sam
quantities atQ and P in the spiral wave~Table I!. They
are virtually identical. Note that sinceP8 is far away
from the critical point for conduction failure, there is a
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759Nonlinear Dynamics of Spiral Waves
FIGURE 2. Spiral wave properties. „A… Snapshot of a stationary spiral wave in a 3 Ã3 cm2 tissue. a–i mark recording sites, with
a near the rotation center of the spiral wave. „B… Membrane voltage recorded at sites a–i. „C… INa trace from electrodes b, c, and
h. „D… IK trace from electrodes b, c, and h. „E… Peak voltage „V max… and resting potential „RP… along an axis through the rotation
center. „F… APD and DI along an axis through the rotation center. Model parameters „stationary spiral regime …: ḠNa Ä16, ḠsiÄ0,
ḠKÄ0.423, and jÄ1.
n

gap

l

-

excitable gapahead of the wave front@all the points to
the left of P8 in Figs. 4~B! and 4~C!#, as opposed to the
point Q where the excitable gap iszero. The important
observations are:~1! the CL is selected by the rotatio
period of theQ point @Figs. 4~B! and 4~C!#; ~2! because
curvature changes along the spiral arm, the excitable
changes@Fig. 4~B!#; and ~3! the DI is different in differ-
ent parts of the spiral arm~Figs. 2 and 4!.

The spiral wavesolution in Fig. 4~A! can be a stable
spiral wave@Fig. 2~A!#, or it can be an unstable spira
wave, leading to meander or breakup~Fig. 3!. The sta-
bility of the spiral wave solution can differ locally, be
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760 QU et al.
FIGURE 3. The effects of the maximal C a 2¿ current conduc-
tance Ḡsi on spiral wave behavior. ḠNaÄ16, ḠKÄ0.423. „A…

Tip trajectories of spiral waves as Ḡsi increases from 0.02 (a)
to 0.035 (b) to ḠsiÄ0.0395 (c). For ḠsiÄ0.052 (d) a snapshot
of spiral wave breakup is shown in place of tip trajectory. „B…

CL return maps corresponding to „A…a–d. „C… Maximum
Lyapunov exponent l vs Ḡsi . Tissue size was 6 Ã6 cm2.
cause~1! the change in DI and excitable gap along t
spiral arm results in different local restitution properti
and tolerances to conduction failure; and~2! normal

FIGURE 4. Effects of curvature of the spiral wave on CV and
APD restitution. „A… Schematic plot of a spiral wave. O is the
rotation center, q is the spiral tip where wavefront and wave-
back join, Q is the point on the wave front tangential to a line
through the center of rotation O, P is a representative point
in the spiral arm, and w is the angle between line OP and the
normal direction of the wave front. „B… and „C… CV vs CL †in
„B…‡ and APD restitution †in „C…‡ for a convex wave (O,k
Ä7 cmÀ1

… vs a rectilinear wave with „D, kÄ0…. The critical
CL or DI below which propagation fails are shown by the
dotted lines. When a stationary spiral wave was initiated
using the same parameters „ḠNaÄ16, ḠKÄ0.423, ḠsiÄ0, and
jÆ1…, the CL was 34.5 ms, as shown by the solid lines. The
Q point of the spiral wave had a curvature kÄ7 cmÀ1,
where there is no safety margin for conduction „Q8…, unlike
the P region with kÄ0 „P8…, where there is a large excitable
gap at the CL selected by the spiral wave. As k decreases
along the arm of the spiral wave, the excitable gap progres-
sively increases „shaded areas ….
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761Nonlinear Dynamics of Spiral Waves
action potentials do not exist within the core region~see
Fig. 2!, the factors that govern core stability cannot
directly related to restitution. To analyze spiral wa
stability, we therefore consider separately the followi
three components: restitution-independent core stab
at the q region, restitution-dependent stability atP re-
gion, and restitution-dependent stability at theQ region.

