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Abstract

Networks representing social systems display speci-c features that put them apart from
biological and technological ones. In particular, the number of links attached to a node is pos-
itively correlated to that of its nearest neighbours. We develop a model that reproduces this
feature, starting from microscopical mechanisms of growth. The statistical properties arising
from the simulations are in good agreement with those of the real-world social networks of
scientists co-authoring papers in condensed matter physics. Moreover, the model highlights the
determinant role of correlations in shaping the network’s topology.
c© 2004 Elsevier B.V. All rights reserved.
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1. Social networks

The research developed in the -eld of networks has revealed their pervasive presence
in technology, biology and society [1]. Systems as di>erent as the Internet, the neurons
of the brain, food-chains and scienti-c literature can all be represented as graphs [2],
i.e., geometrical objects composed by nodes connected by edges. While the statistical
analysis of these networks has revealed some nearly ubiquitous features [1], social net-
works (where nodes are people and edges are interactions) display a speci-c behaviour
that distinguish them from the others. Apart from the intrinsic interest in the principles
governing social interactions, such systems provide information about phenomena like
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the spreading of information and illnesses that take place on top of them [1]. Examples
of social graphs that have been analized are the network of actors co-starring in movies,
that of scientists co-authoring papers, that of businessmen sitting in common boards
of directors, and that of individuals with sexual interactions [1]. Between the aspects
that place them apart from technological and biological networks, we have focused on
the emergence of special correlations in the properties of the nodes at the ends of an
edge.

2. Assortativity in networks

A network is called assortative (disassortative) with regards to a certain property
if one can observe a positive (negative) correlation in that property when considering
adjacent nodes. In this work, we characterize the social networks, in a -rst approxi-
mation, with a scalar discrete property: the degree, i.e., the number of edges a node
has. In other words, we ask ourselves if nodes with a certain degree tend to connect
with others with similar or di>erent degree. Indeed, it results that while the majority
of technological and biological networks appear to be disassortative with respect to the
degree, social networks are generally assortative [3]. Such a result gives a signi-cant
insight into the speci-city of social networks. Indeed, far from being a secondary fea-
ture, degree-assortativity has important consequences, both on their topology and on
the dynamics that can take place on top of them: assortative networks percolate more
easily, are more resistant to attacks, and provide an ideal reservoir for epidemics [3].
From a quantitative point of view, indications of assortativity can be drawn from

the neighbour connectivity [4], i.e., the average nearest neighbour degree of a node of
degree k

knn(k) =
∑

k′
k ′P(k ′ | k) ; (1)

where P(k ′ | k) is the conditional probability that an edge belonging to a node of
degree k points to a node of degree k ′. Such a function is increasing, decreasing or
constant if the network is, respectively, assortative, disassortative or non-assortative.
Indeed, in the -rst case as the degree of a node increases, the average degree of the
nearest neighbours increases as well. The opposite happens in the second case, while
in the third, no correlation is observed. Another measure is the assortativity coe9cient
r. While a rigorous de-nition can be found in Ref. [3], to the aims of this work it is
enough to say that it is a quantity corresponding to the correlation coeGcient of the
degrees of the nodes at the extremes of an edge.

r ˙ 〈ij〉 − 〈i〉〈j〉 : (2)

3. The model

The model we de-ne in this work was thought to reproduce the assortative character
of social network as a result of a few elementary mechanisms of formation of the
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network at a microscopic level. This model can be thought as a generalization of
the BarabHasi–Albert preferential attachment one [5], and as the assortative version of
the one presented in Ref. [6]. While in the BarabHasi–Albert model the only allowed
microscopical mechanism was the addition of new nodes, we include as well mixing,
i.e., the addition of new links between nodes already existing in the network. This
mechanism is crucial in social networks, since the average life of a node (a human or
professional life) is usually much longer than that of an edge (a social relation). We
will compare the statistical properties of the network emerging from this rules with
those of a real-world social graph, i.e., the co-authorship network of condensed matter
physicists (cond-mat) [7].
The mechanism of growth is the following. At every time step:

(1) with probability p a new node is wired to an existing one; the choice of the
destination node is left to BarabHasi–Albert preferential attachment rule (‘rich gets
richer’). Thus, the probability of adding a new node and connecting it to an old
node i is

p
ki∑

j=1;N kj
: (3)

