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Abstract—We studied the stability of spiral waves in homo- trocardiographic recordings show a transition from order

ge”eousdt""o‘dimerl‘sm“a' cardiac tislsue dusling Phhase ' ththeto disorder when VT degenerates to VF. This transition
Luo—Rudy ventricular action potential model. By changing the . " .

conductance and the relaxation time constants of the ion chan-Is anglogous' to the tran,S'tlon from order to ,Chaos ,m
nels, various spiral wave phenotypes, including stable, quasi- 9€neric nonlinear dynamical systems. Chaos in cardiac

periodically meandering, chaotically meandering, and breakup arrhythmias has been investigated by several
were observed. Stable and quasiperiodically meandering spiralauthors>*>23.28:30343Recent combined experimental and
waves occurred when the slope of action potential duration thegretical evidendd 230 suggests that the transition

(APD) restitution was<<1 over all diastolic intervals visited from VT to VF may represent a quasiperiodic transition
during reentry; chaotic meander and spiral wave breakup oc- .
to spatiotemporal chaos.

curred when the slope of APD restitution exceeded 1. Curva- . . ) .
ture of the wave changes both conduction velocity and APD, ~ Previous experimental and theoretical work has iden-

and their restitution properties, thereby modulating local stabil- tified the restitution properties of action potential dura-

ity in a spiral wave, resulting in distinct spiral wave pheno- —tjon (APD) and conduction velocityCV) as key param-
types. In the LR1 model, quasiperiodic meander is most sensi- eters influencing the stability of cardiac
tive to the N& current, whereas chaotic meander and breakup arrhythmias7.'8'16’23'28’29'34*37APD restitution is generally
are more dependent on the Laand K" currents. ©2000 . .
Biomedical Engineering SocietjS0090-6964)0)00807-9 defln_ed as the_CI_Jrve relating th_e present APD to the
previous diastolic intervalDl), the interval from the end

. _ . of the previous action potential to the next excitation
Keywords—Reentry, Arrhythmias, Restitution, Stability, Elec-

trophysiology, Simulation
APD,,,=f(DIl,)=f(CL,—APD,)=F(APD,), (1)
INTRODUCTION

where CL is cycle length. Similarly, CV restitution is
Ventricular fibrillation (VF) is the single most com-  defined as

mon cause of sudden cardiac death, yet its mechanisms

are poorly understood. Increasing evidence suggests that CV,.,=g(Dl,) 2
spiral waves, a generic property of excitable media, are a ntl n
major form of reentry underlying common cardiac ) _
arrhythmiag®® It has been conjecturét4?® that [In the literature of exmtabl_e meqiﬁ,CVnﬂ:g(CLn)
monomorphic tachycardia may correspond to a stationary Vas 9enerally called the “dispersion relation.” Here we
anchored spiral wave, and polymorphic tachycardia to a Prefer the term CV restitution because the term disper-
meandering spiral wave. The clinical observation that sion IS V\;:dely“;sed b_y carfdlolfoglsts.m a d|LfereEt con-
disordered VF is almost always preceded by ventricular text, such as “dispersion of refractorinesIt has been

tachycardia(VT)%® raises the possibility that the transi- shown in paqu _ceIIs and in one-gjimensiq@) rings
tion from VT to VF may correspond to spiral wave that the equilibrium state loses its stability when the

breakup, in which an initiated single spiral waftke VT §Iope of APD resitutior>1, Ieadinggtﬁ ;"mp'ex dyn_am-
phase breaks up after several rotations into multiple ics, such as alternans and chads*****In 2D cardiac

; ; ; - 716,29
spiral waves(the VF phasg In addition, clinical elec-  {iSsué models, numerical simulatidri§2° showed that

spiral wave breakup was caused by steep APD restitu-

i, _ tion. However, how restitution properties relate to the
Address correspondence to: Zhilin Qu, Cardiovascular Research . iral behavi . t I derstood
Laboratory, MRL 3645, UCLA School of Medicine, 675 Charles E. various spiral wave behaviors 1s not well understood.

Young Dr. South, Los Angeles, CA 90095-1760. Electronic mail: In this paper, we study spiral wave dynamics, the
zqu@ucla.edu transition to spatiotemporal chaos, and their relationship
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to cardiac electrical restitution properties in a homoge- Numerical Simulation
neous 2D cardiac tissue, using phase | of the Luo—Rudy ) ) ) _ _
(LR1) ventricular action potential mod&f. We carried out numerical simulations of the isolated

cell, of 1D cable, and of 2D tissue. Here we specify the
numerical details for the simulations. To simulate an
METHODS isolated cell, we integrated the following differential

equation
The Cardiac Model

Cardiac cells are resistively connected by gap junc-
tions between cells. Ignoring the detailed structure of the
real tissue, we consider a homogeneous continuous con-
duction model*®2°in which:

dVidt=—(lignt1si)/Cp, (6)

where lg; is the external stimulus current pulse density
3) we applied to the system. The duration of the pulse is 2
ms and the strength is-40 wA/cm? (about two times
threshold stimulus strengthWe used a fourth order
Runge—Kutta method to integrate E() with a time
stepAt=0.01 ms.
To simulate the effects of curvature, we used the
following 1D cable equation:

VIdt=—1,,,/C,+ DV?V,

whereV is the transmembrane potenti&,,=1uF/cn?

is the membrane capacitance, abdis the diffusion
constant determined by gap junction resistance, surface-
to-volume ratio, and membrane capacitahfeWe use
D=0.001 cn¥/ms. |, is the total ionic current density of
the membrane from the LR1 model, which Ig;,=1na
Flgt It g+ g+ lp. Ina=GnamPhj(V—Eyy) is the
fast inward Nd current;l =Gy df(V—Eg) is the slow
inward current, assumed to be thetype C&" current;

lk=Gxx(V—E) is the slow outward time-dependent wherex is the curvature. EquatiofY) was adopted from

Kt current; Iq=GxK1.(V—Ex) is the time-  Zykov*® to study the effects of curvature on CV and
independent K current;l,=0.0183 K,(V—Ep) is the APD, and was used recently by Comtois and Vihet.
plateau K current; andl,=0.03921{+59.87) is the Equation(7) was derived by Zykov for a stationary wave
total background currenm, h, j, d, f, and x are gating with constantx.3® Equation(7) was integrated using the
variables satisfying the following type of differential conventional Euler method witht=0.005 ms andAx

VI t=—1gn/Cyt DkdVIdx+Da*VIax?,  (7)

equation =0.015 cm.
For 2D simulation, the conventional Euler method
dy/dt=(y..—y)/7y, (4 was computationally too tedious and costly to integrate

Eq. (3). We integrated Eq9.3)—(5) using operator split-
wherey represents the gating variable. The ionic concen- ting and adaptive time step methods. We use=Ay

trations are set agNal=18 mM, [Na],=140 mM, =0.015 cm. The ordinary differential equations were in-
[K],=145 mM, [K],=5.4 mM, while the intracelluar ~ tegrated with a time step which varied from 0.005 to 0.1
Ca* concentration obeys ms, and the partial differential equation was integrated

using the alternating direction implicit method with a
i 10-41 —4_ _ time step of 0.1 ms. Details and numerical accuracy were
d[Ca];/dt=—10 “14+0.0410 *—[Ca];)). (5 discussed previousfy.