Core (q Region) Instability and Quasiperiodic Meande
According to studies in generic excitable media, the tr
sition from a stable spiral wave to quasiperiodic mean
represents a Hopf bifurcation1,17,20 which arises from in-
stability of the spiral core~q region!.1,20 Therefore, if the
slope of APD restitution is everywhere,1, no instability
arises from the spiral arm~Q and P regions!, but a
transition to quasiperiodic meander can occur due to
core instability. An analysis similar to Barkley,1 to locate
where the instability starts, is beyond our present ca
bility because of the complexity of the LR1 model.
Fig. 5, we show CL for spiral waves in a 636 cm2 tissue
for Ḡsi50 and 0.02 to demonstrate the core instabili
In both cases, the slope of APD restitution is everywh
,1, although the slope progressively steepens withḠsi .
For Ḡsi50, the spiral wave meandered slightly. CL va
ied in the core but was nearly fixed in the arm@Fig.
5~A!#, indicating that the oscillation due to core instab
ity was gradually damped out along the arm. WithḠsi

50.02, the oscillation became larger in the arm@Fig.
5~B!#, and quasiperiodic meander of the tip increas
progressively. However, tip meander remained quasip
odic. This was true over the entire phase space ofḠsi

examined, as long as the slope of APD restitution
mained,1 everywhere.

P Region Stability and Spiral Wave Breakup.In the spi-
ral arm far away from the core, the curvature of wav
front and waveback is small, and therefore its stability
mostly determined by the APD restitution of the rec
linear wave as in Eq.~1!. If the system selects a CL a
which the slope of the APD restitution atP is ,1, then
this point is locally stable; if the slope.1, then it is
unstable. If the slope is.1 over a large range or CL i
short enough, the DI becomes short enough to ca

TABLE 1. Comparison of quantities at Q and P calculated
from the spiral wave in Fig. 2 „A… and the same quantities
calculated from Eq. „7….

DI
(ms)

APD
(ms)

CV
(m/s)

Vmax

(mV)
Vmin

(mV)
Vmax

(V/s)

Q 2.4 31.9 0.266 214.2 272.6 41.7
P 6.1 27.9 0.439 21.7 279.2 110
Q8 2.66 31.3 0.278 214.3 273.1 42.5
P8 6.2 27.8 0.435 21.3 279.2 112.9
conduction failure. This conduction failure causes wa
break and is essential for spiral wave breakup, as
cussed by Karma16 and Courtemanche.7

However, for a spiral wave to break up, conducti
block has to occur not everywhere, but only loca
within the spiral wave arm, which requires heterog
neous dynamical instability. We hypothesize that this
directly related to the effects of curvature on APD a
CV restitution, which excites spatial modes in propag
tion which, if unstable, can cause localized wave bre
Excitation of longitudinal spatial modes has been we
characterized in the 1D ring, as in the slow recove
front mediated conduction block analyzed b
Courtemanche.7 In 2D, however, not only the longitudi
nal modes but also spatial modestransverseto the di-
rection of propagation are excited if the tissue size
large enough. These new spatial modes make the o
lations in APD and CV in the spiral arm desynchronize
resulting in a dispersion of wavelength~the product of
APD and CV! in space.

To illustrate how these spatial modes develop, Fi
6~A! and 6~B! show the isovoltage contour lines of spir
waves asḠsi was progressively increased to gradua
increase the steepness of APD restitution. ForḠsi50
and 0.02, the contour of the iso-voltage lines is unifor
resembling Archimedean spirals with uniform wav
length, indicating no excitation of any transverse spa
modes. ForḠsi50.035 and 0.0395, the iso-voltage co
tour lines during activation remain Archimedean spira
but contour lines during repolarization have develope
wavy, scalloped appearance due to spatial nonuniform

FIGURE 5. Core instability as Ḡsi increases from 0 „A… to 0.02
„B…. CL variation is plotted as a function of the x coordinate
in 2D tissue. The spiral core is located where CL variation is
greatest, e.g., 2.6 cm in „A….
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762 QU et al.
FIGURE 6. Development of transverse spatial modes leading to spiral breakup. „A… and „B… Iso-voltage contour maps as
showing the development of spatial modes with increasing Ḡsi „and increasing APD restitution slope …. The dense lines are the
wave front. At ḠsiÄ0.035 †in „A…‡, scalloping of the wave back develops. At ḠsiÄ0.052 „B… both wave back and wave front
develop progressive scalloping, leading to wave break. Panels in „A… show snapshots at tÄ1s for different Ḡsi . Panels in „B…

show contour maps for ḠsiÄ0.052 at various times after initiation of the spiral wave. Model parameters: ḠNaÄ16, ḠKÄ0.423;
tissue size: 6 Ã6 cm2. „C… Development of transverse spatial modes „wave back scalloping … for reentry around an obstacle as
tissue size is increased. Model parameters „breakup regime …: ḠNaÄ16, ḠsiÄ0.052, ḠKÄ0.423.
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in APD, reflecting excitation of a transverse spatial
polarization mode. Finally, Fig. 6~B! shows snapshots a
various times after initiation of spiral wave withḠsi

