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A prototype of closed system

Let h > 0 be given and consider the time set Th = {tk = kh : k ∈ N}
(discrete times). We denote by q(nh) the position of a particle at time nh. So
that,

q(tn) = q(tn)− q(tn−1) + q(tn−1)− q(tn−2) + . . .+ q(t1)− q(0) + q(0).

That is,

q(tn) = q(0) +

n∑
k=1

∆q(tk), (1)

where ∆q(tk) = q(tk)− q(tk−1). Notice that ∆tk = h.
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Let assume that the mass of the particle is m. So that, according to Newtonian
mechanics, the velocity ∆q(tk)/∆tk coincides with p(tk)/m, where p(tk) is the
momentum at time tk.

The notion of force F (tk) introduced by Newton corresponds to the momen-
tum variation ∆p(tk)/∆tk.
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Let assume that the mass of the particle is m. So that, according to Newtonian
mechanics, the velocity ∆q(tk)/∆tk coincides with p(tk)/m, where p(tk) is the
momentum at time tk.

The notion of force F (tk) introduced by Newton corresponds to the momen-
tum variation ∆p(tk)/∆tk.

Replacing p en (1), yields

q(tn) = q(0) +
1

m

n∑
k=1

p(tk)∆tk, (2)

which shows the convenience of calling x(t) = (q(t), p(t)) the state of the
particle at time t.
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Moreover,

p(tn) = p(0) +

n∑
k=1

∆p(tk) = p(0) +

n∑
k=1

F (tk)∆tk, (3)

To completely determine x(t) at any time t we need to know the initial state
x(0) = (q(0), p(0)) and the force F (t). This is the fundamental paradigm of
classical mechanics after Newton, describing the evolution of a closed or isolated
system.
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For x = (q, p), let us define the vector function:

b(x, t) =

(
p
m

F (t)

)
,

which allows to write both (2), and (3) in a single equation:

x(tn) = x(0) +

n∑
k=1

b(x(tk), tk)∆tk. (4)
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The above relation can be written as a system of finite-difference equations
too: 

∆q(tn) =
1
mp(tn)∆tn

∆p(tn) = F (tn)∆tn

q(0) = q0

p(0) = p0.

(5)

Or, {
∆x(tn) = b(x(tn), tn)∆tn

x(0) = x0.
(6)
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The flow of solutions

Let assume b known, and denote by t 7→ θt(x0) the unique solution which
starts from x0, that is, θ0(x0) = x0. This map will be called the flow of solutions
to Newton equations.

θtn(x0) = x0 +

n∑
k=1

b(θtk(x0), tk)∆tk.

Notice that x0 becomes a parameter which completely determines the function
t 7→ θt(x0) (a trajectory on the state space) as soon as one knows its value.
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Dilating the model

Let denote Σ the set of all states x = (q, p).
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the state of the system at time t when it follows the trajectory ω.
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Dilating the model

Let denote Σ the set of all states x = (q, p).

The motion is represented by a function x : Th → Σ called a trajectory of
the particle

Σ ⊂ R2 in our case.

Let call Ω the set of all trajectories.

That is, each ω ∈ Ω is a trajectory ω = (ω(t), t ∈ Th), and ω(t) represents
the state of the system at time t when it follows the trajectory ω.

Thus, ω(t) is a couple ω(t) = (ωq(t), ωp(t)), where ωq(t) is the position
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of the particle at time t when it follows the trajectory ω; while ωp(t) is its
momentum at time t.
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The stochastic processes appear

Let ω be fixed and we observe the motion following this trajectory. We define
a functional to inform the state in which we are at time t.

Xt(ω) = ω(t) , corresponds to the state at time t, for each trajectory ω.
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The stochastic processes appear

Let ω be fixed and we observe the motion following this trajectory. We define
a functional to inform the state in which we are at time t.

Xt(ω) = ω(t) , corresponds to the state at time t, for each trajectory ω.

