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Detecting dynamical changes in time series using the permutation entropy
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Timely detection of unusual and/or unexpected events in natural and man-made systems has deep scientific
and practical relevance. We show that the recently proposed conceptually simple and easily calculated measure
of permutation entropy can be effectively used to detect qualitative and quantitative dynamical changes. We
illustrate our results on two model systems as well as on clinically characterized brain wave data from epileptic
patients.
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I. INTRODUCTION plore whether this concept can be effectively used to detect

Detection of dynamical changes in complex systems i§lynamical changes in complex time series. We use two
one of the most important problems in physical, medicalnodel systems, namely, a transient logistic map and a tran-
engineering, and economic sciences. Indeed, in meteorolog§ient Lorenz system, and a number of clinically characterized
quantitative description of time and location of weatherEEG (brain wave data to show that the PE can indeed be
changes is crucial for accurate weather forecasting; in physeffectively used to detect bifurcationlike transitions from
ology and medicine, accurate detection of transitions from anodel-generated data as well as epileptic seizures from EEG
normal to an abnormal state may improve diagnosis andata. We note that although the PE is expected to be closely
treatment; in communications networks, robust and timelyrelated to the Kolmogorov and topological entrofg], in
detection of anomalies, either due to hardware or softwareertain dynamical systems they may not be equival&ar
failure, or due to hacking, is crucial to maintain the net-Thus in general, PE based methods for detecting transitions
work’s integrity and functionality. Other important applica- may yield different results than previously used methods,
tions include earthquake prediction and detection of anomagych as Kolmogorov entropjl5] or Lyapunov exponents
lous events leading to power outages in power grids Of16]. Moreover, our preliminary studies on seizure detection
financial crashes. _ _indicate that the PE based method is up to 100 times faster

During the last two decades, a number of_ interestingan a Lyapunov exponent based methbél, due to the fact
methods have been proposed to detect dynamical changgfa; neighborhood searching is not needed. We postpone a
They include, among others, recurrence pldfisand recur- systematic comparison among these different methods for a

rence quantification analysj2,3], recurrence time statistics f . .
; . uture study, and focus here on presenting and applying the
based approachdd,5], space-time separation plot§] and PE based %ethod for event dete?:tion. 9 bplyIng

their associated probability distributiofig], metadynamical The reminder of the paper is organized as follows. In Sec.

recurrence plof8], statistical tests using discretized invariant . .
distributions in the reconstructed phase spigd, cross- I, we review the concept of PE and present our algorithm for

correlation sum analysid 1], and nonlinear cross prediction detecting dynamical changes in tlmg series. In Sec. Il we
analysis[12]. Most of these methods are based on quantify-2PPly the PE to detect state transitions in the two model
ing certain aspects of the nearest neighbors in phase spa&/Stems mentioned above. In Sec. IV, we report epileptic
and, as a result, are Computationa"y expensive_ Recen“ﬁeizure detection from EEG data. Section V contains the con-
Bandt and Pompe introduced the interesting concept of pe€luding remarks.
mutation entropy(PE), as a complexity measure for time
series analysigl3]. The PE is conceptually simple and com-
putationally very fast. These two features motivate us to ex- Il. PERMUTATION ENTROPY: DEFINITION
AND ALGORITHM FOR DETECTING
DYNAMICAL CHANGES
*Electronic address: contact@biosieve.com
TAuthor to whom correspondence should be addressed. Electronic As is well known, a dynamical system can be suitably

address: wwtung@ucar.edu represented and analyzed by using a symbolic sequence.
*Electronic address: gao@ece.ufl.edu Recently, permutation was introduced by Bandt and Pompe
SElectronic address: protopopesva@ornl.gov [13] as a convenient means of mapping a continuous
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let us first embed a scalar time seriggi),i=1,2,..} is defined[13] as the Shannon entropy for thé distinct

