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Timely detection of unusual and/or unexpected events in natural and man-made systems has deep scientific
and practical relevance. We show that the recently proposed conceptually simple and easily calculated measure
of permutation entropy can be effectively used to detect qualitative and quantitative dynamical changes. We
illustrate our results on two model systems as well as on clinically characterized brain wave data from epileptic
patients.
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I. INTRODUCTION

Detection of dynamical changes in complex systems is
one of the most important problems in physical, medical,
engineering, and economic sciences. Indeed, in meteorology,
quantitative description of time and location of weather
changes is crucial for accurate weather forecasting; in physi-
ology and medicine, accurate detection of transitions from a
normal to an abnormal state may improve diagnosis and
treatment; in communications networks, robust and timely
detection of anomalies, either due to hardware or software
failure, or due to hacking, is crucial to maintain the net-
work’s integrity and functionality. Other important applica-
tions include earthquake prediction and detection of anoma-
lous events leading to power outages in power grids or
financial crashes.

During the last two decades, a number of interesting
methods have been proposed to detect dynamical changes.
They include, among others, recurrence plots[1] and recur-
rence quantification analysis[2,3], recurrence time statistics
based approaches[4,5], space-time separation plots[6] and
their associated probability distributions[7], metadynamical
recurrence plot[8], statistical tests using discretized invariant
distributions in the reconstructed phase space[9,10], cross-
correlation sum analysis[11], and nonlinear cross prediction
analysis[12]. Most of these methods are based on quantify-
ing certain aspects of the nearest neighbors in phase space,
and, as a result, are computationally expensive. Recently,
Bandt and Pompe introduced the interesting concept of per-
mutation entropy(PE), as a complexity measure for time
series analysis[13]. The PE is conceptually simple and com-
putationally very fast. These two features motivate us to ex-

plore whether this concept can be effectively used to detect
dynamical changes in complex time series. We use two
model systems, namely, a transient logistic map and a tran-
sient Lorenz system, and a number of clinically characterized
EEG (brain wave) data to show that the PE can indeed be
effectively used to detect bifurcationlike transitions from
model-generated data as well as epileptic seizures from EEG
data. We note that although the PE is expected to be closely
related to the Kolmogorov and topological entropy[13], in
certain dynamical systems they may not be equivalent[14].
Thus in general, PE based methods for detecting transitions
may yield different results than previously used methods,
such as Kolmogorov entropy[15] or Lyapunov exponents
[16]. Moreover, our preliminary studies on seizure detection
indicate that the PE based method is up to 100 times faster
than a Lyapunov exponent based method[16], due to the fact
that neighborhood searching is not needed. We postpone a
systematic comparison among these different methods for a
future study, and focus here on presenting and applying the
PE based method for event detection.

The reminder of the paper is organized as follows. In Sec.
II, we review the concept of PE and present our algorithm for
detecting dynamical changes in time series. In Sec. III we
apply the PE to detect state transitions in the two model
systems mentioned above. In Sec. IV, we report epileptic
seizure detection from EEG data. Section V contains the con-
cluding remarks.

II. PERMUTATION ENTROPY: DEFINITION
AND ALGORITHM FOR DETECTING

DYNAMICAL CHANGES

As is well known, a dynamical system can be suitably
represented and analyzed by using a symbolic sequence.
Recently, permutation was introduced by Bandt and Pompe
[13] as a convenient means of mapping a continuous
time series onto a symbolic sequence. To illustrate the idea,
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let us first embed a scalar time serieshxsid , i =1,2, . . .j
to a m-dimensional space[17]: Xi =fxsid ,xsi +Ld , . . . ,
x(i +sm−1dL)g, wherem is called the embedding dimension
and L the delay time. In their original paper, Bandt and
Pompe [13] choseL=1. Since in practice the optimalL
may be different from 1, we shall present the idea for any
m and L. For a given, but otherwise arbitraryi, the m
number of real valuesXi =fxsid ,xsi +Ld , . . . ,xsi +sm−1dLdg
can be arranged in an increasing order:fx(i +s j1−1dL)
øx(i +s j2−1dL)ø ¯ øx(i +s jm−1dL)g. When an equality
occurs, e.g.,xfi +s j i1−1dLg=xfi +s j i2−1dLg, we order the
quantities x according to the values of their correspon-
ding j ’s, namely if j i1, j i2, we write x(i +s j i1−1dL)
øx(i +s j i2−1dL). For example, a vector whose components
are all equal (i.e., X0=fx0,x0, . . . ,x0g) is mapped onto
f1,2, . . . ,mg. Hence, any vectorXi is uniquely mapped
onto s j1, j2, . . . ,jmd, which is one of them! permutations
of m distinct symbolss1,2, . . . ,md. It is clear that each
point in them-dimensional embedding space, indexed byi,
can be mapped onto one of them! permutations. When
each such permutation is considered as a symbol, then
the reconstructed trajectory in them-dimensional space
is represented by a symbol sequence. The number of dis-
tinct symbols can be at mostm!. Let the probability dis-
tribution for the distinct symbols beP1,P2, . . . ,PK, where
Køm!. Then the PE for the time serieshxsid , i =1,2, . . .j