Qt(ω) = ωq(t) , gives the position of the particle at time t and

Pt(ω) = ωp(t) is its momentum..
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As mentioned before, any solution of (2), (3), is a function ω ∈ Ω, which is
completely determinde once one fixes the initial conditions. Thus, Ω contains all
possible solutions to the above equations. In Probability Theory Ω is called the
sample space and X = (Xt; t ∈ Th), Q = (Qt; t ∈ Th), P = (Pt; t ∈ Th), are
stochastic processes defined on the space Ω. Newton equations become stochastic.
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As mentioned before, any solution of (2), (3), is a function ω ∈ Ω, which is
completely determinde once one fixes the initial conditions. Thus, Ω contains all
possible solutions to the above equations. In Probability Theory Ω is called the
sample space and X = (Xt; t ∈ Th), Q = (Qt; t ∈ Th), P = (Pt; t ∈ Th), are
stochastic processes defined on the space Ω. Newton equations become stochastic.

So that, (4) for instance, is now written

Xtn(ω) = X0(ω) +

n∑
k=1

b(Xtk(ω), tk)∆tk,

and we often omit the reference to ω for simplicity.
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If b is known, the above equation is easily solved as soon as we provide a way
of choosing the initial state X0(ω).
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If b is known, the above equation is easily solved as soon as we provide a way
of choosing the initial state X0(ω).

For instance, if we want to start from a fixed value X0 = x, we know that
θ•(x) : t 7→ θt(x) is the unique function of t solving (4) and starting from x.
That is, θt(x) is the state of the particle at time t, when it follows the trajectory
θ•(x)
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For instance, if we want to start from a fixed value X0 = x, we know that
θ•(x) : t 7→ θt(x) is the unique function of t solving (4) and starting from x.
That is, θt(x) is the state of the particle at time t, when it follows the trajectory
θ•(x)

One could equivalently say that θ•(x) is uniquely chosen among all trajectories.
To choose that function is equivalent to define a (trivial) probability measure on
Ω such that we pick θ•(x) with probability one. That is the so called Dirac delta
δθ•(x).
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δθ•(x)(A) =

{
1 si θ·(x) ∈ A

0 otherwise,

for all A ⊂ Ω.
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δθ•(x)(A) =

{
1 si θ·(x) ∈ A

0 otherwise,

for all A ⊂ Ω.

So that, the state θt(x) is in turn identifiable to a Dirac measure δθt(x) on
the space Σ as well.
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Opening the system

Once fixed our main one-particle system, suppose it is immersed in an
environment of smaller particles. These small particles hit the big one, changing
its momentum at each time t ∈ Th.
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Opening the system

Once fixed our main one-particle system, suppose it is immersed in an
environment of smaller particles. These small particles hit the big one, changing
its momentum at each time t ∈ Th.

Assume that each small particle interacts with the main system independently
of the others. The momentum variation of the big particle at the time of collision
it is a constant σh > 0.
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Opening the system

Once fixed our main one-particle system, suppose it is immersed in an
environment of smaller particles. These small particles hit the big one, changing
its momentum at each time t ∈ Th.

Assume that each small particle interacts with the main system independently
of the others. The momentum variation of the big particle at the time of collision
it is a constant σh > 0.

The collisions depend on the trajectory ω followed by the big particle on the
real line. We denote ξk(ω) ∈ {−1, 1} the direction in which the main system is
collided at each instant tk.
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Qtn = Q0 +

n∑
k=1

Ptk

m
∆tk (7)

Ptn = P0 +
n∑

k=1

F (tk)∆tk + σh

n∑
k=1

ξk. (8)

Or, in vector form

Xtn = X0 +

n∑
k=1

b(Xtk, tk)∆tk +

(
0
1

)
σh

n∑
k=1

ξk. (9)
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Additional hypothesis on the environment

We assume that the environment is in equilibrium. To represent this idea,we
suppose that both hitting directions are equiprobable. That is,

P(ξk = 1) =
1

2
= P(ξk = −1). (10)
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Additional hypothesis on the environment

We assume that the environment is in equilibrium. To represent this idea,we
suppose that both hitting directions are equiprobable. That is,

P(ξk = 1) =
1

2
= P(ξk = −1). (10)

Moreover, the hypothesis on the independence of collisions implies that
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Sh
tn(ω) :=

∑n
k=1 ξk(ω) satisfies:

E
(
Sh
tn

)
= 0 (11)

E
(
Sh 2
tn

)
=

n∑
k=1

E
(
ξ2k
)
= n, (12)

for all t ∈ Th.

