Information Theory is...

- Both a subfield of electrical and computer engineering and

Info theory is commonly used across complex systems.

Goal for today: Give a solid introduction to the basic elements of information theory with just the right amount of math.
Information Theory is...

- Both a subfield of electrical and computer engineering and
- machinery to make statements about probability distributions and relations among them,

Info theory is commonly used across complex systems.

Goal for today: Give a solid introduction to the basic elements of information theory with just the right amount of math.
Information Theory is...

- Both a subfield of electrical and computer engineering and
- machinery to make statements about probability distributions and relations among them,
- including memory and non-linear correlations and relationships,

Info theory is commonly used across complex systems.

Goal for today: Give a solid introduction to the basic elements of information theory with just the right amount of math.
Both a subfield of electrical and computer engineering and machinery to make statements about probability distributions and relations among them, including memory and non-linear correlations and relationships, that is complementary to the Theory of Computation.

Info theory is commonly used across complex systems.

Goal for today: Give a solid introduction to the basic elements of information theory with just the right amount of math.
Some Recommended Info Theory References

Notation for Probabilities

- X is a random variable. The variable X may take values $x \in \mathcal{X}$, where \mathcal{X} is a finite set.
- likewise Y is a random variable, $Y = y \in \mathcal{Y}$.
- The probability that X takes on the particular value x is $\Pr(X = x)$, or just $\Pr(x)$.
- Probability of x and y occurring: $\Pr(X = x, Y = y)$, or $\Pr(x, y)$
- Probability of x, given that y has occurred: $\Pr(X = x | Y = y)$ or $\Pr(x | y)$

Example: A fair coin. The random variable X (the coin) takes on values in the set $\mathcal{X} = \{h, t\}$.
$\Pr(X = h) = 1/2$, or $\Pr(h) = 1/2$.
Different amounts of uncertainty?

- Some probability distributions indicate more uncertainty than others.
- We seek a function $H[X]$ that measures the amount of uncertainty associated with outcomes of the random variable X.
- What properties should such an uncertainty function have?
Different amounts of uncertainty?

- Some probability distributions indicate more uncertainty than others.
- We seek a function $H[X]$ that measures the amount of uncertainty associated with outcomes of the random variable X.
- What properties should such an uncertainty function have?
 - Maximized when the distribution over X is uniform.
Some probability distributions indicate more uncertainty than others.

We seek a function $H[X]$ that measures the amount of uncertainty associated with outcomes of the random variable X.

What properties should such an uncertainty function have?

1. Maximized when the distribution over X is uniform.
2. Continuous function of the probabilities of the different outcomes of X.
Some probability distributions indicate more uncertainty than others. We seek a function $H[X]$ that measures the amount of uncertainty associated with outcomes of the random variable X.

What properties should such an uncertainty function have?

1. Maximized when the distribution over X is uniform.
2. Continuous function of the probabilities of the different outcomes of X.
3. Independent of the way in which we might group probabilities.
Entropy of a Single Variable

The requirements on the previous slide \textbf{uniquely} determine $H[X]$, up to a multiplicative constant.

The Shannon entropy of a random variable X is given by:

$$H[X] \equiv - \sum_{x \in X} \Pr(x) \log_2(\Pr(x)) .$$

(1)

Using base-2 logs gives us units of \textit{bits}.
Entropy of a Single Variable

The requirements on the previous slide uniquely determine $H[X]$, up to a multiplicative constant.

The Shannon entropy of a random variable X is given by:

$$H[X] \equiv - \sum_{x \in X} \Pr(x) \log_2(\Pr(x)).$$ \hspace{1cm} (1)

Using base-2 logs gives us units of \textit{bits}.

\textbf{Examples}

- **Fair Coin**: $\Pr(h) = \frac{1}{2}$, $\Pr(t) = \frac{1}{2}$. $H = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1 \text{ bit}$.

- **Biased Coin**: $\Pr(h) = 0.6$, $\Pr(t) = 0.4$.
 $H = -0.6 \log_2 0.6 - 0.4 \log_2 0.4 = 0.971 \text{ bits}$.

- **More Biased Coin**: $\Pr(h) = 0.9$, $\Pr(t) = 0.1$.
 $H = -0.9 \log_2 0.9 - 0.1 \log_2 0.1 = 0.469 \text{ bits}$.

- **Totally Biased Coin**: $\Pr(h) = 1.0$, $\Pr(t) = 0.0$.
 $H = -1.0 \log_2 1.0 - 0.0 \log_2 0.0 = 0.0 \text{ bits}$.
Binary Entropy

Entropy of a binary variable as a function of its bias.