50.052 ~in the spiral wave breakup regime for the LR
model!. At t5100 ms, a transverse spatial mode w
already beginning to be evident during repolarizatio
and by 210 ms, the iso-voltage contour lines during
tivation were scalloped. At5240 ms, these spatially
desynchronized oscillations in wavelength grew su
ciently large to result in localized wave break~at 10
o’clock in figure panel!, and two new daughter spira
waves were formed. This process repeated itself, prod
ing complex spatiotemporal patterns (t51000 ms!.

Besides steep APD restitution, the spatial modes a
need enough space to develop their characteristic wa
length, as in the development of spatial modes in ot
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FIGURE 7. Iso-voltage contour maps for a
chaotically meandering spiral wave, dem-
onstrating wave break at the Q region.
The dense lines represent the wave front.
Wave break due to head-to-tail interaction
can be seen at tÄ300 ms, 700 ms, and
1000 ms. Model parameters „chaotic me-
ander …: ḠNaÄ16, ḠKÄ0.423, ḠsiÄ0.052,
with Ca 2¿ kinetics sped up „td8Ä0.5td ,
t f8Ä0.5t f…; tissue size: 6 Ã6 cm2.
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spatial systems. Figure 6~C! shows the development o
these spatial modes versus the tissue size. With the s
size obstacle present to fix the spiral wave CL, a sm
piece of tissue does not have adequate room for
spatial modes to become manifest, compared to a la
piece of tissue@Fig. 6~C!#.

Q Point Instability and Chaotic Meander.Consider the
case in which APD restitution is shallow at long DI b
steep at short DI. Because curvature prolongs APD~see
Fig. 3!, this may result in a situation in which wav
break occurs atQ but not atP because the DI~and thus
excitable gap! in theP area is larger than in the area ne
the Q point. However, wave break at theQ point cannot
create new spiral waves, because there is no active
generative propagation on the side of theQ point facing
the core. Therefore, the spiral wave remains single,
its course is perturbed. Because the excitable gap at p
Q is zero, any expanding oscillation due to APD res
tution slope .1 causes wave break. This continuo
wave break atQ causesQ to choose a more comple
path in the tissue, resulting in complex meandering p
terns, which is the source of chaos in this system.

Wave break atQ cannot be visualized as clearly a
wave break atP points, where new spiral waves a
formed, but evidence of wave break can still be seen
snapshots of iso-voltage contour lines. Figure 7 illu
trates a chaotically meandering single spiral wave. W
beak at theQ point is indicated by head-to-tail interac
tions in the isovoltage contour lines, and can be clea
seen att5300 ms, 700 ms, and 1000 ms. Thus, AP
restitution curves with slope.1 only at short diastolic
intervals promote chaotic meander, but not break up7

Therefore, our analysis indicates that the spiral wa
dynamics in this cardiac tissue model are critically d
pendent on the cycle length selected by the system r
e

-

t

-

tive to restitution properties. The critical link betwee
APD restitution and spiral wave behavior is summariz
in Fig. 8~A!a–d. Here, the different APD restitution
curves ina–d correspond to the spiral wave phenotyp
shown in Fig. 3~A!a–d. The open symbols correspond
measurements in the 1D ring, and the solid symbols
the 2D spiral wave~with APD sampled in the dista
spiral arm where the wave is nearly rectilinear!. Note
that for a quasiperiodically meandering~in a and b! or
chaotically meandering spiral wave~in c!, the minimum
DI recorded during spiral wave reentry is larger than t
DI at which conduction fails in the ring. In contrast, i
the spiral wave breakup regime~in d!, the minimum DI
falls below the DI at which conduction fails in the ring
In addition, in the latter case the data points from the
spiral wave are scattered relative to the 1D restitut
curve of the ring, because the degree of wave curva
varies at the recording site. Figure 8~B! compares the
average cycle length~^CL&! of the spiral wave in 2D
tissue ~solid line! to both the ^CL& at which alternans
begins in the 1D ring~dotted line!, and the ^CL& at
which conduction fails in the 1D ring~dashed line!. Note
that for Ḡsi,0.039, the^CL& of the 2D spiral wave is
greater than thêCL& at which either alternans or con
duction failure occur in the 1D ring. For the 2D spir
wave, the transition from quasiperiodic meander to c
otic meander starts at aroundḠsi50.039 25, which is
very close to the intersection of the solid and dotted lin
at Ḡsi50.039. This is where the spiral wave^CL& first
becomes shorter than the^CL& at which alternans occu
in the 1D ring, corresponding to the point at which th
spiral arm becomes unstable. The transition from cha
meander to breakup occurs atḠsi50.044, close to the
intersection of the solid line with the dashed line
Ḡsi50.043. This is where the spiral wave^CL& becomes
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764 QU et al.
shorter than thêCL& at which conduction fails in the 1D
ring, corresponding in 2D to wave break in the spi
arm ~P region!. Therefore, if the average cycle length
the spiral wave is less than the average cycle length
conduction failure in the 1D ring, spiral wave breaku