The distribution of the random variable Stn is binomial B(n, 1/2).
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Changing scales

Now, we assume that h ↓ 0. Writing [t] the integer part of a real number t,
one has: [

t

h

]
h ≤ t <

([
t

h

]
+ 1

)
h.

Each real number t ≥ 0 is approached by [ th]h as h ↓ 0.
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And the equation of the open system becomes,

Xt = X0 +

[t/h]∑
k=1

b(Xkh, kh)h+

(
0
1

)
σhS

h
t . (14)
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And the equation of the open system becomes,

Xt = X0 +

[t/h]∑
k=1

b(Xkh, kh)h+

(
0
1

)
σhS

h
t . (14)

Notice that,

ĺım
h↓0

[t/h]∑
k=1

b(Xkh, kh)h =

∫ t

0

b(Xs, s)ds.
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And the equation of the open system becomes,

Xt = X0 +

[t/h]∑
k=1

b(Xkh, kh)h+

(
0
1

)
σhS

h
t . (14)

Notice that,

ĺım
h↓0

[t/h]∑
k=1

b(Xkh, kh)h =

∫ t

0

b(Xs, s)ds.

Does σhS
h converge?
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Asking for help to Nature

Notice that if σh is constant, then Sh explodes.

For each integer k, σhξk represents the moemntum variation. Thus, σ2
hξ

2
k

corresponds to a kinetic energy variation (dissipated through collisions). But
ξ2k = 1, therefore the sum of dissipated energies is given by

σ2
h

[t/h]∑
k=1

ξ2k = σ2
h

[
t

h

]
.
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Asking for help to Nature

Notice that if σh is constant, then Sh explodes.

For each integer k, σhξk represents the moemntum variation. Thus, σ2
hξ

2
k

corresponds to a kinetic energy variation (dissipated through collisions). But
ξ2k = 1, therefore the sum of dissipated energies is given by

σ2
h

[t/h]∑
k=1

ξ2k = σ2
h

[
t

h

]
.

Einstein postulóated that this quantity should have a finite limit, proportional
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to time t. This implies that σh be of the form

σh = σ
√
h. (15)
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to time t. This implies that σh be of the form

σh = σ
√
h. (15)

Calling Wh
t =

√
h
∑[t/h]

k=1 ξk , we obtain

∆Wh
t =

√
hξ[t/h],

and (
∆Wh

t

)2
= h = ∆t. (16)

All these processes converge in distribution towards a process W which satisfies
the following properties.
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The Brownian Motion

Wt follows a normal distribution with mean 0 and variance t, and it coincides
with the distribution of Wt+s −Ws.

For each 0 ≤ s ≤ t, Wt −Ws is independent of Ws.

W has continuous trajectories, but they are not differentiable!

W is called the Wiener Process or the Brownian Motion.
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The Brownian Motion

Wt follows a normal distribution with mean 0 and variance t, and it coincides
with the distribution of Wt+s −Ws.

For each 0 ≤ s ≤ t, Wt −Ws is independent of Ws.

W has continuous trajectories, but they are not differentiable!

W is called the Wiener Process or the Brownian Motion.

The open system dynamics, at a mesoscale, is then represented by the
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stochastic equation

Xt = X0 +

∫ t

0

b(Xs, s)ds+

(
0
1

)
σWt. (17)

σ > 0 is known as the diffusion coefficient of the system.
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stochastic equation

Xt = X0 +

∫ t

0

b(Xs, s)ds+

(
0
1

)
σWt. (17)

σ > 0 is known as the diffusion coefficient of the system.

The informal notation of the above equation is:

dXt = b(Xt, t)dt+ σdWt. (18)

but beware of interpreting dWt as a differential which DOES NOT EXIST!.
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The birth of Stochastic Analysis

The non differentiability of W has been a crucial mathematical problem, and
motivated new research in integration theory. One cannot define an integral with
respect to W following the usual procedure of Riemann or Lebesgue. A new
object, the stochastic integral, and a new calculus have been developed so as to
have a correct interpretation of expressions like

∫ t

0

Hs(ω)dWs(ω).