Figure Source: original work by Brona, published at https://commons.wikimedia.org/wiki/File:Binary_entropy_plot.svg.
Average Surprise

- $-\log_2 \Pr(x)$ may be viewed as the *surprise* associated with the outcome x.

Thus, $H[X]$ is the average, or expected value, of the surprise:

$$H[X] = \sum_x \left[-\log_2 \Pr(x) \right] \Pr(x).$$

The more surprised you are about a measurement, the more informative it is.

The greater $H[X]$, the more informative, on average, a measurement of X is.
Consider a random variable X with four equally likely outcomes:
$\Pr(a) = \Pr(b) = \Pr(c) = \Pr(d) = \frac{1}{4}$.

What is the optimal strategy for guessing (via yes-no questions) the outcome of a random variable?
Consider a random variable X with four equally likely outcomes: $\Pr(a) = \Pr(b) = \Pr(c) = \Pr(d) = \frac{1}{4}$.

What is the optimal strategy for guessing (via yes-no questions) the outcome of a random variable?

1. “is X equal to a or b?”
2. If yes, “is $X = a$?” If no, “is $X = c$?”

Using this strategy, it will always take 2 guesses. $H[X] = 2$. Coincidence???
Guessing Games 2

What's the best strategy for guessing Y?

$\Pr(\alpha) = \frac{1}{2}$, $\Pr(\beta) = \frac{1}{4}$, $\Pr(\gamma) = \frac{1}{8}$, $\Pr(\delta) = \frac{1}{8}$.

Is it α? If yes, then done, if no:

2. Is it β? If yes, then done, if no:

3. Is it γ? Either answer, done.

Ave # of guesses = \(\frac{1}{2}(1) + \frac{1}{4}(2) + \frac{1}{4}(3) = 1.75 \).

Not coincidentally, $H[Y] = 1.75$!!
What’s the best strategy for guessing Y?

$Pr(\alpha) = \frac{1}{2}$, $Pr(\beta) = \frac{1}{4}$, $Pr(\gamma) = \frac{1}{8}$, $Pr(\delta) = \frac{1}{8}$.

1. Is it α? If yes, then done, if no:
2. Is it β? If yes, then done, if no:
3. Is it γ? Either answer, done.

Ave # of guesses $= \frac{1}{2}(1) + \frac{1}{4}(2) + \frac{1}{4}(3) = 1.75$.

Not coincidentally, $H[Y] = 1.75!!$
Strategy: try to divide the probability in half with each guess.

General result: Average number of yes-no questions needed to guess the outcome of X is between $H[X]$ and $H[X] + 1$.

- This is consistent with the interpretation of H as uncertainty.
- If the probability is concentrated more on some outcomes than others, we can exploit this regularity to make more efficient guesses.
A code is a mapping from a set of symbols to another set of symbols. Here, we are interested in a code for the possible outcomes of a random variable that is as short as possible while still being decodable. Strategy: use short code words for more common occurrences of X. This is identical to the strategy for guessing outcomes.

Example: Optimal binary code for Y:

- $\alpha \rightarrow 1$
- $\beta \rightarrow 01$
- $\gamma \rightarrow 001$
- $\delta \rightarrow 000$

Note: This code is unambiguously decodable:

0110010000000101 = $\beta\alpha\gamma\delta\delta\beta\beta$ This type of code is called an instantaneous code.
A code is a mapping from a set of symbols to another set of symbols. Here, we are interested in a code for the possible outcomes of a random variable that is as short as possible while still being decodable.

Strategy: use short code words for more common occurrences of X.

This is identical to the strategy for guessing outcomes. Example: Optimal binary code for Y:

- $\alpha \rightarrow 1$
- $\beta \rightarrow 01$
- $\gamma \rightarrow 001$
- $\delta \rightarrow 000$

Note: This code is unambiguously decodable:

$$0110010000000101 = \beta \alpha \gamma \delta \delta \beta \beta$$

This type of code is called an instantaneous code.
Shannon’s noiseless source coding theorem:

Average number of bits in optimal binary code for X **is between** $H[X]$ **and** $H[X] + 1$.

Also known as Shannon’s first theorem.

Thus, $H[X]$ is the average memory, in bits, needed to store outcomes of the random variable X.
Summary of interpretations of entropy

- $H[X]$ is the measure of uncertainty associated with the distribution of X.

- Requiring H to be a continuous function of the distribution, maximized by the uniform distribution, and independent of the manner in which subsets of events are grouped, uniquely determines H.

