Parallel Agent Based Models

Matthew T. McMahan
MITRE Corp.
Outline

- Motivation
- Pedantic Background
- Examples
- Physics Models & Domain Decomposition
- Next Steps
Motivation

• Original Research Question:
 Can we efficiently increase the number of agents in a simulation?
Motivation

• Original Research Question:
 Can we efficiently increase the number of agents in a simulation?

• Reformulation:
 What are the (dynamical) effects of scaling the number of agents and/or domain size in a simulation?
Background

Parallelizing a model

- Decompose model into Independent Processes
- Distribute the Processes to Parallel Processors
- Execute a time step(s)
- Amalgamate Results
- ...

Amdahl’s Law

Time to execute = \(T_{\text{serial}} + T_{\text{parallel}} \),

\[
S(N) = \frac{T(1)}{T(N)} = \frac{T_s + T_p}{T_s + T_p/N}.
\]

Parallel Speedup for Varying \(T_{\text{serial}} \)

- IDEAL
- 1% SERIAL
- 5% SERIAL
- 10% SERIAL
Examples

- Examples of spatial agent based models
- Some examples used in government and industry
Examples

Examples of spatial agent based models
• Spatial Models
• Purposive Agents
• Vision and Motion

Cultural Dissemination
(Axelrod)

Island Model GA
(after McCarty)

Flocking
(Reynolds)

Rebellion
(Epstein)
Cultural Dissemination (Axelrod)

Island Model GA (after McCarty)

Flocking (Reynolds)

Rebellion (Epstein)
Examples

Examples used in government and industry

• IRS—taxation models
• FAA—national airspace models
• Very large scale geographic models

• "3d" physics simulations and game engines
Domain Decomposition
Particle Dynamics Simulations

- NASA’s PARAMESH toolkit
Domain Decomposition

For agents in a spatial domain:

• Subdivide the spatial domain into a mesh
• Implement enough overlap to enable dealing with boundary conditions (i.e. vision)
Load Balancing—Quad Tree

For non-uniformly distributed agents in a spatial domain:

• Successively subdivide into subdomains
• Goal is equal density per subdomain
Load Balancing—Quad Tree
Load Balancing—Quad Tree
Next Steps

• Deploy to a cluster computer
 • Determine best approaches to AMR
 • Distributed versus centralized
Next Steps

- Deploy to a cluster computer
 - Determine best approaches to AMR
 - Distributed versus centralized

- Investigate applying to other agent domains (e.g. networks)