Let us illustrate briefly a particular case of stochastic integral. If σ is a bounded
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continuous function, one can give a rigorous meaning to an equation like

Xt = X0 +

∫ t

0

b(Xs, s)ds+

∫ t

0

σ(Xs, s)dWs, (19)

where the integral with respect to the Brownian Motion is interpreted as a limit
in probability of sums

∑
tn
k
,tn
k+1

∈πn

σ(Xtn
k
, tnk)

(
Wtn

k+1
−Wtn

k

)
,

where πn is a partition of [0, t] such that máx
∣∣tnk+1 − tnk

∣∣ tends to 0.
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A little formal algebra of integrals

Equation (16) inspires a formalism of differentials summarizing a number of
properties of stochastic integrals which can be rigorously proved otherwise. This
formalism is expressed via a “multiplication table of differentials”, which is indeed
a mnemotecnic rule.

• dt dWt

dt 0 0
dWt 0 dt
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A little formal algebra of integrals

Equation (16) inspires a formalism of differentials summarizing a number of
properties of stochastic integrals which can be rigorously proved otherwise. This
formalism is expressed via a “multiplication table of differentials”, which is indeed
a mnemotecnic rule.

• dt dWt

dt 0 0
dWt 0 dt

Consider a function f twice differentiable with continuous derivatives. A formal
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limited Taylor development until the second order of df(Wt) gives

df(Wt) = f ′(Wt)dWt +
1

2
f ′′(Wt)dW

2
t

= f ′(Wt)dWt +
1

2
f ′′(Wt)dt,

This is rigorously written as

Theorem 1. Given a twice differentiable function f with continuous derivati-
ves, the following formula due to Itô holds:

f(Wt) = f(W0) +

∫ t

0

f ′(Ws)dWs +
1

2

∫ t

0

f ′′(Ws)ds. (20)
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Notice that a formal computation of dXtdYt for

dXt = a(t)dt+ b(t)dWt,

dYt = α(t)dt+ β(t)dWt,

gives:
dXtdYt = b(t)β(t)dt.
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Langevin equations

This is a model of an open system dynamics frequently used in Physics. The
force is assumed to be the derivative of a potential U that is, Newton equations
are written after Langevin in the form

dQt =
Pt

m
dt

dPt = −∂U

∂q
(Qt) + σdWt.

(21)

Rolando Rebolledo. SFI-Summer School-2013 28



The energy functional

The above system of equations can be written introducing a Hamiltonian or
energy functional:

H(x) = H(q, p) =
p2

2m
+ U(q).

So that,

p

m
=

∂H

∂p
(x);

∂U

∂q
(q) =

∂H

∂q
(x),
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and the gradient of H is

∇H(x) =


∂H

∂q
(x)

∂H

∂p
(x)


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and the gradient of H is

∇H(x) =


∂H

∂q
(x)

∂H

∂p
(x)



Let introduce the symplectic matrix

J =

(
0 1
−1 0

)
,
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this allows to write the equation in a condensed form

dXt = J∇H(Xt)dt+

(
0
1

)
σdWt. (22)
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this allows to write the equation in a condensed form

dXt = J∇H(Xt)dt+

(
0
1

)
σdWt. (22)

If the environment changes the position of the main system, one can introduce
the energy of interaction K(x), so that

dXt = J∇H(Xt)dt+ J∇K(Xt)dWt. (23)
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this allows to write the equation in a condensed form

dXt = J∇H(Xt)dt+

(
0
1

)
σdWt. (22)

If the environment changes the position of the main system, one can introduce
the energy of interaction K(x), so that

dXt = J∇H(Xt)dt+ J∇K(Xt)dWt. (23)

In Physics this class of equations are usually obtained through the so called
Weak Coupling Limit which is nothing more than a sinonymous of the Central
Limit Theorem.
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Basic concepts of Open System Theory

To write down a model of an open system dynamics the analysis needs to
precise the following concepts