- $H[X]$ is the expectation value of the surprise, $-\log_2 \Pr(x)$.

- $H[X] \leq$ Average number of yes-no questions needed to guess the outcome of $X \leq H[X] + 1$.

- $H[X] \leq$ Average number of bits in optimal binary code for $X \leq H[X] + 1$.

- $H[X] = \lim N \to \infty \frac{1}{N} \times$ average length of optimal binary code of N copies of X.
Joint and Conditional Entropies

Joint Entropy

- \(H[X, Y] \equiv - \sum_{x \in X} \sum_{y \in Y} \Pr(x, y) \log_2(\Pr(x, y)) \)
- \(H[X, Y] \) is the uncertainty associated with the outcomes of \(X \) and \(Y \).

Conditional Entropy

- \(H[X|Y] \equiv - \sum_{x \in X} \sum_{y \in Y} \Pr(x, y) \log_2 \Pr(x|y) \)
- \(H[X|Y] \) is the average uncertainty of \(X \) given that \(Y \) is known.

Relationships

- \(H[X, Y] = H[X] + H[Y|X] \)
- \(H[Y|X] = H[X, Y] - H[X] \)
- \(H[Y|X] \neq H[X|Y] \)
Mutual Information

Definition

- \(I[X; Y] = H[X] - H[X|Y] \)
- \(I[X; Y] \) is the average reduction in uncertainty of \(X \) given knowledge of \(Y \).

Relationships

- \(I[X; Y] = H[X] - H[X|Y] \)
- \(I[X; Y] = H[Y] - H[Y|X] \)
- \(I[X; Y] = I[Y; X] \)
The information diagram shows the relationship among joint and conditional entropies and the mutual information.

Figure Source: Konrad Voelkel, released to the public domain.

Example 1

Two independent, fair coins, C_1 and C_2.

- $H[C_1] = 1$ and $H[C_2] = 1$. $H[C_1, C_2] = 2$
- $H[C_1, C_2] = 2$.
- $H[C_1 | C_2] = 1$. Even if you know what C_2 is, you’re still uncertain about C_1.
- $I[C_1; C_2] = 0$. Knowing C_1 does not reduce your uncertainty of C_2 at all.
- C_1 carries no information about C_2.
Example 2

Weather (rain or sun) yesterday W_0 and weather today W_1.

<table>
<thead>
<tr>
<th></th>
<th>W_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_0</td>
<td>r</td>
</tr>
<tr>
<td>r</td>
<td>$\frac{5}{8}$</td>
</tr>
<tr>
<td>s</td>
<td>$\frac{1}{8}$</td>
</tr>
</tbody>
</table>

- $H[W_0] = 0.811 = H[W_1] = 0.811$.
- $H[W_0, W_1] = 1.549$.
- Note that $H[W_0, W_1] \neq H[W_0] + H[W_1]$.
- $H[W_1|W_0] = 0.738$.
- $I[W_0; W_1] = 0.074$. Knowing the weather yesterday, W_0, reduces your uncertainty about the weather today W_1.
- W_0 carries 0.074 bits of information about W_1.
By the way...

- Probabilities $\Pr(x)$, etc., can be estimated empirically.
- Just observe the occurrences c_i of different outcomes and estimate the frequencies:

$$\Pr(x_i) = \frac{c_i}{\sum_j c_j}.$$

No big deal.
By the way...

- Probabilities $\Pr(x)$, etc., can be estimated empirically.
- Just observe the occurrences c_i of different outcomes and estimate the frequencies:

$$\Pr(x_i) = \frac{c_i}{\sum_j c_j}.$$

No big deal.

However, this will lead to a biased under-estimate for $H[X]$. For more accurate ways of estimate $H[X]$, see, e.g.,

A common technique in statistical inference is the **maximum entropy method**.

Suppose we know a number of average properties of a random variable. We want to know what distribution the random variable comes from.

This is an underspecified problem. What to do?

Choose the distribution that maximizes the entropy while still yielding the correct average values.

This is usually accomplished by using Lagrange multipliers to perform a constrained maximization.

The justification for the maximum entropy method is that it assumes no information beyond what is already known in the form of the average values.
The **Relative Entropy** or the **Kullback-Leibler** distance between two distributions \(p(x) \) and \(q(x) \) is:

\[
D(p||q) \equiv \sum_{x \in \mathcal{X}} p(x) \log_2 \frac{p(x)}{q(x)}.
\]

\(D(p||q) \) is how much more random \(X \) appears if one assumes it is distributed according to \(q \) when it is actually distributed according to \(p \).

