Credit-Network Model of the US Housing Market

Carlos Yepez, Brandeis University
Devin Drown, Washington State University
John Pang, MITRE Corporation
Chip Burgess, Van Kampen
Chris Vitale, Pratt Institute

SFI Complex Systems Summer School 2008
Motivation

Objective: To develop a model that explores the salient dynamics of the real estate credit crisis in the US.
Model

- Heterogeneous Interacting Agents (HIA) model based on Delli Gatti et al. (2005).
- Two types of agents:
 - Households (HH)
 - Banks
- Model entry and exit in the HH sector to capture acquisition and foreclosures of houses
- Current model includes a ratio of banks to households of 1:10,000
Agents & Their Attributes

- **Households**
 - Income
 - Credit Demand
 - Net Worth

- **Banks**
 - Credit Supply
 - Profit
 - Equity
Model Output

- Equilibrium Interest Rates
- Probability of Borrowing
- Probability of Foreclosure
Current Project Status

- Aggregating results from multiple simulations
- Determining appropriate statistical interpretation of results
- Crashing the Market!
Future Model Structure

- Endogenous price determination
- Extend the model to include multiple banks and a Central Bank

Modeling the structure of the real state market

Notations:
- Banks
- Firms
- Households
- Inter-bank loans
- Bank credit
- Commercial credit
Back up slides
Households

- HH Income

\[\pi_{it} = u_{it}Y_{it} - gr_{it}K_{it} = (u_{it}\phi - gr_{it})K_{it} \]

- \(Y_{it} \): Output for HH \(i \) at time \(t \)

- \(K_{it} \): Borrowed capital for HH \(i \) at time \(t \)

- \(u_{it} \) is a random variable with mean at 1

- \(r_{it} \): Interest for HH \(i \) at time \(t \)

- \(g \) and \(\phi \) are constants
Households

- HH Credit Demand

\[
L^d_{it} = \frac{(\phi - gr_{it})}{c \phi gr_{it}} - \pi_{it-1} + \left(\frac{1 - 2gr_{it}}{2gr_{it}}\right) A_{it-1}
\]

\(L^d_{it}\) Credit demand of HH \(i\) at time \(t\)

\(A_{it}\): Net worth for HH \(i\) at time \(t\)

\(r_{it}\): interest for HH \(i\) at time \(t\)

\(\pi_{it}\): income for HH \(i\) at time \(t\)

\(g, c\) and \(\phi\) are constants
Households

- HH Net worth

\[A_{it} = A_{it-1} + \pi_{it} \]

\(A_{it} \): Net worth for HH \(i \) at time \(t \)

\(\pi_{it} \): income for HH \(i \) at time \(t \)
Banks

- Bank Credit Supply

\[
L_{it}^s = \lambda L_t^s \frac{K_{it-1}}{K_{t-1}} + (1 - \lambda) L_t^s \frac{A_{it-1}}{A_{t-1}}
\]

\[
K_{t-1} = \sum_{i=1}^{N_{t-1}} K_{it-1}
\]

\[
A_{t-1} = \sum_{i=1}^{N_{t-1}} A_{it-1}
\]
Banks

- **Bank Profit**

\[
\pi_t^B = \sum_{i \in N_t} r_{it} L_{it}^s - \bar{r}_t \left[(1 - \omega) D_{t-1} + E_{t-1} \right]
\]

*\(D_t\): Deposits at time \(t\)

- **Bank Equity**

\[
E_t = \pi_t^B + E_{t-1} - \sum_{i \in \Omega_{t-1}} B_{it-1}
\]

*\(B_{it}\): Bad debt from HH \(i\) at time \(t\)

\(\Omega\): Set of bad debt
Credit Market Equilibrium

- Equilibrium Interest Rate

\[
 r_{it} = \frac{2 + A_{it-1}}{2cg\left(\frac{1}{\phi c} + \pi_{it-1} + A_{it-1}\right) + 2cgL^s_t[\lambda \kappa_{it-1} + (1 - \lambda)\alpha_{it-1}]
\]

\(\kappa_{it-1}\) and \(\alpha_{it-1}\) are the ratio of individual HH to total capital and net worth

- The rate at which credit supply equals credit demand
Household Entry & Exit

• Entry Probability

\[\Pr(Entry) = \frac{1}{1 + e^{[d(\bar{r}_{t-1} - e)]}} \]

\(d\) and \(e\) are constants

• Exit Condition (i.e., foreclosure)

\[A_{it} < 0 \]

\[A_{it} = A_{it-1} + \pi_{it} \]

Negative Net worth