is defined[13] as the Shannon entropy for theK distinct
symbols

Hpsmd = − o
j=1

k

Pj ln Pj . s1d

When Pj =1/m!, then HPsmd attains the maximum value
lnsm!d. For convenience, we always normalizeHpsmd by
lnsm!d, and denote

0 ø Hp = Hpsmd/lnsm!d ø 1. s2d

ThusHp gives a measure of the departure of the time series
under study from a complete random one: the smaller the
value of Hp, the more regular the time series is. It is clear
that if m is too small, such as 1 or 2, the scheme will not
work, since there are only very few distinct states. In prin-
ciple, using a large value ofm is fine, as long as the length of
a stationary time series under study can be made proportional
to m!. However, since the purpose of the study is todetect
changes in signals, too large a value ofm, such as 12 or 15,
is inappropriate. In their paper[13], Bandt and Pompe rec-
ommendm=3, . . . ,7. We often found thatm=3 and 4 may

FIG. 1. (a) The transient logistic map data;
(b),(c) variations ofHpsrd with r for m=5, L=1
andm=5, L=2.
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still be too small, and a value ofm=5, 6, or 7 seems to be the
most suitable.

Our algorithm for the detection of dynamical changes in a
time series can be described as follows: Partition a long time
series into(overlapping or nonoverlapping) blocks of data
sets of short lengthw, and computeHp for each data subset.
In the examples presented below, maximal overlapping(win-
dow shift by 1 time step) is used. We expect that the varia-
tion of Hp as a function of time or certain time-varying pa-
rameter can accurately indicate interesting dynamical
changes in a time series. This is indeed so, as shall be shown
by the examples in the following two sections.

Before proceeding, we comment on the selection of the
window sizew. Intuitively it is obvious thatw should not be
small. Otherwise, the statistics are not conclusive. However,
if one’s purpose is to accurately find transitional signals, then
w should not be too large either. Upon usingw=512, 1024,
and 2048, we found consistently similar results. Hence, it
appears that, within this range, the precise choice of the win-
dow sizew is not critical. The examples presented in the next
section are all analyzed forw=1024.

III. DETECTING DYNAMICAL CHANGES
IN MODEL SYSTEMS

Our first example is the transient logistic map,

xn+1 = rsndxns1 − xnd. s3d

Following Trulla et al. [2], we first generate a transient time
seriesxsid, consisting of 120 001 points, by starting from
x0=0.65, rs0d=2.8 and consistently incrementingr in steps
of 10−5 at each iteration. Figure 1(a) shows the resulting time
series. To emphasize the fact that Fig. 1(a) is not the usual
(asymptotically stabilized) bifurcation diagram, but the entire
transient time series[one point for eachrsnd at the discrete
time stepn], we have denotedrsnd instead ofr under thex
axis. We notice that although the overall pattern is very simi-
lar to the familiar bifurcation diagram for the logistic map,
the parameter positions where transitions occur are slightly
different from the well-known bifurcation points. For ex-
ample, the period 2 bifurcation occurs atr <3.025 instead of
r =3. Such minute differences can be attributed to the tran-
sient character and “memory” effect of the system: the entire

FIG. 2. (a) The transient Lorenz data;(b)–(d)
variations ofHpsrd with r for three differentm. L
is always 10.
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time series is generated by iterating Eq.(3) without discard-
ing any points, hence, adjacent points in the time series are
not only parameter value, but also time correlated. This cor-
relation somewhat delays the onset of the actual bifurcation
transitions. As illustrated in Figs. 1(b) and 1(c), this memory
effect is responsible for the fact that the variation of the
permutation entropy with the parameterr captures the tran-
sitions better whenL=2 than whenL=1.