1. The main system and the environment (sometimes referred as “the heat bath”).

2. The states of the main system and the environment.

3. The observables of the phenomenon under study.

4. The evolution equations of both, states and observables.

5. The different space and time scales where the above equations hold.
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Main system and the environment

Matter is always moving, so that to study a part of Nature one needs to focus
on a piece of this motion. One cannot embrace the whole Universe! Thus, the
main system contains the part of the matter flow that will be transformed by
our observations or experiences, while the environment represents the unobserved
elements of it.
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The states

A state is the probability distribution of the matter flow. For instance,
the process Xt = (Qt, Pt) introduced in our previous mechanical examples,
corresponds to the flow of matter. Its probability distribution gives us the state
of the system at time t. In classical Newtonian mechanics (or closed system), the
state was considered as the couple Xt = (Qt, Pt) simply. But that is equivalent
to work with the Dirac measure supported by Xt.
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The observables

Observables are functions f(Xt) of the matter flow. The function f is referred
sometimes as the instrument used to perform the observation of Xt.

If µt is the distribution of Xt, that is, the state at time t, the mean value

E(f(Xt)) =

∫
Σ

f(x)µt(dx),

corresponds to an observation or measurement of the system at time t in the state
µt.
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Space and time scales

The deep unity of Nature allows us to move our analysis through a diversity
of space and time scales. The interaction main system–environment considers an
agglomeration of dynamics, producing different paces in their evolution.

Moreover, sometimes is possible to refine an analysis to go into observations
at a finer space scale. For instance, in Ecology, the number of individuals (an
integer valued flow) distribution is considered as a state of a system. A more
detailed analysis, should consider this as a function of biomass, so becoming an
observable in another model.
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The low density limit

Consider again a main dynamics described by

dXt = J∇H(Xt)dt.

Assume that this system is perturbed by impulses occurring at random times
(Tn)n∈N, such that the differences Tn+1 − Tn are distributed according to an
exponential law of parameter λ > 0. That is, for a constant c,

Xt = X0 +

∫ t

0

J∇H(Xs)ds+

(
0
1

)
cNt, with

Nt(ω) = n, si Tn(ω) ≤ t < Tn+1(ω). (24)
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N is a Poisson Process characterized as follows:

The random variables Nt+h −Nt have the same distribution as Nh,

For each sequence 0 ≤ t1 < t2 < . . . < tn, the increments Ntk+1
−Ntk are

independent,

P(Nt = n) = e−λt(λt)
n

n! .

Typically, this kind of processes is used to model a situation in which the
main dynamics run faster than that of perturbations, which are considered as rare
events. For instance, it is the case of great earthquakes.
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Changing scales

A Central Limit Theorem for the Poisson Process works as follows.

One introduces a change in time and space scales taking ϵ ↓ 0 and defining:

M ϵ
t =

√
ϵλ−1

(
Nϵ−1t − λϵ−1t

)
,

this family of processes converges in distribution towards a Brownian Motion W .

Thus, if we arrange the initial equation by writing Xϵ
t =

√
ϵλ−1Xϵ−1t, we
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obtain

Xϵ
t = Xϵ

0 +
√
ϵλ−1

∫ ϵ−1t

0

J∇H(Xs)ds

+

(
0
1

)
cM ϵ

t

+
t√
ϵλ−1

If the intensity of the Poisson Process is changed to λ ∼ 1/ϵ, then Xϵ can be
approached by a diffusion process.
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Multiscale dynamics

Brownian Motion and Poisson Processes are particular cases of a Lévy process.
This class is defined así follows.

X is a Lévy process if

The random variables have Xt+h −Xt have the same distribution as Nh,

For each collection 0 ≤ t1 < t2 < . . . < tn of times, the increments
Xtk+1

−Xtk are independent.
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Lévy processes representation

Any Lévy process can be decomposed in a continuous (Brownian) component
and a discontinuous (Poissonian) one. More precisely,

Xt = σWt +

∫
{|x|<1}

x(Nt(dx)− tν(dx)) +
∑

0<s≤t

∆Xs1{|∆Xs|≥1}. (25)
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