For simulation of an obstacle in the tissue, we elec-
trically disconnected a circular area in the center of the
tissue by setting the diffusion constant to zére., no-
flux boundary condition and used the same numerical
method to integrate the system.

Details of the LR1 action potential model were presented
in Table | of Luo and Rudy’s papéf.By setting[K],
=5.4 mM, the maximum conductance kf andl, are

G¢=0.282 mS/crh and G, =0.6047 mS/crh In Luo

and Rudy's pape? Gy,=23 mS/cr and asi=209 Tip trajectories of spiral waves were traced using the
mS/cnt. In this paper, we chang€y,, G, and Gy, intersection point of successive contour lines of voltage
and the relaxation time constantg (y=m, h, j, d, f, x) corresponding to—35 mV, measured every 2 ms. The

to create different spiral wave behaviors. Unless explic- intersection points of these successive contour lines form
itly stated either in the text or in the figure captions, a tip trajectory. APD was defined as the duration during
parameter values are the same as specified in the originalwhich V> —72 mV, and DI as the duration during which
LR1 model. We will omit the unit of the channel con- V< —72 mV. The resting potential of the LR1 model is
ductance (mS/chy in the rest of this paper. around —84 mV.
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FIGURE 1. Effects of curvature on APD and CV restitution.
(A-C): Schematic of a rectilinear (A), convex (B), and con-
cave (C) propagating wave. Arrows indicate the direction of
propagation. The curvature  of the rectilinear wave is zero.
We denote the curvatures of the wave front and wave back

of a convex wave to be positive, and those of a concave
wave to be negative. (D) and (E): CV and APD vs « under the
following conditions: (A) control (Gp,=16, G=0.02,
G=0.423, D=0.001); (O) with the maximal Na * conductance
Gya reduced to 8 (G4=0.035, Gx=0.282, D=0.001); (®) with
the diffusion coefficient D increased to 0.002. (F): CV resti-
tution curves for rectilinear wave with k=0 (solid line ), a
convex wave with x=10 cm~! (dotted-dashed line ), and a
concave wave with k=—10 cm~! (dashed line ). (G): APD
restitution curves from a single cell (dotted line ), a rectilin-
ear wave with k=0 (solid line ), a convex wave with k=10
cm™! (dashed-dotted line ), and a concave wave with x=—10
cm™! (dashed line ) in 2D tissue. In (F) and (G), Gn.=16,

G4=0.02, and G,=0.423.

Measurement of APD and CV restitution

length of 1 s, and2 was delivered at progressively
shorter coupling intervals scanning the diastolic interval
until refractoriness was reached.

To calculate APD and CV in tissue, we initiated a
unidirectional wave in the 1D ring using E¢7). APD
and CV restitution were obtained by reducing the ring
length until conduction failed. APD and CV were mea-
sured after 5—10 cycles of transient for each ring length.
When the slope of APD restitution was1 everywhere,
the reentrant wave in 1D was stable, and the APD res-
titution curve was single valued. When the APD restitu-
tion slope exceeded 1, however, the unidirectional wave
oscillated in a modulated alternah¥® yielding a
double-valued APD restitution curv&due to memory
effects arising from the alternating ARPDHowever, the
memory effect in our model is not very large, so that the
differences in the double-valued curve were small. We
therefore fitted a single-valued curve to represent the
restitution properties, as was done previously by
Courtemanché.In contrast, the CV restitution curve was
single-valued for both cases.

RESULTS

Effects of Curvature on CV and APD Restitution

As noted in the Introduction, CV and APD restitution
are known to be important determinants of spiral wave
stability. Since it is known that diffusive currents modu-
late restitution properties significantly in addition to cel-
lular ionic currents, we investigated the effects of wave
front/wave back curvature on CV and APD restitution.

For a rectilinear wavdFig. 1(A)], the current flux
exists only in the direction of propagatidequivalent to
the 1D propagation cagd-or either a convex or concave
wave [Figs. 1B) and 1C), respectively, CV and APD
are different from those of a rectilinear wave due to
source-sink effects. For small curvature, there is the
well-known eikonal relatiof?3 for CV (assuming DI is
sufficiently long not to limit N& current availability

CV=CV,— yD«, (8

where C\{ is the rectilinear wave velocity ang is a
constant. Figure (D) shows CV versus, fitting to Eq.

(8) with y=0.9, for different values oD and channel
conductance. A recent study by Comtois and \inet
showed that curvature also had a strong effect on APD.
In Fig. (E), we plot APD versusc for our simulation of
the LR1 model. For small curvatures, an approximately
linear relation holds, analogous to the eikonal relation

APD restitution for single cell was measured by inte- EQ. (8) for CV

grating Eq.(6) with an S1-2 protocol in whichSl was
the steady state action potential during pacing at a cycle

APD=APD, + B«, 9)
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where APL) is the action potential duration of the rec- became progressively more complex, showing a transi-
tilinear wave andg3 is a constant on the order of 1 mscm tion from quasiperiodicity to chaos. The maximum
for the data shown in Fig.(E). In general, however, our  Lyapunov exponent shown in Fig(® further demon-
numerical simulations indicate thatand y are not con-  strates a transition to chaos @s; increased. Throughout
stants, but nonlinear functions of CL or DI, as was pre- the rest of the paper, we will refer to the spiral wave in
viously shown both analytically and numericafty® Fig- Fig. 2 as a stable spiral wave, the spiral wave dynamics
ures I1F) and XG) show the numerically- calculated in Fig. 3(A)a andb as quasiperiodic meander, the irregu-
effects of curvature on CV restitution and APD restitu- |ar dynamics in Fig. 8A)c as chaotic meander, and the
tion curves for the LR1 model. dynamic behavior in Fig. @)d as spiral breakup.