\(D(p||q) \) is measure of “entropic distance” between \(p \) and \(q \).
Relative Entropy: Example

$X \in \{a, b, c, d\}$

$p : p(a) = 1/2, p(b) = 1/4, p(c) = 1/8, p(d) = 1/8$

$q : q(a) = 1/4, q(b) = 1/4, q(c) = 1/4, q(d) = 1/4$

\[
D(p \parallel q) \equiv \sum_{x \in X} p(x) \log_2 \frac{p(x)}{q(x)} ,
\]

\[
D(p \parallel q) \equiv \sum_{x \in X} -p(x) \log_2 q(x) - H(p) .
\]

The first term on the right is the expected code length if we used the code for q for a variable that was actually distributed according to p.
Relative Entropy: Example, continued

\(X \in \{a, b, c, d\} \)
\(p : p(a) = 1/2, p(b) = 1/4, p(c) = 1/8, p(d) = 1/8 \)
\(q : q(a) = 1/4, q(b) = 1/4, q(c) = 1/4, q(d) = 1/4 \)

Optimal code for \(X \) distributed according to \(q \):

\[
a \rightarrow 01, \quad b \rightarrow 00, \quad c \rightarrow 10, \quad d \rightarrow 11
\]

\[
D(p||q) \equiv \sum_{x \in X} -p(x) \log_2 q(x) - H(p).
\]

Ave length of code for \(X \) using \(q \) coding if \(X \) is distributed according to \(p \):

\[
\frac{1}{2}(2) + \frac{1}{4}(2) + \frac{1}{8}(2) + \frac{1}{8}(2) = 2
\]
Relative Entropy: Example, continued further

\(X \in \{a, b, c, d\} \)

\[p: p(a) = \frac{1}{2}, p(b) = \frac{1}{4}, p(c) = \frac{1}{8}, p(d) = \frac{1}{8} \]

\[q: q(a) = \frac{1}{4}, q(b) = \frac{1}{4}, q(c) = \frac{1}{4}, q(d) = \frac{1}{4} \]

Recall that \(H(p) = 1.75 \). Then

\[
D(p||q) \equiv \sum_{x \in X} -p(x) \log_2 q(x) - H(p) .
\]

\[
D(p||q) = 2 - 1.75 = 0.25 .
\]

So using the code for \(q \) when \(X \) is distributed according to \(p \) adds 0.25 to the average code length.

Exercise: Show that \(D(q||p) = 0.25 . \)
Relative Entropy Summary

- $D(p||q)$ is not a proper distance. It is not symmetric and does not obey the triangle inequality.
- Arises in many different learning/adapting and statistics contexts.
- Measures the “coding mismatch” or “entropic distance” between p and q.
Summary and Reflections

- Information theory provides a natural language for working with probabilities.
- Information theory is *not* a theory of semantics or meaning.
- Information theory is used throughout complex systems.
- Often shows common mathematical structures across different domains and contexts.
We now consider applying information theory to a long sequence of measurements.

\[\cdots 00110010010101101001100111010110 \cdots \]

In so doing, we will be led to two important quantities:

1. **Entropy Rate**: The irreducible randomness of the system.
2. **Excess Entropy**: A measure of the complexity of the sequence.

Context: Consider a long sequence of discrete random variables. These could be:

1. A long time series of measurements
2. A symbolic dynamical system
3. A one-dimensional statistical mechanical system
Random variables $S_i, S_i = s \in A$.

Infinite sequence of random variables: $\mathcal{S} = \ldots S_{-1} S_0 S_1 S_2 \ldots$

Block of L consecutive variables: $S^L = S_1, \ldots, S_L$.

Pr$(s_i, s_{i+1}, \ldots, s_{i+L-1}) = \Pr(s^L)$

Assume translation invariance or stationarity:

$$\Pr(s_i, s_{i+1}, \ldots, s_{i+L-1}) = \Pr(s_1, s_2, \ldots, s_L).$$

Left half (“past”): $\leftarrow s \equiv \cdots S_{-3} S_{-2} S_{-1}$

Right half (“future”): $\rightarrow s \equiv S_0 S_1 S_2 \cdots$

\[
\cdots 1101010010110101010010010100101001001010010 \cdots
\]
Entropy Growth

- Entropy of L-block:

 $$H(L) \equiv - \sum_{s^L \in A^L} \Pr(s^L) \log_2 \Pr(s^L).$$

- $H(L) =$ average uncertainty about the outcome of L consecutive variables.