FIGURE 8. Relationship between APD restitution and reentry
characteristics in 1D vs 2D tissue. „A… APD restitution in the
1D ring as its length is progressively shortening „open sym-
bols … vs APD and DIs visited during 2D spiral wave reentry
„closed symbols …, for quasiperiodically meandering spiral
waves „a: ḠsiÄ0.02, and b: ḠsiÄ0.035…; a chaotically mean-
dering spiral wave „c: ḠsiÄ0.0395…; and spiral wave breakup
„d : ḠsiÄ0.052…. These correspond to the spiral wave pheno-
types shown in Fig. 3 „A…a–d. The dotted lines show slope Ä1
for reference. „B… Average cycle length ŠCL‹ of the 2D spiral
wave as a function of Ḡsi „solid symbols and line …. This is
compared to the ŠCL‹ at which alternans begins in the 1D
ring „dotted line …, and the ŠCL‹ at which conduction fails in
the 1D ring „dashed line …. Inset shows a blowup of the region
where the solid line intersects the dashed and dotted lines
„indicated by arrows …: ḠNaÄ16, ḠKÄ0.423.
f

occurs, except when the slope of APD restitution
smaller than 1 everywhere.

Transition to Spatiotemporal Chaos.The chaotic dynam-
ics in the paced cell can be well understood by a n
linear shift map.23,34 The essential conditions are slope
APD restitution curve.1 and loss of 1:1 capture. Slop
.1 is necessary to create instability at a fixed point in
map, and the discontinuity caused by the lost of 1
capture makes the map noninvertible. In 2D spi
waves, this process is much more complex and it is
possible to use low dimensional maps to study it, but
believe that chaos is generated by essentially the s
mechanism, with the same requirements: an APD re
tution slope.1, and conduction failure. The mechanis
is as follows: when the slope of APD restitution becom
.1 at the Q point, oscillation due to this instability
causes conduction failure atQ and a newQ arises a
finite distance away. This conduction failure means t
at the place where theQ point failed to materialize, there
is no action potential in this cycle, so the too-short DI
added to the next DI. Because of restitution, this long
will elicit a longer action potential when the cell is fi
nally excited by the next wave. In other words, the AP
of the cell at the point whereQ failed to appear isshifted
discontinuously from a low value to a larger value, d
to the wave break. Although this process cannot be
scribed using a low-dimensional map as in the cell,
‘‘building blocks of chaos:’’ stretching, folding, and
reinsertion,32 can each be identified here. Stretching
created by the APD restitution slope.1 condition: it
assures that an interval will be mapped into a larg
interval, thereby stretching it. Folding~a many-to-one
relation! is created by the fact that due to conducti
failure, a too-short DI associated with conduction failu
summates with the next DI to give rise to a long AP
Reinsertion is produced by the reentry of the wave, ca
ing the cell to operate on the new APD and DI. If theQ
point is stable, this scenario cannot occur, because
folding element is eliminated~that is, there is no wave
break atQ!. Thus, the combination of a stableQ point
and unstableP point, as in one breakup regime in th
Karma model,16 produces breakup, but the excitation pa
tern recorded from any site in the tissue is periodic, n
chaotic. This is because wave break atP points produces
many newQ points, but they are all stable and assume
regular motion. In contrast, if bothQ and P points are
unstable, wave break occurs at both places; as m
unstableQ points form in the tissue, the chaos becom
globally spatiotemporal. Therefore, theQ point instabil-
ity is the critical factor for spatiotemporal chaos to occu
We have shown recently that spatiotemporal chaos
localized to the core region in a chaotically meander
spiral wave, while it becomes global in spiral wav
breakup in a tissue model with the LR1 kinetics.28
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FIGURE 9. Effects of modulating ionic current parameters on spiral wave behavior. „A… and „B… Spiral wave tip trajectories in ḠNa