Electrophysiological and Dynamical Properties of Spiral Nonlinear Dynamic Theory of Spiral Wave Stability

Waves in the LR1 Model The major effect of increasinG on APD restitution
is to steepen its slopeee the Appendix As first shown
by Karma® and later by other§? the APD restitution
slope is a controlling parameter governing spiral wave
phenotype. Here, we analyze the nonlinear dynamics of
spiral waves with respect to restitution properties.

To study the stability of a spiral wave in 2D tissue, let

Figure ZA) illustrates a snapshot of a stable, periodic
(stationary spiral wave, produced in the LR1 model by
altering the maximum conductance of Caand K" cur-
rents and clamping th¢ gate of the N& current to |
=1. The pointsa—i indicate the locations of recording
electrodes, with electroda very close to the rotation ; T ; o ;
center of the spiral wave. Figurg® shows the trans-  US first recall Zykov's kinematic .dgscrlptltfﬁ.ﬁgqre
membrane voltage V at these electrode sites. Near the4(A) ShOW_S a sc.hematlc plot' of &gid rotating spiral
rotation center, there is no action potential. The voltage wave SQIUt'On(Wh'Ch can b_e elthes_table_or unsta_bleas
in the spiral core oscillates arouneb0 mV, significantly & Selution with a closed, circular tip trajectonyO is the

more positive than the usual resting potentiaB4 mV). center of rotation,q is the _spiral wave tip where the
The oscillation becomes larger further from the center, wave front and wave back join, ard denotes a special

with full action potentials forming in the spiral arm. pomt at which the wave f_ront has zero radial velocRy.
Figures 2C) and 2D) showl , andl  at electrodes, c, is a representative point in the spiral arm far away from
and h. R e e R - the tip, where wave front and wave back curvature are

current, but K current is present due to the partially smqll. Zykov observed Fhat inside the circle tracedQy
depolarized membrane potential in the core. Figuggg 2 (d€fined here as the spiral core, and the other part as the
and 2F) show the maximum voltag¥,.,, resting po- spiral arnj,. propagation is decre;mental in the sense
tential. APD, and DI versus distance from the center of that there is no active regeneration of action potentials,
rotation. In the core, no APD and DI are measurable 2"d Propagation will eventually die out. Outside the

using our fixed voltage threshold72 mV. Immediately gw:c:_le_ trlaced_by(rg], acftlve %ropagatlog erl]l conr:mue_ '.n'l
outside the coreV,,,x and DI increase with increasing efinitely. Q is therefore the point that has the critica

distance from the core, whereas resting potential and CUTvature and CV at which active conduction fails.
APD decrease. This is due to the high positicenvex We can numerlca_lly demonstrate Zykov's kinematic
curvature of the wave in this region, which, as shown argument in our cardiac model. We chose the parameters

above, prolongs APD and suppresses CV. Further from as in Fjg. 2A), at Whi?h the spiral wave rotates.periodi-
the center, the effects of curvature disappear, \dpgL, cally with a closed, circular tip trajectory. We simulated

resting potential, APD, and DI achieve nearly stable val- Eq. (7)F_t° calculate QPI?: ar;wd C\C/:\}‘or ?jifz\a;%m curva-
ues. Near the edge of the tissue, however, APD de- tures. Figures @) and 4C) show an restitu-

creases and CW and increase due to the tion curves atk=0 andk=7 cm 1, close to the maxi-
max: max mal curvature of the spiral wave tip. The dashed lines
no-flux boundary condition.

Nonstationarv spiral wave bhenotvoes can be pro- mark the smallest values of DI at which the wave will
y sp phenotyp P propagate without failure at the two different curvatures.
duced by allowing the N&a currentj gate to function

i = i The solid vertical line in Fig. @) marks the CL of the
normally and increasin@s; in the LR1 model, as illus-  gniral wave in 2D tissue. This line intersects the conduc-
trated in Fig. 3. Figure @) shows tip trajectories of @ ion fajlure line at a point © and intersects the zero-
single spiral waveri a 6 cnmx6 cm tissue, forGg; curvature CV restitution curve at another poRit We
=0.02, 0.035, and 0.0395, and a snapshot for the case ofcompared calculated quantities such as APD, DI, @V,
spiral wave breakupG=0.052). AsGg; increased, the etc.,, atQ’ and P’ in the 1D simulation to the same
meander became more and more violent, and finally spi- quantities atQ and P in the spiral wavgTable |). They

ral wave breakup occurrgdrig. 3(A)d] creating complex  are virtually identical. Note that sincB’ is far away
spatiotemporal patterns. In Fig.(B, CL return maps  from the critical point for conduction failure, there is an
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FIGURE 2. Spiral wave properties.
a near the rotation center of the spiral wave.
h. (D) I trace from electrodes b, ¢, and h. (E) Peak voltage (V max)

center. (F) APD and DI along an axis through the rotation center. Model parameters

G¢=0.423, and j=1.

excitable gapahead of the wave frorfiall the points to
the left of P’ in Figs. 4B) and 4C)], as opposed to the
point Q where the excitable gap ®era The important
observations are(l) the CL is selected by the rotation
period of theQ point [Figs. 4B) and 4C)]; (2) because

(A) Snapshot of a stationary spiral wave in a 3
(B) Membrane voltage recorded at sites

X (cm)

X3 cm? tissue. a—i mark recording sites, with
a—i. (C) Iy, trace from electrodes b, ¢, and
and resting potential (RP) along an axis through the rotation

(stationary spiral regime ): Gy, =16, G4=0,

changegFig. 4B)]; and (3) the DI is different in differ-
ent parts of the spiral arrfFigs. 2 and 4

The spiral wavesolutionin Fig. 4A) can be a stable
spiral wave[Fig. 2(A)], or it can be an unstable spiral
wave, leading to meander or break(fig. 3). The sta-

curvature changes along the spiral arm, the excitable gapbility of the spiral wave solution can differ locally, be-
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FIGURE 3. The effects of the maximal C a?* current conduc-

tance Gg on spiral wave behavior. éNa=16, G¢=0.423. (A)
Tip trajectories of spiral waves as  Gg; increases from 0.02 (a)

to 0.035 (b) to G4=0.0395 (c). For G,=0.052 (d) a snapshot
of spiral wave breakup is shown in place of tip trajectory. (B)
CL return maps corresponding to (A)a—d. (C) Maximum