to a m-dimensional space[17]: X;=[x(i),x(i+L),..., symbols

X(@i+(m—-21)L)], wherem is called the embedding dimension

and L the delay time. In their original paper, Bandt and K

Pompe[13] choseL=1. Since in practice the optimal __ . A

may be different from 1, we shall present the idea for any Hi(m) gl PjIn P;. @

m and L. For a given, but otherwise arbitrary the m

number of real values=[x(i),x(i+L),... x(i+(m=-1)L)]

can be arranged in an increasing ordgx(i+(j,—~1)L)  When P;=1/m!, then Hp(m) attains the maximum value
<x(i+(j,~DL)<---=<x(@i+(j,—1L)]. When an equality In(m!). For convenience, we always normalitg(m) by
occurs, e.g.X[i+(ji;-1)L]=x[i+(j,~1)L], we order the In(m!), and denote

guantities x according to the values of their correspon-
ding j's, namely if jj;<ji,, we write X(i+(j;;—1)L)
<x(i+(j;,—1)L). For example, a vector whose components
are all equal(i.e., Xp=[Xg,Xo,---.Xo]) IS mapped onto
[1,2,...m]. Hence, any vectorX; is uniquely mapped ThusH, gives a measure of the departure of the time series
onto (jy,jo,....Jm), Which is one of them! permutations under study from a complete random one: the smaller the
of m distinct symbols(1,2,...m). It is clear that each value ofH,, the more regular the time series is. It is clear
point in them-dimensional embedding space, indexedipy that if mis too small, such as 1 or 2, the scheme will not
can be mapped onto one of thm! permutations. When work, since there are only very few distinct states. In prin-
each such permutation is considered as a symbol, thetiple, using a large value o is fine, as long as the length of
the reconstructed trajectory in the-dimensional space a stationary time series under study can be made proportional
is represented by a symbol sequence. The number of dige m!. However, since the purpose of the study isdetect
tinct symbols can be at moshl. Let the probability dis- changes in signalgoo large a value ofn, such as 12 or 15,
tribution for the distinct symbols b&,,P,, ... ,Px, where is inappropriate. In their papéd3], Bandt and Pompe rec-
K<=m!. Then the PE for the time serigx(i),i=1,2,..} ommendm=3,...,7. We often found thanh=3 and 4 may

0<H,=Hy(m)/In(m!) < 1. (2
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still be too small, and a value ofi=5, 6, or 7 seems to be the Ill. DETECTING DYNAMICAL CHANGES
most suitable. IN MODEL SYSTEMS
Our algorithm for the detection of dynamical changes in a

. ; . " . Our first example is the transient logistic map,
time series can be described as follows: Partition a long time P 9 P

series into(overlapping or nonoverlappinglocks of data X1 = F(MX(1 = Xp) . (3)
sets of short lengtv, and computéH,, for each data subset.
In the examples presented below, maximal overlappivig-  Following Trullaet al. [2], we first generate a transient time

dow shift by 1 time stepis used. We expect that the varia- Seriesx(i), consisting of 120 001 points, by starting from
tion of H, as a function of time or certain time-varying pa- X=0.65,r(0)=2.8 and consistently incrementimgin steps
rameter can accurately indicate interesting dynamicabf 107 at each iteration. Figure(d shows the resulting time
changes in a time series. This is indeed so, as shall be shovgeries. To emphasize the fact that Figa)lis not the usual
by the examples in the following two sections. (asymptotically stabilizedbifurcation diagram, but the entire
Before proceeding, we comment on the selection of thdransient time seriefone point for eachi(n) at the discrete
window sizew. Intuitively it is obvious thatv should not be time stepn], we have denoted(n) instead ofr under thex
small. Otherwise, the statistics are not conclusive. Howevelaxis. We notice that although the overall pattern is very simi-
if one’s purpose is to accurately find transitional signals, therdar to the familiar bifurcation diagram for the logistic map,
w should not be too large either. Upon usiwg512, 1024, the parameter positions where transitions occur are slightly
and 2048, we found consistently similar results. Hence, idifferent from the well-known bifurcation points. For ex-
appears that, within this range, the precise choice of the winample, the period 2 bifurcation occursrat 3.025 instead of
dow sizew is not critical. The examples presented in the nextr=3. Such minute differences can be attributed to the tran-
section are all analyzed fav=1024. sient character and “memory” effect of the system: the entire
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time series is generated by iterating E8) without discard- lines in Fig. Za). However, we emphasize again that the