ÀḠK parameter space for ḠsiÄ0 „A… and ḠsiÄ0.038 „B…. „C… and „D… Spiral wave behaviors in ḠNa ÀḠsi parameter space for
ḠKÄ0.423 and the Na ¿ channel j gate governing recovery from inactivation either functioning normally „C… or clamped to 1 „D…

to steepen CV restitution. For comparison of the meander range, tip trajectories are plotted on the same scale in each figure.
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The Ionic Currents Determining Spiral Wave Phenotyp
in the LR1 Model

We next verified that APD restitution slope is a robu
global parameter determining spiral wave phenotype,
that it is the general shape of the restitution curve, rat
than the details of which ionic conductance is manip
lated to produce that shape that matters.
,

Effects of Altering Maximum Channel Conductance.In
Figs. 9~A! and 9~B!, we setḠsi to produce either quasi
periodic @Ḡsi50 in Fig. 9~A!# or chaotic meander@Ḡsi

50.038 in Fig. 9~B!# and determined the effects of a
tering ḠNa and ḠK on spiral wave behavior, illustrate
by tracing the tip trajectories in theḠNa 2ḠK parameter
space. ForḠsi50 @Fig. 9~A!#, all initiated spiral waves
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FIGURE 10. The effects altering Na ¿, Ca2¿, and K ¿ current kinetics on spiral waves which are either quasiperidically meander-
ing „ḠsiÄ0.02 and 0.035 …, chaotically meandering „Ḡsi Ä0.042…, or in the breakup regime „ḠsiÄ0.05…. „A… Control „model param-
eters ḠNaÄ16 and ḠKÄ0.423…. „B… With Na ¿ current inactivation „m gate … slowed. „C… With Na ¿ current inactivation „h gate … sped
up. „D… With Na ¿ current recovery from inactivation „j gate … slowed. „E… With Ca 2¿ current activation „d gate … and inactivation „f
gate … sped up. „F… With K ¿ current activation sped up.
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meandered quasiperiodically, with their tips tracing o
very regular flower petal patterns. Decreasing either
K1 or Na1 conductance enhanced meander, and a
increased the average cycle length. Blocking K1 conduc-
tance also promoted meander, as noted previously33 in a
two-variable model. However, the important point is th
for Ḡsi50, APD restitution remains very shallow wit
slope ,1 throughout the range ofḠNa 2ḠK parameter
space examined, confining the behavior of spiral wa
to quasiperiodic meander. ForḠsi50.038 @Fig. 9~B!#,
changingḠNa or ḠK changed the spiral wave qualita
tively. Blocking K1 conductance converted a quasipe
odic meander to chaotic meander, and then to sp
breakup with fully developed spatiotemporal chao
However, this could be directly attributed to an increas
slope of APD restitution asḠK was reduced. In contras
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767Nonlinear Dynamics of Spiral Waves
blocking the Na1 conductance slowed the spiral wav
shifting the system to a longer DI where the slope
APD restitution is shallower, which tended to stabili
the spiral wave.

Effect of Altering Ionic Current Gating Kinetics.Simi-
larly, we examined the effects speeding up or slow
down the kinetics of the Na1, Ca21, and K1 currents on
the tip trajectories of spiral waves~Fig. 10!. We per-
formed simulations for spiral waves with the followin
phenotypes: quasiperiodic meander (Ḡsi50.02 and
0.035!, chaotic meander (Ḡsi50.042), and breakup
(Ḡsi50.05). Slowing activation of the Na1 current by
slowing them gate@Fig. 10~B!# changed the meanderin
pattern, and converted chaotic meander to quasiperi
meander. Speeding Na1 current inactivation by speedin
up the h gate @Fig. 10~C!# changed only the pattern o
meandering. Slowing Na1 current recovery from inacti-
vation by slowing thej gate, like slowing down them
gate, changed the meandering pattern and converted
otic meander to quasiperiodic meander. Thus, chang
the relaxation properties of the Na1 channel altered the
meandering pattern, and could facilitate the convers
of chaotic meander to quasiperiodic meander, but did
substantially change the breakup threshold, which
curred in all cases asḠsi50.05.