Lyapunov exponent N vs Gg . Tissue size was 6 X6 cm?2,
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FIGURE 4. Effects of curvature of the spiral wave on CV and
APD restitution. (A) Schematic plot of a spiral wave. O is the
rotation center, g is the spiral tip where wavefront and wave-
back join, Qs the point on the wave front tangential to a line
through the center of rotation O, P is a representative point
in the spiral arm, and ¢ is the angle between line  OP and the
normal direction of the wave front. (B) and (C) CV vs CL [in
(B)] and APD restitution [in (C)] for a convex wave (O,k
=7 cm™?1) vs a rectilinear wave with (A, x=0). The critical
CL or DI below which propagation fails are shown by the
dotted lines. When a stationary spiral wave was initiated
using the same parameters (Gy,=16, G¢=0.423, G4;=0, and
j=1), the CL was 34.5 ms, as shown by the solid lines. The

Q point of the spiral wave had a curvature k=7 cm™ ",
where there is no safety margin for conduction (Q'), unlike
the P region with «=0 (P’), where there is a large excitable
gap at the CL selected by the spiral wave. As  k decreases
along the arm of the spiral wave, the excitable gap progres-
sively increases (shaded areas ).

1

cause(l) the change in DI and excitable gap along the
spiral arm results in different local restitution properties
and tolerances to conduction failure; ari@) normal
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TABLE 1. Comparison of quantities at Q and P calculated
from the spiral wave in Fig. 2 (A) and the same quantities
calculated from Eq. (7).

DI APD CcVv Vinax Vi Vinax

(ms) (ms) (m/s) (mV) (mV) (VIs)

Q 24 31.9 0.266 -14.2 ~72.6 41.7
P 6.1 27.9 0.439 -1.7 -79.2 110

Q' 2.66 31.3 0.278 —-14.3 -73.1 425

P’ 6.2 27.8 0.435 -13 -79.2 112.9

action potentials do not exist within the core regisee
Fig. 2), the factors that govern core stability cannot be
directly related to restitution. To analyze spiral wave
stability, we therefore consider separately the following
three components: restitution-independent core stability
at the g region, restitution-dependent stability Bt re-
gion, and restitution-dependent stability at Qeregion.

Core (g Region) Instability and Quasiperiodic Meander.
According to studies in generic excitable media, the tran-
sition from a stable spiral wave to quasiperiodic meander
represents a Hopf bifurcatibh’?°which arises from in-
stability of the spiral coréq region.?° Therefore, if the
slope of APD restitution is everywherel, no instability
arises from the spiral arntQ and P regions, but a
transition to quasiperiodic meander can occur due to the
core instability. An analysis similar to Barkléyto locate
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FIGURE 5. Core instability as Gg; increases from 0 (A) to 0.02
(B). CL variation is plotted as a function of the x coordinate

in 2D tissue. The spiral core is located where CL variation is
greatest, e.g., 2.6 cm in (A).

conduction failure. This conduction failure causes wave
break and is essential for spiral wave breakup, as dis-
cussed by Karmd and Courtemanche.

However, for a spiral wave to break up, conduction
block has to occur not everywhere, but only locally

where the instability starts, is beyond our present capa- ithin the spiral wave arm, which requires heteroge-

bility because of the complexity of the LR1 model. In
Fig. 5, we show CL for spiral waves in a@ cnt tissue

for Ggz=0 and 0.02 to demonstrate the core instability.
In both cases, the slope of APD restitution is everywhere
<1, although the slope progressively steepens With

For G4;=0, the spiral wave meandered slightly. CL var-
ied in the core but was nearly fixed in the affig.
5(A)], indicating that the oscillation due to core instabil-
ity was gradually damped out along the arm. W@k,
=0.02, the oscillation became larger in the affig.
5(B)], and quasiperiodic meander of the tip increased
progressively. However, tip meander remained quasiperi-
odic. This was true over the entire phase spaceésgf
examined, as long as the slope of APD restitution re-
mained<1 everywhere.

P Region Stability and Spiral Wave Breakujm the spi-

ral arm far away from the core, the curvature of wave-
front and waveback is small, and therefore its stability is
mostly determined by the APD restitution of the recti-
linear wave as in Eq(l). If the system selects a CL at
which the slope of the APD restitution & is <1, then
this point is locally stable; if the slope-1, then it is
unstable. If the slope i5>1 over a large range or CL is

neous dynamical instability. We hypothesize that this is
directly related to the effects of curvature on APD and
CV restitution, which excites spatial modes in propaga-
tion which, if unstable, can cause localized wave break.
Excitation of longitudinal spatial modes has been well
characterized in the 1D ring, as in the slow recovery
front mediated conduction block analyzed by
Courtemanché.In 2D, however, not only the longitudi-
nal modes but also spatial mod#snsverseto the di-
rection of propagation are excited if the tissue size is
large enough. These new spatial modes make the oscil-
lations in APD and CV in the spiral arm desynchronized,
resulting in a dispersion of wavelengtthe product of
APD and CV in space.

To illustrate how these spatial modes develop, Figs.
6(A) and 6B) show the isovoltage contour lines of spiral
waves asGg was progressively increased to gradually
increase the steepness of APD restitution. By=0
and 0.02, the contour of the iso-voltage lines is uniform,
resembling Archimedean spirals with uniform wave-
length, indicating no excitation of any transverse spatial
modes. ForG;=0.035 and 0.0395, the iso-voltage con-
tour lines during activation remain Archimedean spirals,
but contour lines during repolarization have developed a

short enough, the DI becomes short enough to causewavy, scalloped appearance due to spatial nonuniformity
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A G-=o0 0.02 0.035 0.0395
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A\ 7N z =4
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FIGURE 6. Development of transverse spatial modes leading to spiral breakup. (A) and (B) Iso-voltage contour maps as
showing the development of spatial modes with increasing ési (and increasing APD restitution slope ). The dense lines are the
wave front. At ési=0.035 [in (A)], scalloping of the wave back develops. At ési=0.052 (B) both wave back and wave front
develop progressive scalloping, leading to wave break. Panels in (A) show snapshots at t=1s for different ési. Panels in (B)
show contour maps for 55i=0.052 at various times after initiation of the spiral wave. Model parameters: §Na=16, §K=O.423;
tissue size: 6 X6 cm?. (C) Development of transverse spatial modes (wave back scalloping ) for reentry around an obstacle as

tissue size is increased. Model parameters  (breakup regime ): Gn,=16, G5=0.052, G,=0.423.
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in APD, reflecting excitation of a transverse spatial re- desynchronized oscillations in wavelength grew suffi-
polarization mode. Finally, Fig.(B) shows snapshots at ciently large to result in localized wave bredht 10
various times after initiation of spiral wave witty; o'clock in figure panel and two new daughter spiral
=0.052(in the spiral wave breakup regime for the LR1 Wwaves were formed. This process repeated itself, produc-
mode). At t=100 ms, a transverse spatial mode was ing complex spatiotemporal patterns<1000 ms.

already beginning to be evident during repolarization,  Besides steep APD restitution, the spatial modes also
and by 210 ms, the iso-voltage contour lines during ac- need enough space to develop their characteristic wave-
tivation were scalloped. A=240 ms, these spatially length, as in the development of spatial modes in other
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FIGURE 7. Iso-voltage contour maps for a

chaotically meandering spiral wave, dem-
\ onstrating wave break at the Q region.