ing any points, hence, adjacent points in the time series an@hole data set shown in Fig(& is a transient signal. In fact,
not only parameter value, but also time correlated. This cordue to transient nature of the system, the window
relation somewhat delays the onset of the actual bifurcatio®9.524<r<100.795 is no longer periodic, hence, a good
transitions. As illustrated in Figs(l) and Xc), this memory  discriminating measure should not identify it as such.
effect is responsible for the fact that the variation of the To compute the PE, we chode=10. Figures t)-2(d)
permutation entropy with the parametecaptures the tran- show the variations oH,(r) with r(t) for m=4, 5, and 6,
sitions better whe.=2 than when_L=1. respectively. We note that all these graphs, especially those
Now let us check how well the PE can detect dynamicalwith m=5 and 6, capture the periodic windows very well.
changes from thg; time series. Figure(b) shows the varia- The reason thain=4 is not as good as=5 or 6 lies in the
tion of H, with r(n) whenm=5, L=1. Itis interesting to note  fact that the state space with=4 is characterized by 4!
that theH(r) versusr(n) curve correlates very well with the =24 distinct states, hence, is not very large. Thus, for prac-
original time series, except that it misses the period-8 tdical applications, we recommend=5, 6 or 7 [the H(r)
period-16 bifurcation. When we choose=2 instead, even versusr(t) curve form=7 is similar to those fom=5 and 6,
this bifurcation is accurately identified, as is shown by Fig.and hence, not shown hérdt is clear that—to a certain
1(c). This can be clearly seen by comparing Fig&)11(c)  extent—the choices of botim andL are related to the time

aroundr = 3.56. stepAt.
Next we examine a continuous time system described by Before we end this section, we comment that the PE can
the following transient Lorenz equatiof3]: do more than detect bifurcationlike transitions. This is
clearly indicated in Figs. 1 and 2 that the PE can vary con-
dx/dt=-10x-y), siderably in chaotic windows. As we shall further show be-
low, PE can vary significantly between epileptic seizures.
dy/dt=-xz+r(t)x-vy, (4)
IV. EPILEPTIC SEIZURE DETECTION
dzdt=xy- 82/3. FROM EEG SIGNALS

The system is solved using a fourth-order Runge-Kutta Epilepsy is one of the most common disorders of the
method with a time stepAt=0.01. The parameter(t) is  brain. Although epilepsy can be treated effectively in many
incremented from 28.0 to 268.0 by 0.002 at each integrainstances, severe side effects have frequently resulted from
tion step. The signal, of total length 120 001, one for eacktonstant medication. Even worse, patients may become drug
time stepAt, is shown simply by dots in Fig.(8). When resistant not long after being treated. To make medication
Eqg. (4) is solved with the parametar fixed, theoretically, more effective, timely detection of seizure is very important.
there are three periodic windows: 99.524<100.795, In the past several decades, considerable efforts have been
145<r <166, andr >214.4, as indicated by dashed vertical made to detect/predict seizure through analysis of continuous
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EEG, in contrast to scalp EEG. Depth EEG signals are less
contaminated by noise or motion artifacts. Typically, a mea-
surement is made with 28 electrodege Fig. 3.

Figure 4 shows a 10-minute duration EEG signal from
one electrode. Signals with small amplitudes are considered
normal background activities. The clinical equipment used to
measure the data has a pre-set, unadjustable maximal ampli-
tude, which is around 530QV. This causes clipping of the
signals when the signal amplitude is higher than this thresh-
old. This is often the case during seizure episodes, especially
for certain electrodes. This is evident in Fig. 4 around minute
328 [which corresponds to the second seizure in Figs.
5(c)-5(e)]. To a certain extent, this clipping complicates sei-
zure detection, since certain seizure signatures are not cap-
tured by the measuring equipment.