Now let us check how well the PE can detect dynamical
changes from thexi time series. Figure 1(b) shows the varia-
tion of Hp with rsnd whenm=5, L=1. It is interesting to note
that theHpsrd versusrsnd curve correlates very well with the
original time series, except that it misses the period-8 to
period-16 bifurcation. When we chooseL=2 instead, even
this bifurcation is accurately identified, as is shown by Fig.
1(c). This can be clearly seen by comparing Figs. 1(a)–1(c)
aroundr <3.56.

Next we examine a continuous time system described by
the following transient Lorenz equations[3]:

dx/dt = − 10sx − yd,

dy/dt = − xz+ rstdx − y, s4d

dz/dt = xy− 8z/3.

The system is solved using a fourth-order Runge-Kutta
method with a time stepDt=0.01. The parameterrstd is
incremented from 28.0 to 268.0 by 0.002 at each integra-
tion step. The signal, of total length 120 001, one for each
time stepDt, is shown simply by dots in Fig. 2(a). When
Eq. (4) is solved with the parameterr fixed, theoretically,
there are three periodic windows: 99.524, r ,100.795,
145, r ,166, andr .214.4, as indicated by dashed vertical

lines in Fig. 2(a). However, we emphasize again that the
whole data set shown in Fig. 2(a) is a transient signal. In fact,
due to transient nature of the system, the window
99.524, r ,100.795 is no longer periodic, hence, a good
discriminating measure should not identify it as such.

To compute the PE, we choseL=10. Figures 2(b)–2(d)
show the variations ofHpsrd with rstd for m=4, 5, and 6,
respectively. We note that all these graphs, especially those
with m=5 and 6, capture the periodic windows very well.
The reason thatm=4 is not as good asm=5 or 6 lies in the
fact that the state space withm=4 is characterized by 4!
=24 distinct states, hence, is not very large. Thus, for prac-
tical applications, we recommendm=5, 6 or 7 [the Hpsrd
versusrstd curve form=7 is similar to those form=5 and 6,
and hence, not shown here]. It is clear that—to a certain
extent—the choices of bothm andL are related to the time
stepDt.

Before we end this section, we comment that the PE can
do more than detect bifurcationlike transitions. This is
clearly indicated in Figs. 1 and 2 that the PE can vary con-
siderably in chaotic windows. As we shall further show be-
low, PE can vary significantly between epileptic seizures.

IV. EPILEPTIC SEIZURE DETECTION
FROM EEG SIGNALS

Epilepsy is one of the most common disorders of the
brain. Although epilepsy can be treated effectively in many
instances, severe side effects have frequently resulted from
constant medication. Even worse, patients may become drug
resistant not long after being treated. To make medication
more effective, timely detection of seizure is very important.
In the past several decades, considerable efforts have been
made to detect/predict seizure through analysis of continuous

FIG. 3. Depth electrode placement
diagram.
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EEG measurements. Representative nonlinear methods pro-
posed include approaches based on correlation dimension
[18–21], entropy[15], short time largest Lyapunov exponent
[22,23], and dissimilarity measures[10,24].

We analyzed EEG signals recorded intracranially with ap-
proved clinical equipment by the Shands Hospital at the Uni-
versity of Florida. Such EEG signals are also called depth

EEG, in contrast to scalp EEG. Depth EEG signals are less
contaminated by noise or motion artifacts. Typically, a mea-
surement is made with 28 electrodes(see Fig. 3).

Figure 4 shows a 10-minute duration EEG signal from
one electrode. Signals with small amplitudes are considered
normal background activities. The clinical equipment used to
measure the data has a pre-set, unadjustable maximal ampli-
tude, which is around 5300mV. This causes clipping of the
signals when the signal amplitude is higher than this thresh-
old. This is often the case during seizure episodes, especially
for certain electrodes. This is evident in Fig. 4 around minute
328 [which corresponds to the second seizure in Figs.
5(c)–5(e)]. To a certain extent, this clipping complicates sei-
zure detection, since certain seizure signatures are not cap-
tured by the measuring equipment.