The dense lines represent the_ wave frqnt.
700 ms 800 ms 900 ms 1000 ms Wave break due to head-to-tail interaction
can be seen at t=300 ms, 700 ms, and

1000 ms. Model parameters (chaotic me-
ander): Gy,=16, G¢=0.423, G4=0.052,
2 with Ca?* kinetics sped up (7,=0.574,
6 7;=0.57)); tissue size: 6 X6 cm?2.

spatial systems. Figure(®) shows the development of tive to restitution properties. The critical link between
these spatial modes versus the tissue size. With the samé\PD restitution and spiral wave behavior is summarized
size obstacle present to fix the spiral wave CL, a small in Fig. 8A)a—d. Here, the different APD restitution
piece of tissue does not have adequate room for thecurves ina—d correspond to the spiral wave phenotypes
spatial modes to become manifest, compared to a largeshown in Fig. 8A)a—d. The open symbols correspond to
piece of tissudFig. 6(C)]. measurements in the 1D ring, and the solid symbols to
the 2D spiral wave(with APD sampled in the distal
Q Point Instability and Chaotic MeanderConsider the spiral arm where the wave is nearly rectilineaote
case in which APD restitution is shallow at long DI but that for a quasiperiodically meanderirfon a and b) or
steep at short DI. Because curvature prolongs AB&e chaotically meandering spiral wav@ c), the minimum
Fig. 3), this may result in a situation in which wave DI recorded during spiral wave reentry is larger than the
break occurs a® but not atP because the D{and thus DI at which conduction fails in the ring. In contrast, in
excitable gapin the P area is larger than in the area near the spiral wave breakup regimie d), the minimum DI
the Q point. However, wave break at thg point cannot falls below the DI at which conduction fails in the ring.
create new spiral waves, because there is no active, redn addition, in the latter case the data points from the 2D
generative propagation on the side of fQeooint facing spiral wave are scattered relative to the 1D restitution
the core. Therefore, the spiral wave remains single, but curve of the ring, because the degree of wave curvature
its course is perturbed. Because the excitable gap at pointvaries at the recording site. FiguréB3 compares the
Q is zero, any expanding oscillation due to APD resti- average cycle lengtt(CL)) of the spiral wave in 2D
tution slope >1 causes wave break. This continuous tissue (solid line) to both the(CL) at which alternans
wave break atQ causesQ to choose a more complex begins in the 1D ring(dotted ling, and the(CL) at
path in the tissue, resulting in complex meandering pat- which conduction fails in the 1D ringdashed ling Note
terns, which is the source of chaos in this system. that for G¢<0.039, the(CL) of the 2D spiral wave is
Wave break aQ cannot be visualized as clearly as greater than théCL) at which either alternans or con-
wave break atP points, where new spiral waves are duction failure occur in the 1D ring. For the 2D spiral
formed, but evidence of wave break can still be seen in wave, the transition from quasiperiodic meander to cha-
snapshots of iso-voltage contour lines. Figure 7 illus- oic meander starts at arour@,=0.039 25, which is

trates a chaotically meandering single spiral wave. Wave ygry close to the intersection of the solid and dotted lines

beak at theQ point is indicated by head-to-tail interac- at asi:0.039. This is where the spiral wav€L) first

tions in the isovoltage contour lines, and can be clearly .
seen att=300 ms, 700 ms, and 1000 ms. Thus, APD _becomes shorter than tREL) at which alternans occur

restitution curves with slope>1 only at short diastolic n .the 1D ring, corresponding to the po_lnt at which thg
intervals promote chaotic meander, but not break up spiral arm becomes unstable. The transition from chaotic
Therefore, our analysis indicates that the spiral wave Meander to breakup occurs @i=0.044, close to the
dynamics in this cardiac tissue model are critically de- intersection of the solid line with the dashed line at
pendent on the cycle length selected by the system rela-Gg=0.043. This is where the spiral way€L) becomes
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FIGURE 8. Relationship between APD restitution and reentry
characteristics in 1D vs 2D tissue.  (A) APD restitution in the
1D ring as its length is progressively shortening (open sym-
bols) vs APD and Dis visited during 2D spiral wave reentry
(closed symbols ), for quasiperiodically meandering spiral
waves (a: G4=0.02, and b: G;=0.035); a chaotically mean-
dering spiral wave (c: G;=0.0395); and spiral wave breakup
(d: G4=0.052). These correspond to the spiral wave pheno-
types shown in Fig. 3 (A)a—d. The dotted lines show slope =1
for reference. (B) Average cycle length (CL) of the 2D spiral
wave as a function of Gg (solid symbols and line ). This is
compared to the (CL) at which alternans begins in the 1D
ring (dotted line ), and the (CL) at which conduction fails in
the 1D ring (dashed line ). Inset shows a blowup of the region
where the solid line intersects the dashed and dotted lines

(indicated by arrows ): Gy,=16, G,=0.423.

shorter than théCL) at which conduction fails in the 1D

occurs, except when the slope of APD restitution is
smaller than 1 everywhere.