EEG measurements. Representative nonlinear methods pro- We studied multiple channel EEG signals of three pa-
posed include approaches based on correlation dimensidirents. Each signal is more than 5 hours long, with a sam-
[18-21], entropy[15], short time largest Lyapunov exponent pling frequency of 200 Hz. The PE was computed from each
[22,23, and dissimilarity measurdg40,24.
We analyzed EEG signals recorded intracranially with ap-and a window size of 2048 points. The valuelofvas de-
proved clinical equipment by the Shands Hospital at the Unitermined according to an optimal embedding procedure de-
versity of Florida. Such EEG signals are also called depttscribed in Ref[16]. The precise time of seizure onset was
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determined by medical experts by viewing video tapes aparamount importance and must be given serious consider-
well as the EEG signals and is indicated by dashed verticadtion. It is this very feature that distinguishes the PE ap-
lines in Figs. %a)-5(e). Seizures were associated with eitherproach from others. Indeed, we have found that a single
abnormal running/bouncing fits, clonus of face and fore-channel 6-hour duration EEG signal, with sampling fre-
limbs, or tonic rearing movement as well as with simulta-quency of 200 Hz, can be processed in less than 1 minute.
neous occurrence of transient EEG signals such as spikegence processing 30 channel EEG data can be done in less
spike and slow wave complexes or rhythmic slow waveihan one-half hour. This means a simple PC is more than

bursts. The variations oH, vs time are shown as solid gyfficient for on-line processing of multiple channel EEG
curves in Figs. &)-5(€). We notice that slightly after the gjgnals.

seizure, the PE has a sharp drop, followed by a gradual in-
crease. This indicates that the dynamics of the brain first
becomes more regular right after the seizure, then its irregu-
larity increases as it approaches the normal state. We also |n this paper, we have explored the possibility of using the
note that the sharp drop in the PE is often preceded with apE to detect dynamical changes in a complex time series. By
abrupt increase in the magnitude either slightly before theinalyzing two simple models, namely a transient logistic
seizure[see Fig. Ba), the first seizurg or slightly after the map and transient Lorenz system, as well as a number of
seizure[see Fig. §a), second seizure, and Fig(ch, both  clinical EEG data, we have shown that the PE can indeed be
seizured This indicates that the dynamics of the brain mayeffectively used to detect bifurcations in model systems as
momentarily become very irregular associated with the ocwell as the onset of epileptic seizures in intracrannial EEG
currence of each seizure. We note that these features reflegata. Certainly there is no reason to expect that the PE is
well-known phenomena associated with seizures. Based ainiversally and indiscriminately applicable. Most likely, no
the clinical characterization, we conclude that the PE hasych measure exists; instead, various measures would have
indicated all the seizures present in the analyzed data. Simio be used in a complementary fashion, to take best advan-
lar results have been found when the method is applied teage of their respective merits within their ranges of applica-
analyze EEG signals measured by other electrodes. In Figbility. We conclude though by emphasizing that the most
5(c)-5(e), we represent thed, time series registered by attractive features of the PE, namely its conceptual simplicity
channels LTD 1-3, respectively, from patient 3. For this pa-and computational efficiency make it an excellent candidate
tient, it was documented clinically that the seizure was localfor a fast, robust, and useful screener and detector of unusual
ized to electrodes RTD 1-3. This channel consistency sugpatterns in complex time series.
gests that it could be sufficient to analyze EEG signals
measured by one channel alone.

We make two final commentsi) Here we have focused ACKNOWLEDGMENTS
only on seizure detection. Other methods, such as that based The authors thank Professor Sackellares of the Shands
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for seizure prediction. In the future we intend to investigatethem with the EEG data and Ms. Hui Liu for preparing the
the use of PE for seizure predictiqii.) Much of the driving  data. V.P. was partially supported by the Division of Material
force behind the research on seizure detection/prediction iSciences and Engineering, DOE Office of Basic Sciences.
the perspective on clinical real-time on-line monitoring of ORNL is operated for the DOE under Contract No.
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V. CONCLUDING REMARKS
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