Accelerating Ca21 current kinetics by speeding up th
d and f gates @Fig. 10~E!# did not alter quasiperiodic
meander, but changed the pattern of chaotic mean
and converted breakup to chaotic meander, as found
viously in the Beeler–Reuter model.7 Although the maxi-
mum slope of APD restitution was increased by th
intervention, the range of DIs over which the slope e
ceeded 1 became narrower, accounting for the con
sion from breakup to chaotic meander~i.e., theP points
became stable due to the shallower slope at long D
whereas theQ area remained unstable due to the stee
slope at short DIs!.

Accelerating activation of the voltage-dependent K1

current by speeding up thex gate had no significan
effect on quasiperiodic or chaotic meander, and sp
wave breakup still occurred atḠsi 50.05.

Effects of Altering CV Restitution Steepness.As noted
earlier, whereas APD restitution is the major determin
of spiral wave stability~at the Q and P points!, CV
restitution is essential for the development of transve
spatial modes leading to wave break. To explore
effects of CV restitution on spiral wave behavior, w
clamped the Na1 current j gate ~j51!, which markedly
steepened CV restitution@see Fig. 12~B! in the Appen-
dix# without affecting APD restitution. Figures 9~C! and
9~D! compare spiral tip trajectories in theḠNa 2Ḡsi

parameter space with thej gate either functioning nor
-

,
-

-

,

mally or clamped, forḠK50.423. With thej gate func-
tioning normally @Fig. 9~C!#, increasingḠsi led to new
meandering patterns and eventually caused spiral w
breakup, as shown earlier in Fig. 3, consistent with
effect on steepening APD restitution@see Fig. 12~D! in
the Appendix#. With the j gate clamped@Fig. 9~D!#,
spiral breakup occurred much earlier and the meande
region became much narrower. Thus, thej gate is very
important for meandering in this model. We also did t
same simulation as in Fig. 9~A! ~a quasiperiodically me-
andering spiral wave! with the j gate clamped, and al
meandering spiral waves became stable~with a closed
circle tip trajectory! throughout theḠNa2ḠK parameter
space. CL length was shorter than with thej gate func-
tioning normally. Thus, fast recovery from inactivatio
of the Na1 current mediated by clamping thej gate
suppressed meander but promoted breakup. The reas
that the system selected a much shorter CL whenj gate
was clamped, but APD restitution was almost u
changed. Therefore, the spiral arm had a narrower ex
able gap, exposing it to shorter DIs where the AP
restitution slope was steeper. This promoted instabi
leading to wave break.

In conclusion, the effects of these modifications
ionic conductance in the LR1 model support the robu
ness of APD restitution steepness as a global param
determining spiral wave phenotype.

DISCUSSION

In this paper, we studied the stability of spiral wav
in a 2D homogeneous cardiac tissue using the L
model, a physiologically based representation of the c
diac ventricular action potential. Our main results a
~1! APD and CV restitution are largely determined b
cellular electrophysiologic properties, but are also mod
lated by diffusive currents.~2! Restitution properties are
the major predicators of chaos and spiral breakup. Q
siperiodic meander is determined by instability of t
spiral core. ~3! Through its effects on APD and CV
restitution, curvature results in a dispersion of the exc
able gap along the spiral arm, creating differences
local stability which account for the various forms o
spiral wave dynamics.~4! The excitation of spatial
modes in the wave is essential for producing localiz
wave break.~5! Localized wave break in the spiral arm
~P region instability! leads to breakup, but not necessa
ily chaos. Localized wave break in theQ area is respon-
sible for the onset of chaos.~6! Spatiotemporal chaos i
local in a chaotic meandering spiral wave~Q region
unstable,P region stable!, whereas it becomes globa
when spiral wave breakup occurs in the setting of co
bined Q and P region instability.~7! In the LR1 model,
the pattern of quasiperiodic meander is very sensitive
the Na1 current through its effects on CV restitution
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FIGURE 11. Possible spiral wave pheno-
types and their corresponding APD resti-
tution characteristics: „S… stable, „U… un-
stable, „U* … unstable without conduction
failure, „U** … unstable with conduction
failure, „QP… quasiperiodic. Dashed line
marks the cycle length of the spiral wave
solution of the system. Dotted line is the
reference line with unit slope. The panels
for APD restitution characteristics are
plotted similarly to Fig. 3 „C….
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while chaotic meander and breakup are more sensitiv
Ca21 and K1 currents through their effects on AP
restitution.