Transition to Spatiotemporal Chaod.he chaotic dynam-
ics in the paced cell can be well understood by a non-
linear shift map>* The essential conditions are slope of
APD restitution curve>1 and loss of 1:1 capture. Slope
>1 is necessary to create instability at a fixed point in a
map, and the discontinuity caused by the lost of 1:1
capture makes the map noninvertible. In 2D spiral
waves, this process is much more complex and it is not
possible to use low dimensional maps to study it, but we
believe that chaos is generated by essentially the same
mechanism, with the same requirements: an APD resti-
tution slope>1, and conduction failure. The mechanism
is as follows: when the slope of APD restitution becomes
>1 at the Q point, oscillation due to this instability
causes conduction failure & and a newQ arises a
finite distance away. This conduction failure means that
at the place where th® point failed to materialize, there

is no action potential in this cycle, so the too-short DI is
added to the next DI. Because of restitution, this long DI
will elicit a longer action potential when the cell is fi-
nally excited by the next wave. In other words, the APD
of the cell at the point wher® failed to appear ishifted
discontinuously from a low value to a larger value, due
to the wave break. Although this process cannot be de-
scribed using a low-dimensional map as in the cell, the
“building blocks of chaos:” stretching folding, and
reinsertion®? can each be identified here. Stretching is
created by the APD restitution slopel condition: it
assures that an interval will be mapped into a larger
interval, thereby stretching it. Foldinga many-to-one
relation is created by the fact that due to conduction
failure, a too-short DI associated with conduction failure
summates with the next DI to give rise to a long APD.
Reinsertion is produced by the reentry of the wave, caus-
ing the cell to operate on the new APD and DI. If Qe
point is stable, this scenario cannot occur, because the
folding element is eliminatedthat is, there is no wave
break atQ). Thus, the combination of a stab@ point
and unstableP point, as in one breakup regime in the
Karma modef® produces breakup, but the excitation pat-
tern recorded from any site in the tissue is periodic, not
chaotic. This is because wave breakPgpoints produces
many newQ points, but they are all stable and assume a
regular motion. In contrast, if bot® and P points are
unstable, wave break occurs at both places; as more
unstableQ points form in the tissue, the chaos becomes
globally spatiotemporal. Therefore, ti§g point instabil-

ity is the critical factor for spatiotemporal chaos to occur.

ring, corresponding in 2D to wave break in the spiral We have shown recently that spatiotemporal chaos is

arm (P region. Therefore, if the average cycle length of

localized to the core region in a chaotically meandering

the spiral wave is less than the average cycle length of spiral wave, while it becomes global in spiral wave
conduction failure in the 1D ring, spiral wave breakup breakup in a tissue model with the LR1 kineti€s.
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FIGURE 9. Effects of modulating ionic current parameters on spiral wave behavior. (A) and (B) Spiral wave tip trajectories in Gy,

—Gk parameter space for G4 =0 (A) and G4=0.038 (B). (C) and (D) Spiral wave behaviors in Gy, —Gg parameter space for

G¢=0.423 and the Na* channel j gate governing recovery from inactivation either functioning normally (C) or clamped to 1 (D)
to steepen CV restitution. For comparison of the meander range, tip trajectories are plotted on the same scale in each figure.

The lonic Currents Determining Spiral Wave Phenotype Effects of Altering Maximum Channel Conductarice.
in the LR1 Model Figs. 9A) and 9B), we setGg to produce either quasi-
periodic[G¢=0 in Fig. 9A)] or chaotic meandefGg;

We next verified that APD restitution slope is a robust =0.03§in Fig.gB)] and determined the effects of al-

global parameter determining spiral wave phenotype, i.e., ) o
that it is the general shape of the restitution curve, rather {€1Ng Gna and Gy on spiral wave behavior, illustrated
than the details of which ionic conductance is manipu- bY tracing the tip trajectories in th@y, —Gy parameter
lated to produce that shape that matters. space. FoiG,=0 [Fig. (A)], all initiated spiral waves
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FIGURE 10. The effects altering Na * Ca?t, and K* current kinetics on spiral waves which are either quasiperidically meander-

ing (G¢=0.02 and 0.035), chaotically meandering (G =0.042), or in the breakup regime (Gg=0.05). (A) Control (model param-

eters Gy,=16 and G,=0.423). (B) With Na* current inactivation (m gate) slowed. (C) With Na* current inactivation (h gate) sped
up. (D) With Na™* current recovery from inactivation (j gate) slowed. (E) With Ca?* current activation (d gate) and inactivation (f
gate) sped up. (F) With K* current activation sped up.

meandered quasiperiodically, with their tips tracing out space examined, confining the behavior of spiral waves
very regular flower petal patterns. Decreasing either the to quasiperiodic meander. FdBg=0.038 [Fig. 9AB)],

K* or Na" conductance enhanced meander, and alsochangingGy, or Gy changed the spiral wave qualita-
increased the average cycle length. Blocking ¢onduc- tively. Blocking K* conductance converted a quasiperi-
tance also promoted meander, as noted previdtiglya odic meander to chaotic meander, and then to spiral
two-variable model. However, the important point is that breakup with fully developed spatiotemporal chaos.
for G5=0, APD restitution remains very shallow with However, this could be directly attributed to an increased
slope <1 throughout the range dby, —Gk parameter slope of APD restitution a&y was reduced. In contrast,
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blocking the Na conductance slowed the spiral wave, mally or clamped, folG,=0.423. With thej gate func-
shifting the system to a longer DI where the slope of tioning normally [Fig. 9C)], increasingG; led to new
APD restitution is Sha”ower, which tended to stabilize meandering patterns and eventua"y caused spira| wave
the spiral wave. breakup, as shown earlier in Fig. 3, consistent with its
effect on steepening APD restitutidsee Fig. 12D) in

the Appendi}. With the j gate clamped[Fig. 9D)],
spiral breakup occurred much earlier and the meandering
region became much narrower. Thus, fhgate is very
important for meandering in this model. We also did the
same simulation as in Fig.(A) (a quasiperiodically me-
andering spiral wavyewith the j gate clamped, and all
meandering spiral waves became stabléth a closed