We studied multiple channel EEG signals of three pa-
tients. Each signal is more than 5 hours long, with a sam-
pling frequency of 200 Hz. The PE was computed from each
data set, with embedding dimensionm=5, delay timeL=3,
and a window size of 2048 points. The value ofL was de-
termined according to an optimal embedding procedure de-
scribed in Ref.[16]. The precise time of seizure onset was

FIG. 4. An example of 10-minute long depth EEG signal.

FIG. 5. Variations ofHp with time for EEG
signals of(a) patient 1, channel LTD 1,(b) pa-
tient 2, channel LTD 1, and(c)–(e) patient 3,
channels LTD 1–3.
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determined by medical experts by viewing video tapes as
well as the EEG signals and is indicated by dashed vertical
lines in Figs. 5(a)–5(e). Seizures were associated with either
abnormal running/bouncing fits, clonus of face and fore-
limbs, or tonic rearing movement as well as with simulta-
neous occurrence of transient EEG signals such as spikes,
spike and slow wave complexes or rhythmic slow wave
bursts. The variations ofHp vs time are shown as solid
curves in Figs. 5(a)–5(e). We notice that slightly after the
seizure, the PE has a sharp drop, followed by a gradual in-
crease. This indicates that the dynamics of the brain first
becomes more regular right after the seizure, then its irregu-
larity increases as it approaches the normal state. We also
note that the sharp drop in the PE is often preceded with an
abrupt increase in the magnitude either slightly before the
seizure[see Fig. 5(a), the first seizure], or slightly after the
seizure[see Fig. 5(a), second seizure, and Fig. 5(c), both
seizures]. This indicates that the dynamics of the brain may
momentarily become very irregular associated with the oc-
currence of each seizure. We note that these features reflect
well-known phenomena associated with seizures. Based on
the clinical characterization, we conclude that the PE has
indicated all the seizures present in the analyzed data. Simi-
lar results have been found when the method is applied to
analyze EEG signals measured by other electrodes. In Figs.
5(c)–5(e), we represent theHp time series registered by
channels LTD 1–3, respectively, from patient 3. For this pa-
tient, it was documented clinically that the seizure was local-
ized to electrodes RTD 1–3. This channel consistency sug-
gests that it could be sufficient to analyze EEG signals
measured by one channel alone.

We make two final comments:(i) Here we have focused
only on seizure detection. Other methods, such as that based
on the Lyapunov exponents[22], have been primarily used
for seizure prediction. In the future we intend to investigate
the use of PE for seizure prediction.(ii ) Much of the driving
force behind the research on seizure detection/prediction is
the perspective on clinical real-time on-line monitoring of
seizures. Hence, computational efficiency of a method is of

paramount importance and must be given serious consider-
ation. It is this very feature that distinguishes the PE ap-
proach from others. Indeed, we have found that a single
channel 6-hour duration EEG signal, with sampling fre-
quency of 200 Hz, can be processed in less than 1 minute.
Hence processing 30 channel EEG data can be done in less
than one-half hour. This means a simple PC is more than
sufficient for on-line processing of multiple channel EEG
signals.

V. CONCLUDING REMARKS

In this paper, we have explored the possibility of using the
PE to detect dynamical changes in a complex time series. By
analyzing two simple models, namely a transient logistic
map and transient Lorenz system, as well as a number of
clinical EEG data, we have shown that the PE can indeed be
effectively used to detect bifurcations in model systems as
well as the onset of epileptic seizures in intracrannial EEG
data. Certainly there is no reason to expect that the PE is
universally and indiscriminately applicable. Most likely, no
such measure exists; instead, various measures would have
to be used in a complementary fashion, to take best advan-
tage of their respective merits within their ranges of applica-
bility. We conclude though by emphasizing that the most
attractive features of the PE, namely its conceptual simplicity
and computational efficiency make it an excellent candidate
for a fast, robust, and useful screener and detector of unusual
patterns in complex time series.
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