Various spiral wave behaviors have been studied
2D cardiac tissue models.7,16,29Karma,16 Courtemanche,7

and Quet al.29 showed that steep APD restitution wa
the cause of spiral wave breakup. Two major types
breakup were observed in these studies. One type
breakup occurred due to violent meander of the sp
wave producing a large dispersion of wavelength, res
ing in complex spatiotemporal chaos.7,29 The other type
was breakup in the spiral arm via expanding alterna
with the core stable,16 producing multiple, but relatively
periodic, spiral waves. By formulating spiral wave d
namics in terms of theq, Q, and P region stability, our
results account for both types of breakup, in addition
stationary behavior, quasiperiodic meander, and cha
meander. Breakup with chaotic dynamics reflects ins
bility at both Q and P regions, whereas breakup wit
periodic dynamics reflects a stableQ region and unstable
P region. Considering all possibleqQP stability/
instability combinations, our findings predict that at lea
six dynamically distinct spiral wave phenotypes are th
retically possible~Fig. 11!. We have demonstrated fou
f

of these in our simulations~stationary, quasiperiodic me
ander, chaotic meander, and globally chaotic breaku!,
and as mentioned above, a fifth phenotype~periodic
breakup! has been shown by others.16 The phenotypic
behavior of the remaining type is conjectured in Fig. 1
but remains to be verified.

Although spiral wave stability is mainly governed b
APD restitution, CV restitution is very important. In ad
dition to playing a key role in spiral wave initiation, CV
restitution is the origin of quasiperiodic motion as show
in the ring,8 and influences the excitable gap along t
spiral arm. Thus, CV restitution is directly responsib
for spatial oscillations in the spiral arm wave fro
which, together with spatial oscillations in the wav
back, cause wave break.

Given the increasing experimental evidence that sp
wave reentry may be an important mechanism in clini
arrhythmias,4,9,12,14our findings are relevant to strategie
to develop effective antiarrhythmic drugs. It has be
postulated that the degeneration from tachycardia to
brillation may represent a transition from a stationary
quasiperiodically meandering spiral wave reentry to c
otic meander, or breakup.12,14,25It is therefore reasonable
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FIGURE 12. Effects of altering ionic current parameters on CV and APD restitution. „A… CV restitution curves for different ḠNa
„maximal Na ¿ conductance …. „B… CV restitution with the j gate controlling Na ¿ current recovery from inactivation either func-
tioning normally „solid line …, clamped to 1 „dotted line …, or slowed down „dashed line …, for ḠNaÄ16. In both „A… and „B… ḠsiÄ0.02
and ḠKÄ0.423. „C… CV restitution for different ḠK , with ḠNaÄ16, ḠsiÄ0.02, showing the lack of effect of maximal K ¿ current
conductance on CV restitution. „D… Ca2¿ current effects on APD restitution. „solid line … control „ḠNaÄ16, ḠsiÄ0.052, ḠKÄ0.423…,
„dotted line … maximal Ca 2¿ current conductance Ḡsi reduced to 0.02; dashed line … with Ca 2¿ current activation and inactivation
sped up „td8Ä0.5td , t f8Ä0.5t f…. „E… K¿ current effects on APD restitution, „solid line … control „ḠNaÄ16, ḠKÄ0.423, ḠsiÄ0.052…,
„dotted line … maximal K ¿ conductance ḠK increased to 0.705. „F… Na¿ current effects on APD restitution „ḠsiÄ0, ḠKÄ0.423…,
„solid line … ḠNaÄ16; „dotted line … ḠNaÄ4.
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to explore whether antiarrhythmic drugs, that reduce
slope of APD restitution, may prevent this transition
real cardiac tissue~the restitution hypothesis!.38 Our
simulations provide further support for the idea that AP
restitution slope is quite robust as aglobal parameter
determining spiral wave stability, since the shape~i.e.,
slope! of APD restitution, rather than the specific mod
fications to ionic conductances required to produce t
shape, appeared to be most important. In the pre
study, we reducedḠsi as a convenient means of enhan
ing spiral wave stability, with the consequence that AP
was markedly shortened to;30 ms forḠsi50. Although
this is much shorter than physiological APD, we ha
previously shown that similar stable spiral wave dyna
ics were achieved by reducing the slope of APD rest
tion while maintaining APD at its baseline value.29 How-
ever, this required more complex changes to the L
t