(2) with probability (1 − p) a new edge is added (if absent) between two existing
nodes. These are chosen on the basis of their degree. In other words, the proba-
bility of adding an edge between nodes 1 and 2 is a P̃(k1; k2). This can be written
as P1(k1)P2(k2|k1), being the second factor a conditioned probability. P1(k1) is
the rule for choosing the -rst of the two nodes, and again it is determined by the
preferential attachment. The functional form of P2(k2|k1) can be chosen so as to
favour links between similar or di>erent degree. In this way, the probability of
adding a new edge and connecting two old non-linked nodes is

(1− p) ki∑
j=1; N

kj
P2(k2 | k1) : (4)

In the limit of p=1 the model reduces to a traditional BA tree. In order to reproduce
the assortative behaviour we have explored two di>erent functional forms: an inverse
dependence

P2(k2 | k1)˙ 1
|k1 − k2|+ 1

and an exponential dependence, which clearly has a stronger e>ect

P2(k2 | k1)˙ e−|k1−k2|:

4. Simulation of the model

We performed extensive simulations of the model for the two considered functional
forms, and for a wide range of values of their parameters. The -rst issue to address
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Fig. 1. Degree distribution in the inverse case. The distribution for cond-mat is reported for comparison. In
the inset, degree distribution in the exponential case.

Table 1
Assortativity coeGcients emerging from the simulation

p 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0

rinv 0:052 0:056 0:062 0:063 0:076 0:067 0:048 0:028 0:022 −0:01
rexp 0:694 0:690 0:638 0:590 0:540 0:440 0:338 0:230 0:121 −0:01

is the emergence of assortativity. In Fig. 1 we reported the average nearest neighbours
degree versus the degree for a few realizations of the model, while in Table 1 the
assortativity coeGcients are reported. Both results indicate that the model is able to
reproduce assortativity (at a stroger level in the exponential case). Mixing plays a
central role: as p is decreased (so that the rate of mixing is increased), both the slope
of the curve and the value of the coeGcient grow. This implies, as well, that, as far as
this model is concerned, the exponent and the coeGcient carry the same information.
The cond-mat co-authorship network seems to be some way in the middle between
the two functional forms, since the value of its coeGcient is comparable to that of the
exponential case in the limit of low mixing, while its slope is similar to that of the
inverse case, in the limit of high mixing.
We report in Fig. 2 the degree distribution. In the inverse case, its shape can be

-tted with a power law, indicating a scale-invariant behaviour. The slope is comparable
with that of cond-mat for p about 0.5. Interestingly enough, in the exponential case
a structure at high degrees is superimposed to the power law trend. This structure
emerges as p gets smaller then 0.5, i.e., when events of mixing get more frequent than
those of addition of nodes. Indeed the combination of strong assortativity, together
with the “preferential attachment option” in mixing yealds a cluster of high degree
nodes. Thus, a strong assortativity can brake the scale-invariant feature of the network,
inducing a transition from a scale-free to a non scale-free graph.
Let us now consider the emerging networks from the point of view of the Oow

of information upon them. A measure for the centrality of a node for such Oow is
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Fig. 2. Average nearest neighbour degree versus k in the inverse and exponential case, and for cond-mat.
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Fig. 3. Integrated site betweenness distribution in the inverse and exponential case, and for cond-mat. In the
inset, b versus k in the inverse and exponential case, and for cond-mat.

the site betweenness (see Ref. [8] for a quantitative de-nition). In the inverse case
(Fig. 3), the trend is a power law, in agreement with cond-mat data. Its slope is not a
function of p, suggesting that assortativity does not a>ect the scaling of centrality. This
scale-invariance is again broken in the exponential case, due to the positive correlations
between degree and betweenness (inset of Fig. 3).

5. Conclusions

In conclusion, we succeeded in obtaining the macroscopical property of assortativity,
a feature speci-c to social network, from the microscopical mechanism of growth
called “mixing”. The qualitative agreement of all trends emerging from simulation
with the real-world comparison network (cond-mat) suggests that the model is able to
catch some of the most important features of real social graphs. Moreover, when the
parameters of the model are driven in the limit of strong assortativity, it comes out
clearly how this feature can radically alter the properties of a network, by breaking its
scale invariance.
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