Effect of Altering lonic Current Gating KineticsSimi-
larly, we examined the effects speeding up or slowing
down the kinetics of the N C&*, and K" currents on
the tip trajectories of spiral wavedig. 10. We per-
formed simulations for spiral waves with the following
phenotypes: quasiperiodic  meandeiG4&0.02 and
0.035, chaotic meander G4=0.042), and breakup
(G4=0.05). Slowing activation of the Nacurrent by  Circle tip trajectory throughout theGy,— Gy parameter
slowing them gate[Fig. 10B)] changed the meandering sPace. CL length was shorter than with thgate func-
pattern, and converted chaotic meander to quasiperiodictioning normally. Thus, fast recovery from inactivation
meander. Speeding Nacurrent inactivation by speeding Of the Na& current mediated by clamping the gate
up theh gate[Fig. 10(C)] changed only the pattern of suppressed meander but promoted breakup. The reason is
meandering. Slowing Nacurrent recovery from inacti-  that the system selected a much shorter CL wheate
vation by slowing thej gate, like slowing down then was clamped, but APD restitution was almost un-
ga‘[e, Changed the meandering pattern and converted ChaChanged. Therefore, the Spiral arm had a narrower excit-
otic meander to quasiperiodic meander. Thus, changing@ble gap, exposing it to shorter DIs where the APD
the relaxation properties of the Nachannel altered the  restitution slope was steeper. This promoted instability
meandering pattern, and could facilitate the conversion leading to wave break.
of chaotic meander to quasiperiodic meander, but did not  In conclusion, the effects of these modifications to
substantially change the breakup threshold, which oc- ionic conductance in the LR1 model support the robust-
curred in all cases a6¢=0.05. ness of APD restitution steepness as a global parameter
Accelerating C&' current kinetics by speeding up the determining spiral wave phenotype.
d and f gates[Fig. 10E)] did not alter quasiperiodic
meander, but changed the pattern of chaotic meander,
and converted breakup to chaotic meander, as found pre-
viously in the Beeler—Reu.ter'mod7eAIth'ough the maxi- _in a 2D homogeneous cardiac tissue using the LR1
mum slqpe of APD restitution was |r_1creased by this model, a physiologically based representation of the car-
intervention, the range of Dis over Wh'Ch the slope ex- ia. ventricular action potential. Our main results are:
c_eeded 1 became harrower, accounting for the_conver-(l) APD and CV restitution are largely determined by
sion from breakup to chaotic meandee., theP points cellular electrophysiologic properties, but are also modu-
became stable due to t_he shallower slope at long Dls, lated by diffusive currents2) Restitution properties are
whereas th& area remained unstable due to the steeper . major predicators of chaos and spiral breakup. Qua-

slope at Sh‘?“ DDS, ) siperiodic meander is determined by instability of the
Accelerating activation of the voltage-dependent K spiral core.(3) Through its effects on APD and CV

DISCUSSION

In this paper, we studied the stability of spiral waves

current by speeding up thg gate had no significant
effect on quasiperiodic or chaotic meander, and spiral
wave breakup still occurred & =0.05.

Effects of Altering CV Restitution Steepnegss noted

restitution, curvature results in a dispersion of the excit-
able gap along the spiral arm, creating differences in
local stability which account for the various forms of
spiral wave dynamics(4) The excitation of spatial

modes in the wave is essential for producing localized

earlier, whereas APD restitution is the major determinant wave break.(5) Localized wave break in the spiral arm
of spiral wave stability(at the Q and P pointg, CV (P region instability leads to breakup, but not necessar-
restitution is essential for the development of transverse ily chaos. Localized wave break in ti@ area is respon-
spatial modes leading to wave break. To explore the sible for the onset of chao$6) Spatiotemporal chaos is

effects of CV restitution on spiral wave behavior, we
clamped the Na currentj gate (j=1), which markedly
steepened CV restitutiofsee Fig. 12B) in the Appen-
dix] without affecting APD restitution. Figures©) and
9(D) compare spiral tip trajectories in th&y, —Gq;
parameter space with thegate either functioning nor-

local in a chaotic meandering spiral way® region
unstable,P region stablg whereas it becomes global
when spiral wave breakup occurs in the setting of com-
bined Q and P region instability.(7) In the LR1 model,
the pattern of quasiperiodic meander is very sensitive to
the Na' current through its effects on CV restitution,
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Type Core | Q P Phenotype APD Restitution
Characteristics
1 S S S Stable spiral )
wave \g/—""‘"
8=
2 U S S QP meander < /\Pf'"‘—
[v]]
3a S U S Chaotic meander
FIGURE 11. Possible spiral wave pheno-
b U U S 3/_'— types and their corresponding APD resti-
al tution characteristics:  (S) stable, (U) un-
¢ S U U+ g Y stable, (U*) unstable without conduction
N failure, (U**) unstable with conduction
d U U U* N failure, (QP) quasiperiodic. Dashed line
-——T‘ marks the cycle length of the spiral wave
— - solution of the system. Dotted line is the
4 5 S U Breakup: reference line with unit slope. The panels
. for APD restitution characteristics are
Periodic a plotted similarly to Fig. 3 (C).
o
5 U S U** Breakup: QP <
6a S U U** Breakup: Chaos
b U U Uw*
o
Q.
<

while chaotic meander and breakup are more sensitive toof these in our simulationgstationary, quasiperiodic me-
C&" and K' currents through their effects on APD ander, chaotic meander, and globally chaotic breakup

restitution. and as mentioned above, a fifth phenotyf{meriodic
Various spiral wave behaviors have been studied in preakup has been shown by othelsThe phenotypic
2D cardiac tissue models:*?*Karma;® Courtemanché,  pehavior of the remaining type is conjectured in Fig. 11,

and Quet al?® showed that steep APD restitution was pt remains to be verified.
Lhe clz(ause of spll;al Wa\ée.br(ter?kup. -trv‘éo mag)r tyi)es Off Although spiral wave stability is mainly governed by
breakup were odsgrve n. lese stu |des. fm:] ype c?APD restitution, CV restitution is very important. In ad-
Wre\? UFr) gccmre | lrje tgi V'Ore?tnm??/\r’] 5rl On tthe rsp|r|at1 dition to playing a key role in spiral wave initiation, CV
ing i?\Fz:gml:)(l:exgs%a?iogtgmsc?rzlsc%ag? Tieeoethger iyssu " restitution is the origin of quasiperiodic motion as shown
was breakup in the spiral arm via e>.<panding alternans in .the ring? and ianuence; the e>.<citqble gap along.the
with the core stablé® producing multiple, but relatively spiral arm. Thus, CV restitution is directly responsible
' ’ for spatial oscillations in the spiral arm wave front

periodic, spiral waves. By formulating spiral wave dy- ) . ) o )
namics in terms of the, Q, and P region stability, our which, together with spatial oscillations in the wave
back, cause wave break.

results account for both types of breakup, in addition to ) ; ; _ ) _
stationary behavior, quasiperiodic meander, and chaotic ~ Given the increasing experimental evidence that spiral
meander. Breakup with chaotic dynamics reflects insta- Wave reentry may be an important mechanism in clinical
bility at both Q and P regions, whereas breakup with ~arthythmiagi®***our findings are relevant to strategies

periodic dynamics reflects a stalifferegion and unstable  to develop effective antiarrhythmic drugs. It has been
P region. Considering all possibleqQP stability/ postulated that the degeneration from tachycardia to fi-
instability combinations, our findings predict that at least brillation may represent a transition from a stationary or
six dynamically distinct spiral wave phenotypes are theo- quasiperiodically meandering spiral wave reentry to cha-
retically possible(Fig. 11). We have demonstrated four otic meander, or breakup:'*?°It is therefore reasonable
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FIGURE 12. Effects of altering ionic current parameters on CV and APD restitution. (A) CV restitution curves for different 5,\,3

(maximal Na * conductance ). (B) CV restitution with the

J gate controlling Na

* current recovery from inactivation either func-

tioning normally ~ (solid line ), clamped to 1 (dotted line ), or slowed down (dashed line ), for Gy,=16. In both (A) and (B) G4=0.02

and G¢=0.423. (C) CV restitution for different
conductance on CV restitution.
(dotted line ) maximal Ca * current conductance

sped up (74=0.574, 7;=0.57,). (E) K* current effects on APD restitution,
(dotted line ) maximal K + conductance Gy increased to 0.705. (F) Na* current effects on APD restitution

(solid line ) G\,=16; (dotted line ) Gy.=4.