model. We have also explored other ways of chang
the slope of APD restitution in the LR1 model and oth
kinetic models, and have consistently found that as lo
as the slope of APD restitution,1 everywhere, only
stable or quasiperiodic meandering spiral waves w
observed. Therefore, we believe that our conclusions
main valid in the case of normal, physiological APD.
addition, the results~summarized in Fig. 9 and 10! show-
ing how modifying kinetics and amplitude of variou
ionic currents affects spiral wave behavior provide
initial framework for identifying appropriate molecula
antiarrhythmic drug targets, which can be improved
physiologically more realistic cellular cardiac mode
and computational tractability become available.

Whether modifying restitution will be useful as a
antiarrhythmic strategy in the real heart remains to
demonstrated. In our simulations, the cardiac tissue
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2D, isotropic, and homogeneous, and the cellular mo
is still incomplete as a physiological representation.
contrast, real cardiac tissue is 3D, anisotropic, and b
electrophysiologically and anatomically heterogeneo
Nevertheless, the proclivity of spiral wave reentry, on
initiated in normal human ventricle, to degenerate
ventricular fibrillation is well established,3 and numerous
experimental studies10,22,37 show that APD restitution in
real cardiac tissue is typically steep enough~slope .1!
to produce the dynamic heterogeneity required for sp
wave breakup by the mechanisms outlined in t
study.38 The low incidence of spontaneous ventricu
fibrillation in the normal heart may be primarily attrib
utable to a much higher threshold for initiation of spir
wave reentry than to dynamic stability in comparison
the diseased heart. In addition, preliminary experimen
studies have now demonstrated that drugs which fla
APD restitution @e.g. verapamil, diacetyl monoxime,31

and bretylium13 are effective in preventing ventricula
fibrillation. Given the current stalemate over antiarrhy
mic drug development for preventing sudden card
death in the wake of the disappointing results of lar
scale clinical trials such as CAST2 and SWORD,36 a
restitution-based approach seems promising.
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APPENDIX: DETERMINANTS OF APD AND CV
RESTITUTION IN THE LR1 MODEL

APD and CV restitution are primarily determined b
the recovery kinetics and relative amplitudes of the io
currents. It is well known that the major determinant
CV is the Na1 channel ~Fig. 12!. In the LR1 model,
reducingḠNa decreased CV as well as the slope of
restitution curve. Slowing down thej gate did not affect
the maximum CV, but reduced the slope of the C
restitution curve. Conversely, clamping thej gate to its
maximum value of 1 made CV restitution steeper wi
out changing maximum CV@Fig. 12~B!#. Altering prop-
erties of other currents had little effect on CV restitutio
Courtemanche7 previously showed that the CV restitu
tion was virtually unchanged when he sped up the C21

channel in the Beeler–Reuter model, and here in F
12~C! we show that alteringḠK had no effect on CV
restitution.

In contrast, the major determinants of APD restituti
in the LR1 model are the Ca21 and K1 currents, with the
Na1 current having less important but appreciable
l fects. Figure 12~D! shows the effects of altering the Ca21

current parametersḠsi or td and t f on APD restitution.
ReducingḠsi shortened APD primarily at long DIs, an
thereby reduced the slope of the APD restitution. Red
ing td andt f also shortened APD at long DIs, but mad
the maximum slope larger. Figure 12~E! shows the ef-
fects of the time-dependent K1 current on APD restitu-
tion. IncreasingḠK decreased APD at long DIs but ha
little effect at short DIs~called the reverse use depe
dence by cardiologists!, so that the slope of APD resti
tution curve decreased. Figure 12~F! illustrates that al-
though its main influence is on CV restitution, the Na1

current also influences APD restitution~even though the
LR1 model does not formulate Na1 window currents!.
This effect is mediated by affecting the peak volta
reached during the action potentialVmax, thereby alter-
ing the degree of activation of the Ca21 current.29 In
addition to ionic conductances, electrical restitution pro
erties can also be modulated by changes in the intra
lular and extracellular ion concentrations.
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