- $H(L)$ increases monotonically and asymptotes to a line.
- We can learn a lot from the shape of $H(L)$.
Let’s first look at the slope of the line:

Slope of $H(L)$: $h_\mu(L) \equiv H^0(L) - H(L-1)$

Slope of the line to which $H(L)$ asymptotes is known as the entropy rate:

$$h_\mu = \lim_{L \to \infty} h_\mu(L).$$
Slope of the line to which $H(L)$ asymptotes is known as the *entropy rate*:

$$h_{\mu} = \lim_{L \to \infty} h_{\mu}(L).$$

$h_{\mu}(L) = H[S_L|S_1S_1 \ldots S_{L-1}]$

i.e., $h_{\mu}(L)$ is the average uncertainty of the next symbol, given that the previous L symbols have been observed.
Interpretations of Entropy Rate

- Uncertainty per symbol.
- Irreducible randomness: the randomness that persists even after accounting for correlations over arbitrarily large blocks of variables.
- The randomness that cannot be “explained away”.
- Entropy rate is also known as the Entropy Density or the Metric Entropy.
- $h_\mu = \text{Lyapunov exponent for many classes of 1D maps.}$
- The entropy rate may also be written: $h_\mu = \lim_{L \to \infty} \frac{H(L)}{L}$.
- h_μ is equivalent to thermodynamic entropy.
- These limits exist for all stationary processes.
How does $h_\mu(L)$ approach h_μ?

- For finite L, $h_\mu(L) \geq h_\mu$. Thus, the system appears more random than it is.

- We can learn about the complexity of the system by looking at how the entropy density converges to h_μ.
The excess entropy captures the nature of the convergence and is defined as the shaded area above:

$$E \equiv \sum_{L=1}^{\infty} [h_{\mu}(L) - h_{\mu}] .$$

E is thus the total amount of randomness that is “explained away” by considering larger blocks of variables.
Mutual information

- One can show that E is equal to the mutual information between the “past” and the “future”:

$$E = I(\leftarrow S; \rightarrow S) \equiv \sum_{\{\leftarrow s\}} \Pr(\leftarrow s) \log_2 \left[\frac{\Pr(\leftarrow s)}{\Pr(\leftarrow s) \Pr(\rightarrow s)} \right].$$

- E is thus the amount one half “remembers” about the other, the reduction in uncertainty about the future given knowledge of the past.

- Equivalently, E is the “cost of amnesia:” how much more random the future appears if all historical information is suddenly lost.
Geometric View

- E is the y-intercept of the straight line to which $H(L)$ asymptotes.
- $E = \lim_{L \to \infty} \left[H(L) - h\mu L \right]$.

\[
H(L) \\
E \\
0 \\
L
\]
Excess Entropy Summary

- Is a structural property of the system — measures a feature complementary to entropy.
- Measures memory or spatial structure.
- Lower bound for statistical complexity, minimum amount of information needed for minimal stochastic model of system.
Example I: Fair Coin

- For fair coin, $h_\mu = 1$.
- For the biased coin, $h_\mu \approx 0.8831$.
- For both coins, $E = 0$.
- Note that two systems with different entropy rates have the same excess entropy.
Example II: Periodic Sequence

- Sequence: \ldots 1010111011101110 \ldots
Sequence: \ldots 1010111011101110 \ldots

\[h_\mu \approx 0; \text{ the sequence is perfectly predictable.} \]

\[E = \log_2 16 = 4: \text{ four bits of phase information} \]

For any period-\(p \) sequence, \(h_\mu = 0 \) and \(E = \log_2 p \).

Example III: Random, Random, XOR

- Sequence: two random symbols, followed by the XOR of those symbols.
Example III, continued

- Sequence: two random symbols, followed by the XOR of those symbols.
- $h_\mu = \frac{2}{3}$; two-thirds of the symbols are unpredictable.
- $E = \log_2 4 = 2$: two bits of phase information.
- For many more examples, see Crutchfield and Feldman, Chaos, 15: 25-54, 2003.
All of the following terms refer to essentially the same quantity.

- **Excess Entropy**: Crutchfield, Packard, Feldman
- **Stored Information**: Shaw
- **Effective Measure Complexity**: Grassberger, Lindgren, Nordahl
- **Reduced (Rényi) Information**: Szépfalusy, Györgyi, Csordás
- **Complexity**: Li, Arnold
- **Predictive Information**: Nemenman, Bialek, Tishby
Excess Entropy: Selected References and Applications