Gy, with Gy,=16, G4=0.02, showing the lack of effect of maximal K
(D) Ca?* current effects on APD restitution.
Gy reduced to 0.02; dashed line ) with Ca?* current activation and inactivation

* current

(solid line ) control (Gy,=16, G4=0.052, G4=0.423),

(solid line ) control (Gy,=16, Gx=0.423, G4=0.052),
(Gsi=0, Gx=0.423),

to explore whether antiarrhythmic drugs, that reduce the model. We have also explored other ways of changing
slope of APD restitution, may prevent this transition in the slope of APD restitution in the LR1 model and other
real cardiac tissugthe restitution hypothesis® Our kinetic models, and have consistently found that as long
simulations provide further support for the idea that APD as the slope of APD restitutior<l everywhere, only

restitution slope is quite robust as global parameter
determining spiral wave stability, since the shajpe.,
slope of APD restitution, rather than the specific modi-

stable or quasiperiodic meandering spiral waves were
observed. Therefore, we believe that our conclusions re-
main valid in the case of normal, physiological APD. In

fications to ionic conductances required to produce that addition, the resultésummarized in Fig. 9 and 1@how-
shape, appeared_to be most important. In the presenting how modifying kinetics and amplitude of various

study, we reduce€g; as a convenient means of enhanc-
ing spiral wave stability, with the consequence that APD
was markedly shortened t630 ms forGg= 0. Although

this is much shorter than physiological APD, we have
previously shown that similar stable spiral wave dynam-
ics were achieved by reducing the slope of APD restitu-
tion while maintaining APD at its baseline valtieHow-

ionic currents affects spiral wave behavior provide an
initial framework for identifying appropriate molecular
antiarrhythmic drug targets, which can be improved as
physiologically more realistic cellular cardiac models
and computational tractability become available.
Whether modifying restitution will be useful as an
antiarrhythmic strategy in the real heart remains to be

ever, this required more complex changes to the LR1 demonstrated. In our simulations, the cardiac tissue is
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2D, isotropic, and homogeneous, and the cellular model
is still incomplete as a physiological representation. In
contrast, real cardiac tissue is 3D, anisotropic, and both
electrophysiologically and anatomically heterogeneous.
Nevertheless, the proclivity of spiral wave reentry, once
initiated in normal human ventricle, to degenerate to
ventricular fibrillation is well establishetiand numerous
experimental studié$??3” show that APD restitution in
real cardiac tissue is typically steep enouglope >1)

to produce the dynamic heterogeneity required for spiral
wave breakup by the mechanisms outlined in this
study®® The low incidence of spontaneous ventricular
fibrillation in the normal heart may be primarily attrib-
utable to a much higher threshold for initiation of spiral
wave reentry than to dynamic stability in comparison to
the diseased heart. In addition, preliminary experimental
studies have now demonstrated that drugs which flatten
APD restitution [e.g. verapamil, diacetyl monoxinié,
and bretyliunt® are effective in preventing ventricular
fibrillation. Given the current stalemate over antiarrhyth-
mic drug development for preventing sudden cardiac
death in the wake of the disappointing results of large
scale clinical trials such as CAS8Tand SWORD?® a
restitution-based approach seems promising.

ACKNOWLEDGMENTS

This research was supported by NIH SCOR in Sudden
Cardiac Death Grant No. P50 HL52319, by a Fellowship
(to F.X) and a Beginning Grant-in-Aidto Z.Q) from
the American Heart Association, Western States Affili-
ate, and by the Laubisch and Kawata Endowments.

APPENDIX: DETERMINANTS OF APD AND CV
RESTITUTION IN THE LR1 MODEL

APD and CV restitution are primarily determined by
the recovery kinetics and relative amplitudes of the ionic
currents. It is well known that the major determinant of
CV is the N& channel(Fig. 12. In the LR1 model,
reducing Gy, decreased CV as well as the slope of its
restitution curve. Slowing down thiegate did not affect
the maximum CV, but reduced the slope of the CV
restitution curve. Conversely, clamping theyate to its
maximum value of 1 made CV restitution steeper with-
out changing maximum CVFig. 12B)]. Altering prop-
erties of other currents had little effect on CV restitution.
Courtemanche previously showed that the CV restitu-
tion was virtually unchanged when he sped up thé'Ca
channel in the Beeler—Reuter model, and here in Fig.
12(C) we show that altering5x had no effect on CV
restitution.

In contrast, the major determinants of APD restitution
in the LR1 model are the Ga and K' currents, with the
Na® current having less important but appreciable ef-

Q et al.

fects. Figure 1¢D) shows the effects of altering the €a
current parameter§g; or 74 and 7; on APD restitution.
ReducingGg; shortened APD primarily at long Dls, and
thereby reduced the slope of the APD restitution. Reduc-
ing 74 and 7; also shortened APD at long Dls, but made
the maximum slope larger. Figure (B2 shows the ef-
fects of the time-dependentKcurrent on APD restitu-
tion. IncreasingGy decreased APD at long DlIs but had
little effect at short Dlis(called the reverse use depen-
dence by cardiologistsso that the slope of APD resti-
tution curve decreased. Figure (E? illustrates that al-
though its main influence is on CV restitution, the Na
current also influences APD restitutigaven though the
LR1 model does not formulate Nawindow currents
This effect is mediated by affecting the peak voltage
reached during the action potentid},.,, thereby alter-
ing the degree of activation of the €acurrent?® In
addition to ionic conductances, electrical restitution prop-
erties can also be modulated by changes in the intracel-
lular and extracellular ion concentrations.
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