#### Parallel Agent Based Models

Matthew T. McMahon MITRE Corp.

# Outline

- Motivation
- Pedantic Background
- Examples
- Physics Models & Domain Decomposition
- Next Steps

# Motivation

Original Research Question:
 Can we efficiently increase the number of agents in a simulation ?

# Motivation

Original Research Question:
 Can we efficiently increase the number of agents in a simulation ?

• Reformulation:

What are the (dynamical) effects of scaling the number of agents and/or domain size in a simulation?

# Background

#### **Parallelizing a model**

#### Amdahl's Law

#### •Decompose model into Independent Processes

- •Distribute the Processes to Parallel Processors
- •Execute a time step(s)
- •Amalgamate Results

. . .

Time to execute = Tserial + Tparallel, Speedup on N processors = S(N

$$S(N) = \frac{T(1)}{T(N)} = \frac{T_s + T_p}{T_s + T_p/N}.$$

Parallel Speedup for Varying T<sub>serial</sub>



# Examples

- Examples of spatial agent based models
- Some examples used in government and industry

# Examples

Examples of spatial agent based models

- •Spatial Models
- •Purposive Agents
- •Vision and Motion

Cultural Dissemination<br/>(Axelrod)Island Model GA<br/>(after McCarty)Flocking<br/>(Reynolds)Rebellion<br/>(Epstein)

Cultural Dissemination<br/>(Axelrod)Island Model GA<br/>(after McCarty)Flocking<br/>(Reynolds)Rebellion<br/>(Epstein)

# Examples

Examples used in government and industry

- •IRS—taxation models
- •FAA—national airspace models
- •Very large scale geographic models
- •"3d" physics simulations and game engines



#### **Domain Decomposition**





# Particle Dynamics Simulations

• NASA's PARAMESH toolkit





Particle-in-cell (PIC) calculation

#### Coronal mass ejection

# **Domain Decomposition**





For agents in a spatial domain:

Subdivide the spatial domain into a mesh
Implement enough overlap to enable dealing with boundary conditions (i.e. vision)

# Load Balancing—Quad Tree



For non-uniformly distributed agents in a spatial domain:

Successively subdivide into subdomainsGoal is equal density per subdomain

#### Load Balancing—Quad Tree



#### Load Balancing—Quad Tree



#### Next Steps



- •Deploy to a cluster computer
  - Determine best approaches to AMRDistributed versus centralized

#### Next Steps



- Deploy to a cluster computerDetermine best
  - approaches to AMRDistributed versuscentralized

•Investigate applying to other agent domains (e.g. networks)